
Research Article
A Novel Method for Remaining Useful Life Prediction of Roller
Bearings Involving the Discrepancy and Similarity of
Degradation Trajectories

Honglin Luo , Lin Bo , Xiaofeng Liu , and Hong Zhang

�e State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044, China

Correspondence should be addressed to Lin Bo; bolin0001@aliyun.com

Received 9 October 2021; Revised 4 November 2021; Accepted 8 November 2021; Published 2 December 2021

Academic Editor: Heng Liu

Copyright © 2021 Honglin Luo et al. (is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Accurate remaining useful life (RUL) prediction of bearings is the key to effective decision-making for predictive maintenance
(PdM) of rotating machinery. However, the individual heterogeneity and different working conditions of bearings make the
degradation trajectories of bearings different, resulting in the mismatch between the RUL predictionmodel established by the full-
life training bearing and the testing bearings. To address this challenge, this paper proposes a novel RUL prediction method for
roller bearings that considers the difference and similarity of degradation trajectories. In this method, a feature extraction method
based on continuous wavelet transform (CWT) and convolutional autoencoder (CAE) is proposed to extract the deep features
associated with bearing performance degradation before the degradation indicator (DI) is obtained by applying the self-organizing
maps (SOM) method. Next, a dynamic time warping (DTW) based method is applied to perform the similarity matching of
degradation trajectories of the training and testing bearings. Driven by the historical DIs of the given bearing, the grey forecasting
model with full-order time power terms (FOTP-GM) is applied to model the degradation trajectory using a parameter opti-
mization method. (en, the failure threshold of the given testing bearing can be determined using a data-driven method without
manual intervention. Finally, the RUL of the given testing bearing can be estimated using the preset failure threshold and the
optimized degradation trajectory model of the given testing bearing. (e experimental results show that the proposed method
retains the individual differences of bearing degradation trend, realizes the independent and reasonable bearing failure threshold
setting, and improves the prediction accuracy of RUL.

1. Introduction

Accurate remaining useful life (RUL) estimation of bearings
is a significant challenge in the prognostics and health
management (PHM) system for rotating machinery to
improve the equipment reliability and reduce equipment
failures as well as maintenance costs. In the literature, the
prognostic approaches in a PHM framework can be
implemented in three different ways: physics-based ap-
proaches, data-driven approaches, and hybrid approaches (a
combination of data-driven and physics-based approaches)
[1]. By solving a set of equations based on the physical laws
and the knowledge of engineering and science, the physics-
based prognostic approaches assess the component health
and predict when the damage crosses a predefined failure

threshold based on the mathematical modeling of the
degradation process for a particular failure mode [2].
However, with high accuracy and efficiency requirements in
component RUL prediction, physical model-based life
prediction methods are difficult to meet modern needs due
to their complexity, time-consuming, and nonuniversality.

Without considering the complex degradation mecha-
nism of the system, the data-driven-based prognostic ap-
proaches can reduce the dependence on the amount of prior
knowledge and have the advantages of high prediction ac-
curacy and strong applicability. From the perspective of
mathematical modeling, the data-driven prognostic
methods can be further divided into statistical methods and
artificial intelligence (AI) basedmethods [3]. Statistics-based
prognostic approaches, also known as the empirical model-
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based prognostic approaches, estimate the remaining useful
life of a mechanical component by building a statistical
model based on empirical knowledge. (e statistical
methods include Gaussian model methods, autoregressive
model methods, hidden Markov model (HMM) methods,
Wiener process model methods, various statistical clustering
methods based on distance, and so on. Medjaher et al. [4]
proposed a mixture bearing RUL prediction model com-
bining the Gaussian model and HMM, and the performance
of the proposedmethod is verified using the real degradation
data sets of bearings. C. Kwan et al. [5] proposed a novel
bearing fault diagnostics and prognostics method using
HMM to characterize the failure mechanism of bearings and
applied the HMM-based method to a rotating shaft system
to verify its performance using actual data. X. Zhang et al. [6]
proposed an integrated method for bearing fault diagnostic
and prognostic based on PCA and HMM, and the effec-
tiveness of the proposed method is verified by using ex-
perimental bearing vibration data sets. P. Ding et al. [7]
proposed a novel degradation trend estimation method
based on an interpretable and lightweight vector autore-
gression algorithm, and the run-to-failure data sets of rolling
and slewing bearings are analyzed to demonstrate the ef-
fectiveness of the proposed method. B. Ayhan et al. [8]
proposed an adaptive bearing RUL prediction method based
on the damage accumulation description, in which the re-
cursive least squares (RLS) algorithm is applied to estimate
the damage curve approach (DCA) based RUL prediction
model adaptively.

(e main way to perform an AI-based framework for
bearing RUL prediction is machine learning (ML) based
prognostics, including artificial neural networks (ANN) [9],
support vector machines (SVM) [10], random forests (RF)
[11], and deep learning (DL) [12].(e conventional machine
learning-based prognostic methods usually extract a single
statistical feature in time or frequency domain from the
original signal as a health index (HI), such as root mean
square [13], Kurtosis [14], energy entropy [15], and so on.
However, there are significant limitations in the charac-
terization capability of such single statistical features. To a
more reasonable degradation indicator (DI), different sta-
tistical features are extracted in time, frequency, and time-
frequency domain, and some DI construction methods, such
as the principal component analysis (PCA) [16], support
vector data description (SVDD) [17], self-organizing map
(SOM) [18], and orthogonal sparse algorithm (OSA) [19],
are applied to fuse an effective degradation indicator by
reducing the dimension of such extracted feature sets.

(e deep-learning-based prognostic methods can learn
the deep information of original data and accurately evaluate
the degradation status of bearings. (e deep-learning-based
methods applied to predict the bearing RUL mainly include:
deep belief networks (DBN) [20], integrated deep learning
method based on time domain and frequency domain fea-
tures [21], convolutional neural network (CNN) [22,23],
autoencoder (AE) [24], recurrent neural network (RNN) [25],
and long short-termmemory (LSTM) [26]. It should be noted
that the deep learning methods mentioned above usually use
the full-life-cycle data of the training bearing to build a deep

learning model to establish a nonlinear mapping relationship
between the monitoring data of testing bearing and its RUL
under the assumption that the degradation patterns of the
training bearing and the test bearing are the same or similar.
In practical engineering practice, due to the individual het-
erogeneity of bearings and different environmental condi-
tions, bearings under the same working condition may not
necessarily have similar degradation trajectories, while
bearings under different working conditions may also have
similar degradation trends. In addition, a sufficient volume of
bearings with full-life data is needed as a prerequisite to
training a practicable prediction model using deep learning
methods, but it is not easy to collect large amounts of bearing
data with health information marked since the collection of
bearing data is complex and expensive.

To address the mismatch between the pretrained RUL
prediction model and the test bearing, one approach is to
map the pretrained model or the testing data by employing
transfer learning (TL) approaches to adapt the prediction
model to the test bearing domain [27]. To this end, many
researchers have extensively explored transfer learning
methods, such as transfer component analysis (TCA) [28],
joint distribution adaptation (JDA) [29], and correlation
alignment (CORAL) [30]. Aiming at bearing RUL prediction
based on transfer learning, Mao et al. [31] adopted TCA to
bridge the RUL discrepancy between test bearings and
training bearings. P. Ding et al. [32] proposed a novel
bearing RUL assessment method based on unsupervised
meta-learning to deal with the challenge of poor general-
ization and low prediction accuracy resulting from unla-
belled and limited samples. Y. Ding et al. [33] proposed a
dynamic domain adaptation-based RUL prediction method
for the machinery with multiple working conditions using a
deep subdomain adaptive regression network. X. Li et al.
[34] proposed a deep learning-based prognostic method in
which the generative adversarial network is used to learn the
distribution of the healthy state data. However, it is worth
noting that it is a time-consuming task with a tremendous
computational burden to perform the transfer learning for
high RUL predicting accuracy. Besides, the nonlinear re-
lationship between the training data and the RUL prediction
model after domain adaptation is not necessarily suitable for
all the target test bearing data sets due to the individual
heterogeneity of the bearings.

