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Model uncertainties are usually unavoidable in the control systems, which are caused by imperfect systemmodeling, disturbances,
and nonsmooth dynamics. /is paper presents a novel method to address the robust control problem for uncertain systems. /e
original robust control problem of the uncertain system is first transformed into an optimal control of nominal system via
selecting the appropriate cost function. /en, we develop an adaptive critic leaning algorithm to learn online the optimal control
solution, where only the critic neural network (NN) is used, and the actor NN widely used in the existing methods is removed.
Finally, the feasibility analysis of the control algorithm is given in the paper. Simulation results are given to show the availability of
the presented control method.

1. Introduction

/e basis of intelligent optimization decision-using adaptive
dynamic programming (ADP) method is the optimal control
design./ere aremanymaturemethods for optimal regulation
control design of linear systems in the field of control theory
and control engineering. However, for general nonlinear
systems, Hamilton–Jacobi–Bellman (HJB) equation is yielded.
/e analytical solution of HJB equation is not easy since it is
inherently a partial differential equation. Recently, the optimal
control design of systems has attracted extensive attention.
Among them, the successive approximation methods [1–3]
overcome this difficulty via finding the approximate solution
of HJB equation, which is closely related to the ADP method.
ADP is a newmethod based on the idea of intelligent learning,
which can provide effective optimal control solution for
complex dynamic systems [4, 5]. In the past two decades, ADP
has been widely used in solving adaptive optimal control
problems of discrete-time and continuous-time systems [6, 7].
Now, data-driven control design has become a research
hotspot in the field of control theory and control engineering
[8, 9]. /e ADP methods can promote the research of data-
based decision-making and optimal control and is conducive

to the development of artificial intelligence and computational
intelligence technology.

Most of the existing results of ADP methods are obtained
without considering the uncertainty of the controlled plant.
However, the actual control system is always affected by model
uncertainty, external disturbance, or other changes. We must
consider these factors in the controller design to avoid the
deterioration of the performance for the closed-loop system
and improve the robustness of the controlled system. For
robust control design, several alternative methodologies have
been suggested in the control community. /e work in [10]
exploited the relationship between the robust control and the
optimal control of nominal system subject to a specific value
function. It indicates that one can design a robust control by
solving an equivalent optimal control problem alternatively.
Similarly, it was shown in [11] that the robust control design
may be accomplished by addressing an H control problem.
Nevertheless, online solving the derived optimal control
equations was not discussed in [10]. Instead, they adopted
offline schemes to seek for the solution of the derived optimal
control equations. Recently, robust control design using the
adaptive critic learning method has gradually become one of
the research hotspots in the field of ADP, and many methods
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have been proposed [12–14]. /ese results fully show that the
ADP method is suitable for robust control design of complex
nonlinear systems in uncertain environment. Since many
previous ADP literatures do not focus on the robust perfor-
mance of the controller, the emergence of robust adaptive critic
control greatly expands the application scope of the ADP
method. Generally, the controller based on robust ADP can not
only stabilize the original uncertain system but also make the
system optimal without dynamic uncertainty. /us, adaptive
critic learning-based robust control includes the discussion of
system stability, convergence, optimality, and robustness. It
plays an important role in the field of intelligent learning
control of complex systems in uncertain environment.

Based on the above facts, we develop an adaptive critic
learning algorithm to resolve the robust control problem of
uncertain systems. To this end, we construct an equivalence
between the robust control problem and the optimal control
problem via selecting the appropriate cost function; then, a
single critic NN is used to reformulate the cost function. To
realize the optimal control solution, we design an adaptive
critic leaning algorithm; since it has strong convergence, the
actor NN widely used in existing ADP results is removed.
/en, the feasibility analysis of the control algorithm is also
given in the paper. Simulations are given to indicate the
validity of the developed method.

/e major contributions of this paper include

(1). To address the robust control problem, we trans-
form the robust control problem of uncertain sys-
tems into an optimal control problem of the
nominal system. It provides a new approach to
address the robust control problem.

(2). Different to [13], the uncertainty in the input matrix
is considered in this paper, and then, the proposed
control method is used in robotic systems. /is
helps to apply the proposed control algorithm to the
practical industrial robotic systems in the future.

(3). A novel designed adaptation algorithm driven by the
NNweights’ errors is used to online learn the criticNN
weights. Different to [15], the convergence of the es-
timated NNweights to the true values can be retained.

/is paper is organized as follows. In Section 2, we
introduce the robust control problem and transform the
robust control problem into an optimal control problem. In
Section 3, a single critic NN is used to reformulate the
optimal cost function, and then, an adaptive critic learning
method is proposed to address the derived optimal control
problem. Section 4 gives some simulation results to illustrate
the effectiveness of the proposed method. Some conclusions
are stated in Section 5.