Another approach for cross-domain RUL prediction
problems is the degradation indicator extrapolation method.
(e DI extrapolation method sets a reasonable failure
threshold according to the data characteristics of the given
test bearing, then establishes a fitted degradation model of
the test bearing according to its historical DI curve, and
finally realizes the RUL prediction of the given testing
bearing based on the preset failure threshold and fitted the
DI curve. Compared to the black-box transfer learning-
based methods, the DI extrapolation method has good
physical interpretability. (e challenges in this method are
how to fit the bearing historical DI curve quickly and ac-
curately and how to determine the failure threshold auto-
matically with no human intervention, in which three issues
should be addressed carefully:
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(1) Building a degradation model for the given bearing
using practical features that can characterize the
performance degradation of bearing

(2) Setting practicable failure thresholds for the testing
bearings with different performance degradation
patterns

(3) Establishing a prediction framework with a good
generalization ability that can update the model
parameters dynamically according to bearing test
information

As an approximate exponential model, the grey fore-
casting model (GM) can analyze the internal law of the grey
system with fuzzy structure and incomplete or uncertain
exponential data, showing a high forecasting precision and
robust performance. K. Peng et al. [35] proposed an aircraft
engine RUL method using GM (1, 1) model with a better
RUL prediction performance by taking logarithmic opera-
tions and sliding window prediction. Z. Meng et al. [36]
combines the Markov and GM (1, 1) models to realize the
bearing RUL prediction, showing a lower root mean square
percentage error. Note that the traditional grey models
cannot simulate accurately any given nonhomogeneous
exponential sequence with velocity and acceleration terms, a
novel grey forecasting model with full-order time power
terms (FOTP-GM (1, 1)) is proposed to solve this problem
by S. Li et al. [37].(e FOTO-GM (1, 1) model can simulate a
more complex approximate exponential sequence contain-
ing constant, velocity, and acceleration terms by changing its
structure automatically to adapt to the evolution trend of
parameters to be predicted. (e FOTO-GM (1, 1) model can
fit the homogeneous exponential sequence exactly and
simulate such nonhomogeneous exponential, which pro-
vides another new approach for grey theory in bearing RUL
prediction.

(e accuracy of bearing RUL prediction is not only
affected by the bearing degradation model but also closely
related to the failure threshold. A reasonable failure
threshold can make the facility managers carry out more
effective maintenance depending on the bearing health
condition. In the existing literature on data-driven based
bearing RUL prediction, there are few discussions on the
setting of failure threshold, and most of them are set
manually, which mainly includes four setting methods:
manual empirical method [38], vibration acceleration am-
plitude threshold of 20 g [31], and life percentage uniform
threshold [39]. (ese failure threshold setting methods have
a significant manual subjectivity and do not consider the
variability of the bearing performance degradation process,
and their engineering utility is limited. In the engineering
practice, the degradation trends of bearings under the same
working conditions may be different, while the degradation
trends of bearings under different working conditions are
similar to some extent due to individual heterogeneity and
different environmental conditions of bearings. (erefore,
the difference and similarity of the degradation trends be-
tween the training and test bearings must be taken into
account when performing the bearing RUL prediction.

Some researches have been done to fill this gap. Wang T
et al. [40] proposed a novel RUL predictionmethod based on
the degradation trajectory similarity using the Euclidean
distance as the similarity criterion, and the smaller the
distance, the greater the similarity. Li et al. [41] proposed a
similarity-based approach for RUL estimation for industrial
components by calculating the fuzzy similarity between test
trajectory patterns and reference training trajectory patterns.
However, the similarity measure methods mentioned above
need to unify the sequence length using the average method
or the interpolation method resulting in the loss of the
original time information of the degradation trajectories.
Dynamic time warping [42], which can effectively cluster
time series with noise and time distortion, is an effective
pattern dissimilarity measurement technique that can align
two different length sequences representing the same type of
things in the time domain and calculate the distance between
the two-time series by extending and shortening the time
series.

Given the challenges and discussion above, this work
proposes a bearing RUL prediction approach that considers
the difference and similarity of bearing degradation tra-
jectories. In the proposed method, the DTW is used to
measure the similarities between degradation trajectories of
the training and testing bearings, and the FOTO-GM (1, 1)
model is utilized to fit the degradation trajectory of the given
bearing with high simulative precision. Firstly, the time-
frequency diagrams of the training and testing bearings are
generated by CWT before the deep features associated with
the performance degradation are extracted by inputting such
time-frequency representations into the CAE network.
Secondly, the degradation trajectories of the training and
testing bearings can be obtained by inputting such hidden
features into the pretrained SOM networks. (en, the fitted
degradation trajectories models of the training and testing
bearings are obtained by the FOTO-GM (1, 1) model, and
the failure thresholds of testing bearings can be determined
using the fitted degradation curves of the training bearings
and the degradation trend distances between the training
and testing bearings measured by DTW. Finally, the RUL
prediction of the testing bearings can be realized using the
preset failure thresholds and fitted degradation curves of
testing bearings.

(e proposed framework is evaluated on the IEEE PHM
2012 Challenge data sets [43] and the XJTU-SY data sets
[44].(e case study on experimental bearing data sets proves
that the proposed method could accurately predict the RUL
of bearings under different working conditions. (e com-
parison with other state-of-the-art methods also verifies the
feasibility of the proposed method. (e main contributions
of this paper are summarized as follows:

(1) A CWT-CAE-SOM-based bearing degradation in-
dicator construction method is proposed without
manual steps of signal feature extraction, selection,
and fusion. (is method extracts the hidden deep
representations driven by the monitoring data of the
given bearing to meet the consideration of the
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difference and independence between the full-life
training bearing and test bearings. (en the DI can
be obtained using the SOM network pretrained by
the normal state deep features without considering
the influence of the insufficient degradation data of
the test bearing.

(2) A DTW-based bearing degradation trend similarity
matching method is proposed. (is method calcu-
lates the DTW distances between historical degra-
dation trajectories of the training and testing
bearings, and the training bearing with theminimum
DTW distance to the given test bearing can be se-
lected as the reference bearing of the given test
bearing.

(3) A parameter optimization method for the FOTP-
GM (1, 1) model is proposed to determine the op-
timal order of time power terms. In this method, the
fitting error between the fitted degradation curve and
the original degradation trajectory is selected as the
evaluation metrics for the training phase, and the
distance between the fitted degradation curves of the
given testing bearing and corresponding reference
training bearing is considered as the selection criteria
in the testing phase, which fully considered the
difference and similarity of the degradation trajec-
tory of the training bearing and the test bearing

(4) A data-driven-based bearing failure threshold setting
method is proposed. (is method adaptively de-
termines the bearing failure threshold of the given
testing using the DTW distance between the given
testing and reference training bearing and the life
endpoint value of the fitted degradation curve of the
reference training bearing, which avoids the blind-
ness of the artificial subjective of the failure threshold
setting.

(e remainder of this paper is organized as follows.
Section 2 introduces the theoretical background. In Section
3, the failure thresholds setting and RUL prediction methods
are proposed and discussed. In Section 4, the experimental
procedure and results are presented and discussed. Finally,
some conclusions are drawn in Section 5.

2. Theoretical Background

2.1. Bearing Performance Degradation Characteristics Ex-
traction Based on CWT and CAE. (e time-frequency rep-
resentation provides the joint distribution information of
the time domain and frequency domain, and the continuous
wavelet transform method is applied to extract the time-
frequency distributions of the monitoring bearing signal
effectively.(eCWTcan decompose the given bearing signal
into a time-scale plane representation by scaling and shifting
the mother wavelet. A mother wavelet ψ ∈ L2(R) is usually a
function with zero average and finite length, where L2(R) is
the space of square-integrable complex functions [45]. (e
family of time-scale waveforms is obtained by scaling and
shifting the mother wavelet as follows:

ψa,b(t) �
1
��
a

√ ψ
t − b

a
􏼠 􏼡, (1)

where a> 0 is the scale factor for dilating or contracting the
wavelet and b is the shifting factor for transitioning the
wavelet along the time axis. For the given bearing signal x(t),
the CWToperation decomposes the signal x(t) into wavelet
coefficients according to the following integral:

cwt(a, b) �
1
��
a

√ 􏽚
∞

−∞
x(t)ψ∗

t − b

a
􏼠 􏼡dt, (2)

where ψ∗ is the complex conjugate of mother wavelet ψ. (e
CWT is useful for obtaining the frequency components at
different time scales and resolutions. For small scales (a> 1),
ψa,b(t) will be short and of high frequency, while for large
scales (a< 1), ψa,b(t) will be long and of low frequency.

In view of the individual variability of bearing degra-
dation trends, the CAE is used to automatically extract
degradation characteristics from bearing monitoring data
sets and realize the effective extraction of bearing perfor-
mance degradation features without prior knowledge of
bearing RUL. Compared with the traditional autoencoder,
CAE, as an unsupervised deep learning method, uses con-
volutional operation for the encoding and decoding part
instead of slicing and stacking the data, which significantly
improves the performance of training parameter optimi-
zation and feature extraction [46].

(e convolutional network in the CAE encoder encodes
the input data into a set of hidden space representations, and
then the decoder reconstructs the input data using decon-
volution operation. As shown in Figure 1, let TFi denotes the
time-frequency map of the given bearing data Xi at time i,
where TFi ∈ RL1×L1×D, and the H represents the potential
latent space representations of the given bearing time-fre-
quency data, where H ∈ RL2×L2×K. (e kth feature map in
encoder output H can be expressed as follows:

Hk TFi( 􏼁 � σ TFi ∗ωk + bk( 􏼁, (3)

where σ(·) is the nonlinear activation function, ∗ represents
2-D convolution, and ωk and bk denote the weights and bias
value of the kth convolution kernel of the encoder, re-
spectively. (en the kth encoded hidden representation can
be decoded to reconstruct the input data TFi using
deconvolution operation as follows:

􏽦TFi � σ Hk ∗ 􏽥ωk + 􏽥bk􏼐 􏼑, (4)

where 􏽦TFi ∈ RL1×L1×D is the reconstruction of input bearing
time-frequency data, 􏽥ωk is the 2-D deconvolutional filter in
the decoder, and 􏽥bk is the bias value of the decoder. During
unsupervised pretraining, the loss function of CAE is de-
fined as follows:

E � TFi − 􏽦TFi

����
����
2
, (5)

where E denotes the mean-square-error (MSE) distortion
between the original input image TFi and reconstructed
image 􏽦TFi. Minimizing the loss function E can get an op-
timal hidden space representation of the input bearing time-
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frequency data TFi, which can be used as a deep feature of
bearing performance degradation at that time i.

To improve the training efficiency and generalization
capability of the CAE network, multiconvolution layers are
usually adopted, and each convolutional layer is followed by
a batch normalization layer to make sure that the inputs and
outputs of each layer have the same amplitude distribution
with input data, which make the CAE can use a larger
learning rate for training, accelerate the training speed, and
overcome the influence of covariance offset.

2.2. Bearing Performance Degradation Trajectory Construc-
tionBased on SOM. Due to the different sensitivities to track
the degradation trend of bearing performance, the multi-
scale depth representations extracted by CAE cannot reflect
the hidden information of bearings in the degradation
process in a unified manner, and it is necessary to map such
depth features into a unified performance degradation in-
dicator. To obtain an accurate DI curve of the given bearing,
the SOM is used to fuse the multiscale depth representations
extracted by CAE into a nondimensional DI.

Let Hi denotes the n-dimensional hidden representa-
tions of the given bearing time-frequency data TFi output by
encoder, Hi � (h1

i , h2
i , . . . , hn

i ), where i � 1, 2, . . . , N,N is the
number of bearing training samples. Wj � (w1

j , w2
j , . . . , wn

j)

is the weights of the j th neuron in the SOM network, where
j � 1, 2, · · · , M, M is the neuron number of the SOM net-
work.(e construction process of DI is illustrated as follows:

(1) (e normalized H1 is firstly input into the SOM
model, and the winning neuron c is selected
according to the minimum Euclidean distance
standard: H1 − Wc � minH1 − Wj. (en the weight
vectors, learning rate, and neighborhood radius are
updated according to the method mentioned in
reference [17].

(2) (e training samples, H2 ∼ HN, are input into the
SOM network in turn to do the same operation, and
when all training samples participate in SOM training,
one iteration ends. When the iteration times reach the
set threshold, the SOM model established by normal
feature samples can be obtained.

(3) All the historical time-frequency diagrams of the
given bearing are input into the trained SOMmodel,
and the DI trajectory can be obtained using the
minimum value of Euclidean distance between
hidden feature Ht at time t and the weight vector W:

DI(t) � min Ht − W1, Ht − W2, . . . , Ht − WM􏼈 􏼉. (6)

(e DI(t) measures the deviation degree of the bearing
hidden representations between degradation conditions and
the normal condition in kernel space performed by SOM. A
higher DI value represents a more severe degeneration in
bearing performance.

2.3. Similarity Measure of Bearing Degradation Trajectories
Based on DTW. Dynamic time warping, which can effec-
tively cluster time series with noise and time distortion, is an
effective pattern dissimilarity measurement technique.
DTW-based bearing degradation trend matching is a
nonlinear regularization method that combines bearing
operation time regularization with degradation trajectory
distance calculation. It takes the historical degradation curve
of the given testing bearing as the reference template,
compares the full-life degradation trajectories of the training
bearings with the reference template one by one, and finds
the training bearing withminimum trajectory distance as the
degradation trend matched training bearing of the given test
bearing.

(e notation DItrain denotes the full-life degradation
trajectory of a training bearing, and the notation DItest

represents the degradation trajectory of a testing bearing,
where DItrain ∈ R1×Ntrain and DItest ∈ R1×Ntest . Define a matrix
d ∈ RNtrain×Ntest , where d(i, j) represents the distance between
point DItrain(i) and point DItest(j) to find the most fitting
path that passes through a number of grid points of this
matrix grid, ensuring the final total distance between the two
degradation curves is the shortest. Such a path can be
expressed as follows:

p � p1, p2, . . . , pNpath
􏼒 􏼓, (7)

Kernels

TFi

Inverse
kernels

Encoder Decoder

L1×L1×D L2×L2×K L1×L1×D

H
Convolution operation Deconvolution operation

TFi
~

Figure 1: Schematic diagram of convolutional autoencoder.
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where p represents the regularity degree of the two tra-
jectories, pk � (i, j), 1≤ k≤Npath; 1≤ i≤Ntrain; 1≤ j≤Ntest
and max(Ntrain, Ntest)≤Npath ≤Ntrain + Ntest. (e grid
points through which the path passes are the points on
which the two sequences are aligned for calculation. To
ensure that each point of DItrain and DItest appears in the
path p, the i and j in pk � (i, j) must be monotonically
increasing. (e obtained regularized path is required to
satisfy the shortest distance path rule:

D(i, j) � d(i, j) + min[D(i − 1, j), D(i, j − 1), D(i − 1, j − 1)],

(8)

where D(i, j) is the cumulative distance of the two sequences
from p1 � (1, 1) to pk � (i, j), that is, the sum of the Eu-
clidean distance d(i, j) that represents the distance between
the point DIlife(i) and point DItest(j), namely, the cumu-
lative distance of the smallest neighboring element that can
reach the point (i, j). (e value of the last point in matrix D
is the total cumulative distance of the two sequences and can
be considered as the similarity of the two sequences.

Bearings with similar degradation trajectories should
have a similar degradation pattern. (e failure threshold of
the reference training bearing with degradation trend
matched with the given testing bearing can be used to de-
termine the failure threshold of the given testing bearing.

2.4. �e Basic Principle of the FOTP-GM (1, 1) Model. (e
traditional grey model is only suitable for fitting the time
series of pure exponential change law, while the performance
degradation of rolling bearings is affected by many complex
factors, such as steady disturbance, constant speed

disturbance, and acceleration disturbance, and its perfor-
mance degradation trajectory will not strictly follow the pure
exponential change law [21]. FOTP-GM (1, 1), as a new
model derived from the grey prediction model, can adap-
tively change the model structure and parameters according
to the dynamic changes of the measured sequence to
maximize the fitting and prediction accuracy. (e discrete
form of the FOTP-GM (1, 1) model is defined as follows:

x
(1)

(t)

dt
+ ax

(1)
(t) � 􏽘

h

i�1
bit

h− i
h≥ 1, (9)

where a is the development index, bii � 1, 2, . . . , h is the grey
actuating quantity, and h is termed as the order of time
power terms bit

h− i.
Based on the given degradation curve X(0), a 1-AGO

sequence X(1) can be generated by the following:

x
(1)

(k) � 􏽘
k

i�1
x

(0)
(i), k � 1, 2, . . . , n. (10)

(en the parameter sequence a and bii � 1, 2, . . . , h of
the FOTP-GM (1, 1) model can be estimated by the least-
squares method, and the corresponding time response
function can be obtained as follows:

􏽢x
(1)

(t) � e
− at

􏽘

h

i�1
bi 􏽚 t

h− i
e

atdt + c⎛⎝ ⎞⎠, (11)

where c is a constant that can be optimized to acquire the
minimum error of simulation. (e reconstructed sequence
can be obtained as follows:

􏽢X
(0)

� 􏽢x
(0)

(k), k ∈ N, k≥ 1􏽮 􏽯 �
􏽢x

(0)
(k) � 􏽢x

(1)
(k) − 􏽢x

(1)
(k − 1), k ∈ N, k≥ 2,

􏽢x
(0)

(1) � x
(0)

(1).