2. Preliminaries and Problem Formulation

A continuous-time (CT) uncertain system can be written as

_x(t) � f(x) + g(x)(u + b(x)u) + g(x)d(x), (1)

where x ∈ Rn and u ∈ Rm are the system state and the
control action, respectively. f(x) ∈ Rn with f(0) � 0 and

g(x) ∈ Rn×m are the nonlinear functions. b(x) and d(x) are
the uncertainties. /e purpose of this paper is designing a
controller to make system (1) asymptotically stable under the
uncertainties b(x) and d(x). To this end, we give following
assumptions.

Assumption 1. b(x)≥ 0 is the uncertainty in the input
matrix. /e uncertainty d(x) is bounded, i.e., there exists a
nonnegative function dmax(x) such that ‖d(x)‖≤dmax(x).

To design a robust controller for the linear system, a
linear matrix inequality (LMI) is proposed [16], while for
nonlinear system (1), it is not easy. Inspired by [10, 12], an
equivalence is built between the robust control problem of
the uncertain system and the optimal control of the
nominal system via selecting the appropriate cost function.
/us, we define the nominal system of the uncertain system
(1) as

_x(t) � f(x) + g(x)u. (2)

For system (2), a control action u should be found to
minimize the following cost function [17]:

V(x) � 􏽚
∞

t
d
2
max(x) + x

T
Mx + u

T
Nu􏼐 􏼑ds, (3)

where M ∈ Rn×n and N ∈ Rm×m are the positive definite
weight matrices. Hence, based on the optimal principle, we
can obtain the Lyapunov function of the cost function (3) as

0 � V
T
x(f(x) + g(x)u) + d

2
max(x) + x

T
Mx + u

T
Nu, (4)

where Vx � zV/zx is the derivative of V with respect to x.
/erefore, we can get the optimal cost function as

V
∗
(x) � minV(x), (5)

and its corresponding HJB equation can be given as

0 � minH x, u
∗
, V
∗

( 􏼁. (6)

By solving (6), we have the optimal control action as

u
∗

� −
1
2
N

− 1
g

TzV
∗
(x)

zx
. (7)

/en, we will give the lemma to explain the robust
control problem of system (1) which can be transformed into
an optimal control problem of system (2) via constructing
cost function (3).

Lemma 1 (see [11, 18]). Assume that the solution can be
solved via optimal control problem of system (2) with cost
function (3) and d2

max(x)≥dT(x)N d(x), and this solution
can make uncertain system (1) asymptotically stable, which
means that the optimal control solution is the solution of the
robust control problem for system (1).

Proof. Because V∗(x)> 0 for x≠ 0 and V∗(0) � 0 for x � 0
given in (5), then we can consider V∗(x) is a Lyapunov
function; based on (6) and (7), we have
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_V
∗
(x) � V

∗T
x _x

� V
∗T
x f(x) + g(x) u

∗
+ b(x)u

∗
( 􏼁 + g(x)d(x)( 􏼁

� − d
2
max(x) − x

T
Mx − u

∗T
Nu
∗

+ V
∗T
x g(x)b(x)u

∗
+ V
∗T
x g(x)d(x)

� − d
2
max(x) − x

T
Mx − u

∗T
Nu
∗

− 2u
∗T

N d(x) − 2u
∗T

Nb(x)u
∗

≤ − d
2
max(x) − x

T
Mx − u

∗T
Nu
∗

− 2u
∗T

N d(x)

� − d
2
max(x) − x

T
Mx − u

∗T
Nu
∗

+ d
T
(x)N d(x) − d

T
(x)N d(x) − 2u

∗T
N d(x)

� − d
2
max(x) + d

T
(x)N d(x) − x

T
Mx − u

∗
+ d(x)( 􏼁

T
N u
∗

+ d(x)( 􏼁

≤ − d
2
max(x) + d

T
(x)N d(x) − x

T
Mx.

(8)

According to the condition given in Lemma 1, i.e.,
d2
max(x)≥dT(x)N d(x), we obtain

_V
∗
(x)≤ − x

T
Mx, (9)

i.e., _V
∗
(x)< 0, x≠ 0, and _V

∗
(0) � 0, and the uncertain

system (1) is asymptotically stable for any uncertainties b(x)

and d(x). According to the above facts, the optimal solution
u∗ is the robust control solution of the uncertain system (1).
/is completes the proof.

From Lemma 1, we have that if we select N � Im, where
Im is the identity matrix with m × m, then
d2
max(x)≥dT(x)N d(x) � dT(x)d(x) � ‖d(x)‖2 holds. □

Remark 1. Lemma 1 shows that the robust control problem
of the original uncertain system can be equivalent to the
optimal control problem of the nominal system, and then,
the solution of the robust control problem can be obtained
indirectly by solving the optimal control problem./erefore,
this equivalence relationship can be used to develop a new
robust control design method and solve it by using ADP
method, as described in the following section.

Remark 2. It is well-known that H∞ control belongs to robust
control. Although many H∞ control design techniques
have been proposed, it should be noted that, as explained in
Section 8.5 in [18], theH∞ control differs in the optimalmethod
proposed in this paper. In the optimal control method, we start
from the uncertainty bounds and then design the controller
according to these bounds. Hence, if the controller exists, we can
say the uncertain system is robustly stable.