⎧⎨

⎩ (12)

(e structural parameters of the FOTP-GM (1, 1) model
can be adjusted adaptively with the dynamic changes of the
actual time sequence, which can fit the homogeneous ex-
ponential sequence accurately and approximate the non-
homogeneous exponential sequence without error.

3. Methodology

Due to the nonlinearity and uncertainty of the bearing
degradation process, it is difficult to predict the RUL of the
given bearing accurately.(e essential step to this problem is
to establish a believable and reasonable mathematical model
to characterize such a nonlinear degradation process. Based
on the theories mentioned in Section 2, the proposed
method is shown in Figure 2, which mainly contains four
steps: DI trajectory construction, degradation trend
matching, optimal order setting of FOTO-GM (1, 1) model,
and the RUL prediction with preset failure thresholds.

Firstly, the time-frequency diagrams of the vibration
data of the training and testing bearings are input into the

CAE network to extract the deep hidden representations,
and the degradation trajectories of the training and testing
bearings can be generated from such deep hidden repre-
sentations using the SOM network. Secondly, the trend
similarity between the degradation trajectories of the
training and testing bearings is evaluated using DTW, and
the degradation trend matching results can be determined
using the minimum value in DTW distances. (en, the
degradation trajectory models of the training and testing
bearings can be obtained by applying FOTO-GM (1, 1)
model using an order optimizationmethod. Finally, the RUL
prediction of the testing bearing can be realized using the
preset failure thresholds and fitted degradation curves of
testing bearings.

3.1. Data-Driven Based Degradation Trajectory Model
Construction. An accurate bearing degradation model can
reduce the nonlinearity and uncertainty of the bearing RUL
prediction. Based on the theories mentioned in Section 2, the
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proposed data-driven method for bearing degradation tra-
jectory construction and modeling is shown in Figure 3,
which can be summed up as four steps as follows.

(1) Generating time-frequency diagrams of the given
bearing data using equation (2) given in Section 2.1.

(2) Extracting the deep hidden features of obtained
time-frequency diagrams using the CAE method
mentioned in Section 2.1.

(3) Mapping the degradation indicator by inputting the
normalized depth hidden features into the pre-
trained SOM network. (e DI curve of the given
bearing at time t,DI(t), can be obtained using the
minimum value of Euclidean distance between
hidden feature Ht and the optimized weight vector
W of the SOM network.

(4) Fitting the DI(t) sequence of the given bearing using
the FOTP-GM (1, 1) model with different time power
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terms orders, then using the method given in Section
3.2 to evaluate the fitting performance and select the
optimal time power terms order h.

3.2. �e Order Determining of the Time Power Terms for the
Training andTesting Phase. Since the curve reconstructed by
the FOTP-GM (1, 1) model is sensitive to the order of time
power terms bit

h− i. A fitted degradation trajectory model
with a suitable h can accurately reflect the process of bearing
performance degradation. So an appropriate time power
terms order is needed to be selected.

(e FOTP-GM (1, 1) model is used to fit data points in
the historical degradation trajectory of the given bearing and
the corresponding fitted time series,DIfitted, can be described
as follows:

DIfitted �
􏽢x

(0)
(k) � ue

pk
+ qk

2
+ rk + s, k ∈ Z, k≥ 2,

􏽢x
(0)

(1) � x
(0)

(1),

⎧⎨

⎩

(13)

where u, p, q, r, and s are the fitting parameters.
For the training phase, the fitting performance of dif-

ferent fitting order of time power terms can be expressed as
follows:

etrain(h) �

�����������������������������

1
N

􏽘

N

n�1
DItrain_fitted(n) − DItrain(n)􏼐 􏼑

2

􏽶
􏽴

, (14)

where e train represents the root-mean-square value of
fitting error between the origin degradation trajectory DItrain
and the fitted degradation curve DItrain_fitted, h ∈ N∗ is the
order of time power terms, and N is the length of the origin
degradation trajectoryDIlife.(e smaller the value of e train,
the smaller the fitting error between the fitted curve and the
original curve. To prevent overfitting, the h corresponding to
the trend transition point in the e train curve can be selected
as the optimal order of time power terms for the given
training bearing.

For the testing phase, the optimal order of time power
terms can be determined using the DTW distance between
the fitted degradation curves of the given testing bearing and
the corresponding reference training bearing with degra-
dation trend matched:

etest(h) � DT W DItrain_fitted, DItest_fitted􏼐 􏼑, (15)

where DItrain_fitted and DItest_fitted are the fitted degradation
curves of the reference training bearing and the given testing
bearing, respectively. (e h corresponding to the minimum
point in the e test curve and making the fitted curve
monotonically increasing can be selected as the optimal time
power terms order for the given testing bearing.

3.3.�eBearingFailure�reshold SettingandRULPrediction.
(e discrepancy and similarity of degradation trajectories
are considered to determine the failure threshold of the
given testing bearing. (e degradation trend of the training

bearing, which has a similar degradation trend to the given
testing bearing, is selected as the reference performance
degradation pattern, and the DI value at the life endpoint is
considered to set the testing bearing failure threshold.
However, the degradation trajectories of training and testing
bearings cannot be the same, so the DTW distance between
these two curves, which indicates the similarity of the
degradation trend, is considered to reduce the difference
between these two degradation curves.

Let DItrain and DItest_fitted represent, respectively, the
original DI trajectory and the fitted degradation curve
reconstructed by the FOTP-GM (1, 1) model of the given
reference training bearing, as shown in Figure 4(a). (e
DItest and DItest_fitted denote, respectively, the original DI
trajectory and the fitted degradation curve reconstructed by
the FOTP-GM (1, 1) model of the given testing bearing, as
shown in Figure 4(b).(e given testing and training bearings
have the minimal value of DTW distance showing a similar
degradation trend. As shown in Figure 4(e), the value of
DItrain_fitted(N) at the life endpoint is considered as the
failure threshold of the given training bearing. (e failure
threshold of the given testing bearing with a similar deg-
radation trend to the training bearing can be determined as
follows:

threshold � DItrain_fitted(N) + DT W DItrain, DItest( 􏼁.

(16)

(e RUL prediction method of rolling bearings based on
FOTP-GM (1, 1) can dynamically optimize the model
structure according to the performance decline trend of
rolling bearings to obtain the smallest simulation error of the
original time sequence as much as possible, with higher
prediction accuracy and stronger generalization ability.

As shown in Figure 4(e), the specific implementation
method of RUL prediction is as follows: firstly, using the
historical DI curve of the given testing bearing,
DItest(m), (m � 1, 2, . . . , M), to model and solve the pa-
rameters with equation (11). (en, the time correspond
DItest_fitted function can be solved using equation (13), and
several points in the future of DItest_fitted can be predicted.
When the DItest_fitted value reaches the preset failure
threshold, it is considered that the whole life is reached.
Finally, the RUL can be obtained by subtracting the current
operation time TC from the predicted whole life Tp, that is,

RUL � Tp − Tc. (17)

4. Experimental Verification

4.1. Case 1: IEEE PHM 2012 Data Challenge

4.1.1. Experimental System and Data Description. (e ex-
perimental lifecycle data sets of rolling bearings were col-
lected on the PRONOSTIA platform, provided by the
FEMTO-ST Institute [43].(is data set was used in the IEEE
PHM 2012 Data Challenge for predicting the RUL of
bearings. As shown in Figure 5, the experimental platform
conducted accelerated degradation tests to collect
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degradation data of ball bearings until their total failure, in
which 17 bearings were tested under 3 different operating
conditions, as shown in Table 1. (e first 2 bearings of each
group were used to train the run-to-failure data set to build
prognostics models, and the remaining 11 bearings were
truncated and required to predict the RUL accurately. (e
sampling frequency of the acceleration signal collected by
the test bench is 25.6 kHz, and the data acquisition card
(NIDAQCard-9174) collects data once every 10 s, with a
time of 0.1 s and 2,560 data points.

4.1.2. �e Result of DI Curves Construction. (e vibration
signals collected from faulty bearings usually contain peri-
odic pulses with shapes similar to the Morlet wavelets. Based
on the principle that the shape of the selected wavelet should
be similar to the mechanical fault signal, the Morlet-based
CWT is applied to extract time-frequency features from the
raw vibration signal of bearings.

Figure 6 shows the time-frequency diagrams of the
bearing training data sets during the run-to-failure exper-
iment, in which the degradation progress is calculated as a
percentage of the operation time over the whole lifetime of
the bearing. Generally, the lifecycle of bearing can be divided
into three stages: normal, degradation, and failure. (e
normal stage has two phases: run-in state and steady state.
(e frequency response of a running-in bearing is con-
centrated in the rotating zone, and the time-frequency di-
agram becomes clean with time. (e time-frequency
diagram of a normal bearing is clean with occasional random
shocks seen. In the degradation stage, the time-frequency
diagram starts to become cluttered, and the frequency re-
sponse is concentrated in the middle frequency band. When
the degradation progress approaches 100%, the time-fre-
quency diagram becomes very cluttered, and the frequency
response has amplitude in all frequency bands. (e above
analysis shows that the time-frequency diagram can show
the frequency energy distribution of bearing vibration sig-
nals hinting at the development trend of defects in the time-
frequency domain, and the time-frequency characteristics of
the bearing vibration signals are sensitive to the bearing
degradation.

(e time-frequency maps of all the tested bearings are
input into the CAE model to perform encoding and
decoding operations, and the depth hidden characteristics
related to bearing performance degradation can be obtained
from the output of the convolutional encoder. (e specific
parameter settings of the three CNN models are shown in
Table 2. (e size of input time-frequency maps is
128×128× 3. (e convolutional encoder has three con-
volutional layers and three pooling layers. (e size of
convolutional kernels in the three convolutional layers is
3× 3, and the stride is 1× 1. (e tiling sizes for the three
pooling layers are 4× 4, 4× 4, and 2× 2, respectively. (e
batch normalization operation is applied to the output of
each convolutional layer to make sure that the inputs and
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considering the difference and similarity of degradation
trajectories.
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Figure 5: Overview of PRONOSTIA [43] experimental platform.

Table 1: Data sets of IEEE 2012 PHM prognostic challenge.

Data sets
Operating conditions

Condition 1 Condition 2 Condition 3
Speed (RPM) 1,800 1,650 1,500
Load (N) 4,000 4,200 5,000

Training sets Bearing 1_1 Bearing 2_1 Bearing 3_1
Bearing 1_2 Bearing 2_2 Bearing 3_2

Testing sets

Bearing 1_3 Bearing 2_3

Bearing 3_3
Bearing 1_4 Bearing 2_4
Bearing 1_5 Bearing 2_5
Bearing 1_6 Bearing 2_6
Bearing 1_7 Bearing 2_7
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outputs of each convolutional layer have the same distri-
bution with input data. (e ReLU function is used for the
activation function, and the maximum pooling is used for
the pooling layer. (e padding parameter in both the
convolutional and pooling layers is “SAME” to retain the
most significant features of the input maps. (e convolu-
tional decoder includes six deconvolutional layers, whose
parameters of each layer correspond to those of the con-
volutional encoder. Except for the last deconvolutional layer,
the outputs of all the deconvolutional layers are batch
normalized, and the activation function is ReLU function
with “SAME” padding.

As illustrated in Table 2, the outputs of the convolutional
encoder are output by the pooling layer 3, and its size is
4× 4×15, which means that the hidden layer contains 15
feature maps with a size of 4× 4. (ese feature maps can be
expanded into a fully connected layer with a size of 1× 240,
and the values in this fully connected layer are the depth
features of the bearing time-frequency map extracted by the
convolutional autoencoder. Taking bearing 1–1 as an ex-
ample, the dimension of depth features extracted by CAE is
240, and 4 representative features, including Nos. 59, 74, 113,
and 125, are selected, and their curves change with the
operation time are shown in Figure 7.

Figure 7 shows that the depth features extracted by CAE
have a certain trend with time, which is suitable for the

prediction analysis of bearing RUL. However, different
depth features have different manners of tracking the
degradation trend of bearing performance, in which some
features increase with time or decrease with time, and some
features suddenly change in amplitude at a certain point in
operation time. Note that the depth features extracted by
CAE cannot uniformly reflect the degradation process, and
all the depth features are mapped into a unified DI by SOM.
(e first 5% normalized feature sets of each bearing are
selected as the training data sets of normal bearing to train
the SOM model corresponding to each bearing, and the DI
curves can be obtained by inputting the normalized feature
sets of all the tested bearing into the well-trained SOM
model.

Figure 8 shows that the lifecycle degradation trajectories
of the bearings under the same working condition show a
similar degradation trend with some differences that can be
seen, in which the DI values corresponding to the final
failure time points are not the same. It can be seen from
Figure 9 that the DI curves of test bearings are obviously
heterogeneous with different lengths. Due to the difference
in data distribution between full-life bearings and test
bearings, the degradation trends of bearings under the same
working conditions may be different, while the degradation
trends of bearings under different working conditions are
similar to some extent, so it is difficult to visually determine

0% 25% 50% 65% 80% 95% 100%

Bearing1_1

Bearing1_2

Bearing2_1

Bearing2_2

Bearing3_1

Bearing3_2

Figure 6: (e lifecycle time-frequency plots of the training bearing.

Table 2: Specific setting parameters of the convolutional encoder.

Layer Parameters Output size Activation function
Input layer — 128×128× 3 —
Convolutional layer 1 15 kernels, size: 3× 3 128×128×15 ReLU
Pooling layer 1 Size: 4× 4, stride: 4× 4 32× 32×15 —
Convolutional layer 2 15 kernels, size: 3× 3 32× 32×15 ReLU
Pooling layer 2 Size: 4× 4, stride: 4× 4 8× 8×15 —
Convolutional layer 3 15 kernels, size: 3× 3 8× 8×15 ReLU
Pooling layer 3 Size: 2× 2, stride: 2× 2 4× 4×15 —
Fully connected layer 240 neurons 1× 240 —
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Figure 7: (e curves of depth characteristics over operation time of bearing 1–1: (a) No. 59, (b) No. 74, (c) No. 113, and (d) No. 125.
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the full-life bearings with similar degradation trajectories to
test bearings. (erefore, it is necessary to match the trend of
the degradation trajectory of each bearing and set a rea-
sonable failure threshold for the test bearing by considering
the discrepancy and similarity of degradation trajectories of
training and testing bearings.

4.1.3. Bearing Degradation Model Construction Using an
Optimized Order of Time Power Terms. (e fitted degra-
dation curves with different order of time power terms of
FOTP-GM (1, 1) have different abilities to predict the
bearing RUL. Using the method proposed in Section 3.2, the
fitting performance is evaluated by calculating the fitting
error between the origin degradation trajectory DIlife and
the fitted degradation curve DIfit. Figure 10 shows the
degradation model constructed by FOTP-GM (1, 1) with
optimal orders of time power terms.

In the fitting error curves of the FOTP-GM (1, 1) model
for training bearings, there exists a trend transition point
after which the fitting error is getting smaller fluctuation, as
shown in Figure 10. (e time power terms order corre-
sponding to such trend transition point can be selected as the
optimal order of time power terms for the given training
bearing. (e training bearings have different fitted degra-
dation curves, which illustrates the heterogeneity of the
bearing performance decay. (e results of the optimal order
and the value of the corresponding fitted degradation curves
of training bearings at the life endpoint are listed in Table 3.

4.1.4. Failure �reshold Setting of Testing Bearings. To
predict the bearing RUL accurately, a reasonable failure
threshold for each testing bearing is needed. (e similarity
matching analysis is performed between the DI curves of
testing bearings and the lifecycle degradation trajectories of
the training bearings to classify the testing bearing degra-
dation trends based on the degradation trends of training
bearing, and the corresponding training bearing degradation
model can be selected as the reference degradation model of
the selected test bearing. Using the method mentioned in
Section 2.3, the similarities between the lifecycle degradation
trajectories of the training bearings and the DI curves of
testing bearings are illustrated in Table 3.

Based on Tables 3 and 4, the failure thresholds of the
testing bearings can be obtained using equation (16) given in
Section 3.3 and illustrated in Table 5.

4.1.5. Bearing Remaining Useful Life Prediction. Based on
the fitted DI curves and the preset failure thresholds of the
test bearings, FOTP-GM (1, 1) model is adopted to predict
the RUL of the test bearings using an optimal time power
terms order selection method introduced in Section 3.2. (e
performance of each order of time power terms of the
trained model is evaluated quantitatively according to
equation (15). (en the RUL of the given testing bearing can
be estimated using the optimal fitted degradation curve and

the preset failure threshold. For instance, the etest curves, the
optimal fitted degradation curves, and the RUL prediction
results of bearings 1_3, 2_7, and 3_3 are shown in Figure 11.

As shown in Table 6, the optimal order of the FOTP-GM
(1, 1) is different for different testing bearings. Table 6 also
illustrates the predicted RULs and the error rate of the
testing bearings, in which the RUL prediction results of
bearings 1_5 and 1_6 are 5,340 s and 4,380 s. However, the
given actual RULs of these two bearings are 1,610 s and
1,460 s. (e RUL prediction errors of bearings 1_5 and 1_6
are large, which results in poor prediction performance of
the proposed method. It seems that the proposed method
fails to predict the RULs of these two bearings accurately.
However, reference [30] pointed out that bearings 1_5 and
1_6 have their own specificities in the IEEE PHM 2012
prognostic challenge data sets. (e data set description
document states that “For security reasons, tests were
stopped when the amplitude of the vibration signal over-
passed 20 g.” However, bearings 1_5 and 1_6 did not meet
this requirement. As shown in Figure 12, the waveform of
the last sample of bearings 1_3, 1_5, 1_6, and 1_7 are
displayed with the amplitude threshold 20 g marked. Fig-
ure 12 illustrates that at the end of the test, the vibration peak
amplitude of bearings 1_5 and 1_6 are around 10 g and did
not overpass the preset failure threshold of 20 g.

To further verify that whether the vibration amplitudes
of bearings 1_5 and 1_6 have reached the preset failure
threshold, the whole life vibration peak amplitude curves of
these two bearings are presented in Figure 13. Figure 13
indicates that the vibration amplitudes of bearings 1_5 and
1_6 did not pass over 20 g during the whole testing process,
which means that the given reference RULs of these two
bearings are shorter than their real RUL in the case that the
failure threshold is set to 20 g. So it is reasonable that the
RUL prediction results of the proposed method for bearings
1_5 and 1_6 are longer than the given reference RUL. (e
error rates of the RUL prediction results of bearings 1_5 and
1_6 are not representative due to the given reference RULs
being smaller than their actual RULs.

(e performance of the RUL prediction results of testing
bearings can be evaluated using three metrics: root-mean-
square error (RMSE), symmetric mean absolute percentage
error (SMAPE), and scoring function.(e RMSE and SMAE
are defined as follows:

RMSE �

��������������������

1
n

􏽘

n

i�1
actRULi − RULi( 􏼁

2

􏽶
􏽴

,

SMAPE �
1
n

􏽘

n

i�1

2∗ actRULi − RULi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

actRULi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + RULi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑

.

(18)

(e scoring function has been adopted by many re-
searchers and IEEE PHM 2012 Prognostic Challenge [46].
By considering the different weights of earlier and later
prediction results, the scoring function is defined as follows:
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Figure 10: (e fitting error curve and fitted degradation model of: (a) bearing 1_1, (b) bearing 2_1, (c) bearing 3_1, (d) bearing 1_2, (e)
bearing 2_2, and (f) bearing 3_2.

Table 3: (e value of fitted degradation curves of training bearings at the life endpoint.

Training bearing B 1_1 B 1_2 B 2_1 B 2_2 B 3_1 B 3_2
Sample length (10s) 2,803 871 911 797 515 1,637
Optimal order 2 4 6 4 4 4
DItrain_fitted(N) 0.5457 0.4368 0.2914 0.5333 0.2659 0.3702

Table 4: (e DTW distances between DItrain and DItest.

Training bearings
Testing bearings

B 1_3 B 1_4 B 1_5 B 1_6 B 1_7 B 2_3 B 2_4 B 2_5 B 2_6 B 2_7 B 3_3
B 1_1 0.5591 0.9381 38.5134 18.2890 0.2406 37.5987 0.9118 24.8003 17.2799 1.0701 47.5313
B 1_2 0.9315 0.2254 1.4864 2.7099 1.8439 1.2902 0.4565 4.8017 1.0021 0.6241 0.9382
B 2_1 2.1973 0.9867 0.5670 1.3385 0.2982 0.3149 0.3211 0.3491 0.3925 0.1425 0.1638
B 2_2 0.7220 0.1774 1.8887 2.9778 1.3142 1.3712 0.8598 1.1538 1.2428 0.7570 1.4594
B 3_1 1.8556 1.6527 0.6120 0.7400 0.3929 0.3620 0.5413 0.5899 0.4178 0.2314 0.2649
B 3_2 0.8017 0.5397 1.5497 1.6687 1.1098 1.194 1.0822 1.1779 1.0373 0.6441 1.3180

Table 5: (e failure threshold setting of the testing bearings.

(reshold setting
Testing bearings

B 1_3 B 1_4 B 1_5 B 1_6 B 1_7 B 2_3 B 2_4 B 2_5 B 2_6 B 2_7 B 3_3
Reference bearing B 1_1 B 2_2 B 2_1 B 3_1 B 1_1 B 2_1 B 2_1 B 2_1 B 3_1 B 2_1 B 2_1
DItrain_fitted(N) 0.5457 0.5333 0.2914 0.2659 0.5457 0.2914 0.2914 0.2914 0.2659 0.2914 0.2914
DTW distance 0.5591 0.1774 0.5670 0.7400 0.2406 0.3149 0.32110 0.3491 0.3925 0.1425 0.1638
Failure threshold 1.1048 0.7107 0.81.0059584 1.0059 0.7863 0.6063 0.7579 0.6405 0.6839 0.4339 0.4552
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Figure 11: (e DTW distance curves, fitted degradation curves, and RUL prediction results of: (a) bearing 1_3, (b) bearing 2_7, and (c)
bearing 3_3.

Table 6: (e RUL prediction results of the testing bearings.

Testing bearings
B 1_3 B 1_4 B 1_5 B 1_6 B 1_7 B 2_3 B 2_4 B 2_5 B 2_6 B 2_7 B 3_3

Optimal order 2 2 8 7 7 5 5 7 6 4 8
Current sample point 1,802 1,139 2,302 2,302 1,502 1,202 612 2,002 572 172 352
Predicted life (10 s) 2,440 1,391 2,836 2,740 2,410 1,940 759 2,314 726 219 430
Predicted RUL (10 s) 638 252 534 438 908 738 147 312 156 47 78
Actual RUL (10 s) 573 339 161 146 757 753 139 309 129 58 82
Error rate (%) –11.34 12.80 –231.6 –200 –19.95 1.992 –5.755 –0.971 –19.38 18.99 4.878
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Figure 12: (e waveforms of the last sample of: (a) bearing 1_3, (b) bearing 1_5, (c) bearing 1_6, and (d) bearing 1_7.

500 1000 1500 2000 25000
Sample point

0

5

10

15

Pe
ak

 A
m

pl
itu

de
 (g

)

(a)

0

2

4

6

8

10

Pe
ak

 A
m

pl
itu

de
 (g

)

500 1000 1500 2000 25000
Sample point

(b)

Figure 13: (e whole life peak amplitude curves of: (a) bearing 1_5 and (b) bearing 1_6.
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(19)

where i ∈ [1, 11] states for the test bearings defined in Ta-
ble 1, actRULi and RULi denote the RUL of the bearing
estimated by the experimental participants and the actual
RUL to be predicted, respectively. Ei is the percent pre-
diction error on testing bearing i, and Ai is the score of
accuracy of RUL estimates for testing bearing i. (e Score
represents the overall accuracy of testing bearing RUL
prediction, and higher value in Score, higher overall RUL
prediction accuracy.

To verify the performance of the proposed method,
several state-of-the-art RUL prediction methods are com-
pared, including Sutrisno’s vibration frequency signature
anomaly detection and survival time ratio [13], Hong’s
combinatorial feature extraction and self-organization
mapping [17], Guo’s recurrent neural-network-based health
indicator [24], Singleton’s extended Kalman filter-based
method [46], Zhu’s multiscale convolutional neural net-
work-based method [22], Cheng’s transferable convolu-
tional neural network-based method [29], Mao’s deep
feature representation and transfer learning [30], and Li’s
deep adversarial neural networks-based method [33].

Table 7 shows that the proposed method has an out-
standing prediction performance. Compared with Sutrisno,
Singleton, and Cheng’s methods, the prediction RMSE of the
proposed method is much smaller. Besides, compared with
Mao’s method, although the RMSE and score of the pro-
posed method are slightly smaller, the proposed method has
the lowest SMAPE value, showing that the proposed pre-
diction model still has better precision. Combined with
listed methods, the adaptive failure threshold setting enables
the proposed method to predict the bearing RUL accurately
under multiple operating conditions.

4.2. Case 2: XJTU-SY Bearing Data Sets

4.2.1. Experimental System and Data Description. (e ex-
perimental lifecycle data sets of rolling bearings provided by
the Institute of Design Science and Basic Component at
Xi’an Jiaotong University [44] are analyzed to further prove
the effectiveness of the proposed method. As shown in
Figure 14, the experimental platform consists of an AC
motor, a motor speed controller, a rotating shaft, two
supporting bearings, a hydraulic loading system, a test
bearing, and so on. Two accelerometers (PCB 352C33) are

positioned at 90° on the housing of the tested bearing to
measure the horizontal and vertical vibrations of the tested
bearing. Fifteen rolling element bearings (LDK UER204)
were tested under three different operating conditions to
collect degradation data of ball bearings until their total
failure. As shown in Table 8, the first two bearings of each
group were selected to train the run-to-failure data set to
build prognostics models, and the remaining nine bearings
were truncated and required to predict the RUL accurately.
(e sampling frequency of the acceleration signal collected
by the test bench is 25.6 kHz, and the data acquisition card
(LE DT9837) collects data once every minute, with a time of
1.28 s and 32,768 data points.

4.2.2. �e Result of DI Curves Construction. (e Morlet-
based CWTmethod is applied to obtain the time-frequency
diagrams from the vibration data sets of the six training
bearings, as shown in Figure 15. Similar to Case 1, the time-
frequency map of a normal bearing is clean with occasional
random shocks seen. In the degradation stage, the time-
frequency diagram starts to become cluttered, and the fre-
quency response is concentrated in the middle frequency
band. When the degradation progress approaches 100%, the
time-frequency diagram becomes very cluttered, and the
frequency response has amplitude in all frequency bands.(e
above analysis shows that the time-frequency diagram can
hint at the development trend of defects in the time-frequency
domain, and the time-frequency characteristics of the bearing
vibration signals are sensitive to the bearing degradation.

Taking bearing 2_1 as an example, the deep hidden
features of its time-frequency diagrams is extracted by the
CAE model proposed in Case 1, and four typical feature
curves changing with the operation time are shown in
Figure 16, including Nos. 57, 94, 168, and 205. Similar to
Case 1, Figure 16 indicates that the depth features extracted
by CAE have a certain trend with time. However, different
depth features have different manners of tracking the
degradation trend of bearing performance, in which some
features increase with time or decrease with time, and some
features suddenly change in amplitude at a certain point in
operation time. (e SOM method is applied to fuse these
depth features into a unified DI to reflect the degradation
process uniformly. (e first 5% normalized feature sets of
each bearing are selected as the training data sets of normal

Table 7: (e comparison of RUL prediction results of testing
bearings.

Methods RMSE SMAPE Score
Sutrisno’s method [13] 0.3187 0.3583 0.3066
Singleton’s method [14] 0.1161 0.3768 0.2645
Hong’s method [17] 0.0907 0.2258 0.3614
Zhu’s method [22] 0.0691 0.1549 0.3624
Guo’s method [24] 0.0860 0.1910 0.2631
Cheng’s method [29] 0.0971 0.2769 0.3035
Mao’s method [30] 0.0558 0.2399 0.4285
Li’s method [33] 0.0950 0.1516 0.3974
Proposed method 0.0653 0.1373 0.4182
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bearing to train the SOM model corresponding to each
bearing, and the DI curves can be obtained by inputting the
normalized feature sets of all the tested bearing into the
pretrained SOM model.

Figures 17 and 18 show that the lifecycle degradation
trajectories obtained from the XJTU-SY bearing data sets
are obviously heterogeneous with different lengths. Due to
the difference in data distribution, the degradation trends

Digital force display Motor speed controller

Support sha�

AC motor Support bearings Hydraulic loading Horizontal accelerometer

Vertical accelerometer Tested bearing

Figure 14: Overview of XJTU’s experimental platform [44].

Table 8: (e description of XJTU-SY bearing data sets.

Data sets
Operating conditions

Condition 1 Condition 2 Condition 3
Speed (RPM) 2,100 2,250 2,400
Load (kN) 12 11 10

Training sets Bearing 1_1 Bearing 2_1 Bearing 3_1
Bearing 1_2 Bearing 2_2 Bearing 3_2

Testing sets
Bearing 1_3 Bearing 2_3 Bearing 3_3
Bearing 1_4 Bearing 2_4 Bearing 3_4
Bearing 1_5 Bearing 2_5 Bearing 3_5

Bearing1_1

Bearing1_2

Bearing2_1

Bearing2_2

Bearing3_1

Bearing3_2

0% 25% 50% 65% 80% 95% 100%

Figure 15: (e lifecycle time-frequency plots of the training bearings.
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Figure 16: (e curves of depth characteristics over operation time of bearing 2–1: (a) No. 57, (b) No. 94, (c) No. 168, and (d) No. 205.
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Figure 17: Continued.
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of bearings under the same working conditions may be
different, while the degradation trends of bearings under
different working conditions are similar to some extent, so
it is difficult to visually determine the full-life bearings with
similar degradation trajectories to test bearings. (erefore,
it is necessary to match the trend of the degradation tra-
jectory of each bearing and set a reasonable failure
threshold for the given test bearings by considering the
discrepancy and similarity of degradation trajectories of
training and testing bearings.

4.2.3. Bearing Degradation Model Construction Using an
Optimized Order of Time Power terms. (e fitted degra-
dation curves with different order of time power terms of
FOTP-GM (1, 1) have different abilities to predict the
bearing RUL. Using the method proposed in Section 3.2, the
fitting performance is evaluated by calculating the fitting
error between the origin degradation trajectory DIlife and
the fitted degradation curve DIfit. Figure 19 shows the
degradation model of training bearings constructed by
FOTP-GM (1, 1) with optimal orders of time power terms.
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Figure 17:(e lifecycle DI curves of: (a) bearing 1_1, (b) bearing 2_1, (c) bearing 3_1, (d) bearing 1_2, (e) bearing 2_2, and (f) bearing 3_2.
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Figure 18: (e lifecycle DI curves of testing data sets: (a) bearing 1_3, (b) bearing 1_4, (c) bearing 1_5, (d) bearing 2_3, (e) bearing 2_4, (f )
bearing 2_5, (g) bearing 3_3, (h) bearing 3_4, and (i) bearing 3_5.
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Similar to Case 1, there exists a trend transition point
after which the fitting error is getting smaller fluctuation in
the fitting error curves of the FOTP-GM (1, 1) model for
training bearings, as shown in Figure 19. (e time power
terms order corresponding to such trend transition point
can be selected as the optimal order of time power terms for
the given training bearing. (e results of the optimal order
and the value of the corresponding fitted degradation curves
of training bearings at the life endpoint are listed in Table 9.

4.2.4. Failure �reshold Setting of Testing Bearings. To verify
the predictive capability of the proposed method, the data
sets of testing bearings are segmented with different pre-
diction starting points to perform 10 subtasks, in which the
division ratio includes 50%, 55%, 60%, 65%, 70%, 75%, 80%,
85%, 90%, and 95%, as shown in Table 10.

Taking subtask #6 with the division ratio of 75% as an
example, the similarity matching analysis is performed
between the historical DI trajectories of testing bearings and
the lifecycle degradation trajectories of the training bearings
to match the testing bearing degradation trends with the
degradation trends of training bearing, and the
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Figure 19: (e fitting error curve and fitted degradation model of: (a) bearing 1_1, (b) bearing 2_1, (c) bearing 3_1, (d) bearing 1_2, (e)
bearing 2_2, and (f) bearing 3_2.

Table 9: (e value of fitted degradation curves of training bearings
at the life endpoint.

Training
bearing B 1_1 B 1_2 B 2_1 B 2_2 B 3_1 B 3_2

Sample length 122 160 491 161 2,538 2,495
Optimal order 7 5 4 5 3 6
DItrain_fitted(N) 0.5230 0.6050 0.5892 0.6460 0.6586 0.3708

Table 10: (e sample size of the inputting testing data sets for 10
subtasks.

Tasks Division ratio (%) Percentage of RUL (%)
#1 50 50
#2 55 45
#3 60 40
#4 65 35
#5 70 30
#6 75 25
#7 80 20
#8 85 15
#9 90 10
#10 95 5
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corresponding training bearing degradation model can be
selected as the reference degradation model of the selected
test bearing. Using the method presented in Section 2.3, the
similarities between the lifecycle degradation trajectories of
the training bearings and the historical DI curves of testing
bearings are illustrated in Table 11.

Based on Tables 9 and 11, the failure thresholds of the
testing bearings can be achieved using equation (16) given in
Section 3.3 and illustrated in Table 12.

4.2.5. Bearing Remaining Useful Life Prediction. (e RUL of
the given testing bearing can be estimated using the optimal
time power terms order and the preset failure threshold. (e
RUL prediction results of subtask #6 are listed in Table 13,

and for different testing bearings, the optimal order of the
FOTP-GM (1, 1) is different.

(e predicted whole lives of the testing bearings are
shown in Table 14. Due to the different division ratios used
to generate the testing samples, the predicted lives of the
testing bearings are different. (e proposed method can
adaptively update the degradation curve fitting model and
failure threshold of the given test bearing based on the
collected bearing information. As shown in Table 14, the
life prediction results get a smaller fluctuation and become
more accurate as the volume of testing bearing data
increases.

(e results of RUL predictions are shown in Figure 20.
As can be seen from the figure, the predicted results fluctuate
around the actual RUL label values. (is preliminarily

Table 11: (e DTW distances between DItrain and DItest for prediction moment at 75%.

Training bearings
Testing bearings

B 1_3 B 1_4 B 1_5 B 2_3 B 2_4 B 2_5 B 3_3 B 3_4 B 3_5
B 1_1 0.3885 0.1917 1.8845 0.5833 0.0317 0.5604 4.4785 5.1261 3.0559
B 1_2 0.0265 0.1847 8.3485 0.0587 0.0337 2.3187 15.6125 16.6287 3.3279
B 2_1 0.2763 1.2976 1.0251 0.5211 0.5866 0.2730 2.5395 2.8445 18.116
B 2_2 0.0414 0.3880 5.2916 0.0689 0.0471 1.1667 11.1385 12.4954 3.45680
B 3_1 0.8931 16.3583 4.5686 0.3993 2.8968 0.98720 8.4642 9.1995 177.3139
B 3_2 0.6146 5.4613 1.1846 1.5713 0.9797 0.5043 2.052 2.3015 134.2678

Table 12: (e failure threshold setting of the testing bearings for prediction moment at 75%.

(reshold setting
Testing bearings

B 1_3 B 1_4 B 1_5 B 2_3 B 2_4 B 2_5 B 3_3 B 3_4 B 3_5
Reference bearing B 1_2 B 1_2 B 2_1 B 1_2 B 1_1 B 2_1 B 2_1 B 2_1 B 3_1
DItrain_fitted(N) 0.5230 0.6050 0.5892 0.6460 0.6586 0.3708 0.5230 0.6050 0.5892
DTW distance 0.0265 0.1847 1.0251 0.0587 0.0317 0.2730 2.0520 2.3015 3.0559
Failure threshold 0.5495 0.7897 1.6143 0.7047 0.6933 0.6438 2.575 2.9065 3.6451

Table 13: (e RUL prediction results of the testing bearings for prediction moment at 75%.

Testing bearings
B 1_3 B 1_4 B 1_5 B 1_6 B 1_7 B 2_3 B 2_4 B 2_5 B 2_6 B 2_7 B 3_3

Optimal order 2 2 8 7 7 5 5 7 6 4 8
Current sample point 118 91 39 399 31 254 278 1,136 85 118 91
Predicted life (min) 148 118 58 491 43 319 351 1,606 136 148 118
Predicted RUL (min) 30 27 19 92 12 65 73 470 51 30 27

Table 14: (e predicted lives of the testing bearings for 10 subtasks.

Testing bearings
Tasks

50% 55% 60% 65% 70% 75% 80% 85% 90% 95%
B 1_3 155 155 135 134 149 148 152 152 157 157
B 1_4 109 122 96 106 119 118 134 124 126 136
B 1_5 50 65 64 64 60 49 45 55 54 53
B 2_3 447 456 569 534 510 491 437 529 523 521
B 2_4 55 56 49 47 45 43 43 40 39 40
B 2_5 350 342 323 328 305 319 339 334 339 332
B 3_3 380 382 346 350 383 351 395 381 361 353
B 3_4 1,609 1,609 1,591 1,542 1,568 1,606 1,536 1,588 1,518 1,605
B 3_5 132 136 121 119 132 136 123 112 122 118
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proves the effectiveness of our proposed method on XJTU-
SY data sets. To further illustrate the performance of the
proposed method, the RMSE and SMAPE are also utilized as
performance evaluation metrics in the RUL prediction of
XJTU-SY data sets. (e prediction results of the proposed
method are compared with the results reported in three
published studies, including Huang’s deep convolutional
neural network-bootstrap integrated method [21], Hu’s
LSTM predictor trained simultaneously within a generative
adversarial network (GAN) architecture [23], Ding’s deep
subdomain adaptive regression network [32], Li’s deep
adversarial neural networks-based method [33], and Xiao’s

trend-reconstruct-based features selection and gated re-
current unit network [47].

Table 15 shows the performance comparison results of the
proposed method and five published studies on XJTU-SY
data sets. It can be seen that the proposed method achieves a
smaller SMAPE value compared with all other methods.
Compared with Huang, Hu, Ding, and Li’s methods, the
proposed method achieves a smaller RMSE value. Compared
with Xiao’s method, the proposed method has a slightly
higher RMSE but has a lower SMAPE. (e comparison listed
in Table 15 still signifies that the proposed method performs a
better performance in the RUL prediction of rolling bearings.
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Figure 20: (e RUL prediction results of 10 subtasks: (a) bearing 1_3, (b) bearing 1_4, (c) bearing 1_5, (d) bearing 2_3, (e) bearing 2_4, (f )
bearing 2_5, (g) bearing 3_3, (h) bearing 3_4, and (i) bearing 3_5.
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5. Conclusions

(is paper proposes a new method that involves the
difference and the similarity between the degradation
trajectories of training and testing bearing to predict the
RUL of roller bearings. (is method mainly focuses on
two aspects of bearing RUL prediction: data-driven based
accurate failure threshold setting and optimal mathe-
matical degradation model construction using deep
features. From the experimental results, we have the
following conclusions:

(1) (e CAE-based feature extraction method can
adaptively extract the deep features associated with
the bearing performance degradation. (e SOM-
based DI construction method can effectively handle
the deep features extracted by CAE into a practical
degradation indicator.

(2) (e FOTO-GM (1, 1) model parameter optimization
method can determine the optimal fitting order
based on the fitting errors. (e optimized FOTO-
GM (1, 1) method can construct the fitting degra-
dation model of the given bearing based on the
degradation information.

(3) (e failure thresholds setting method based on
DTW and optimized FOTO-GM (1, 1) can
adaptively adjust the failure threshold of the given
bearing according to the accumulation of test
bearing information without human
intervention.

(e proposed bearing RUL prediction model can
adaptively update its parameters when new monitoring data
are available. (e comparison between the experimental
results of this method and the existing methods shows that
this method can effectively improve the prediction accuracy,
reduce the uncertainty of prediction, and has better engi-
neering practicability.
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