3. Solving the Robust Control Problem via
Adaptive Critic Learning

To obtain the optimal control solution (7), the unknown cost
function (5) should be resolved. However, it is quite difficult to
address the cost function (5) directly; then, a critic NN in this
section will be proposed to approximate the cost function (5);
this allows to develop an adaptive learning method to update
online the NN weights, where the convergence of NN weights
can be retained. Because its strong convergence, the actor NN
widely used in the ADP schemes is removed. /e proposed
control system structure is given in Figure 1.

/is section will propose an adaptive critic learning
method to obtain the solution of the derived optimal control
problem. To this end, a critic NN is trained to estimate the

cost function V∗(x), where the cost function V∗(x) is
considered as continuous; hence, we have the following NN
[13],

V
∗
(x) � W

Tσ(x) + εv(x), (10)

where W ∈ Rl is the ideal critic NN weight, σ(x) ∈ Rl is the
regressor vector, l is the number of neurons, and εv(x) is the
approximate error of NN.

/en, we have the partial derivative of cost function as

V
∗
x(x) � (∇σ(x))

T
W + ∇εv(x), (11)

where ∇σ(x) � zσ(x)/zx ∈ Rl×n is the regressor matrix and
∇εv(x) � zεv(x)/zx ∈ Rn is the NN error.

Without loss of generality, the following assumption is
given in [13].

Assumption 2. /eNNweightW, the regressor vector σ, the
regressor matrix ∇σ(x), and the approximate errors εv(x)

and ∇εv(x) are all bounded, i.e.,
‖W‖≤WM, ‖σ‖≤ σN, ‖∇σ‖≤ σM, and ‖∇εv‖≤ σε for positive
constants WM, σN, σM, and σε.

In fact, the ideal NN weight W is unknown; hence, we
have that the practice 􏽢W can be online updated; then, the
actual cost function can be written as

􏽢V(x) � 􏽢W
Tσ(x). (12)

Hence, the practical estimated optimal solution can be
solved as

􏽢Vx(x) � (∇σ(x))
T 􏽢W. (13)

According to (10) and (11), we have the ideal optimal
control (7) as

u
∗

� −
1
2
N

− 1
g

T
(∇σ(x))

T
W + ∇εv(x)􏽨 􏽩, (14)

and its practical optimal control is given as

􏽢u � −
1
2
N

− 1
g

T
(∇σ(x))

T 􏽢W. (15)

/e problem next to be solved is solving the unknown
weight 􏽢W, which can guarantee the stability of the controlled
system and realize the convergence to the ideal value W. Most
existing ADP methods can only get the uniform ultimate
boundedness (UUB) of the approximated NN weight rather
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than the convergence. In this paper, a novel adaptive critic
learning method is introduced to guarantee the convergence of
􏽢W to W. /is strong convergence property is conducive to
avoiding the use of actor NN, and the optimal control ap-
proximated via critic NN can converge to its ideal optimal
solution.

Substituting (11) into (4), we can rewrite the HJB
equation as

0 � W
T∇σ(x)(f(x) + g(x)u) + d

2
max(x) + x

T
Mx

+ u
T

Nu + εHJB,
(16)

where εHJB � (∇εv(x))T[f(x) + g(x)u] is the residual error
determined by the approximation error ∇εv(x).

For developing an adaptive critic learning law to estimate
the critic NN weight W, the known terms in (16) can be
defined as

Ξ � ∇σ(x)[f(x) + g(x)u],

Θ � d
2
max(x) + x

T
Mx + u

T
Nu.

􏼨 (17)

/en, the HJB equation (16) with (17) can be given as

Θ � − W
TΞ − εHJB. (18)

According to (18), only the NN weightW is unknown
in this parameterized formulation. Hence, it can be
estimated by using a recently proposed learning algo-
rithm [19, 20], which is driven by the derived estimation
error.

To this end, the filtered regressor matrices P ∈ Rl×l and
Q ∈ Rl can be denoted as [19, 20]

_P � − ℓP + ΞΞT, P(0) � 0,

_Q � − ℓQ + ΞΘ, Θ(0) � 0,

⎧⎨

⎩ (19)

where ℓ > 0 is a positive parameter. Hence, its solution can be
derived as

P � 􏽚
t

0
e

− ℓ(t− s)Ξ(s)ΞT(s)ds,

Q � 􏽚
t

0
e

− ℓ(t− s)Ξ(s)Θ(s)ds,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(20)

which can be online calculated based on the system state x.
With P andQ in (20), an auxiliary vector M1 ∈ Rl can be

defined as

M1 � − P 􏽢W + Q. (21)

From (18) and (20), we have Q � − PW + v with
v � − 􏽒

t

0 e− ℓ(t− s)εHJB(s)Ξ(s)ds. A bounded variable, e.g.,
‖v‖≤ εv, for a positive constant, εv > 0. /en, we can obtain
from (19)–(21) that

M1 � − P 􏽥W + v, (22)

with 􏽥W � W − 􏽢W being the NN weight estimation error.
/e estimation error used in the adaptive learning al-

gorithm can help to guarantee the convergence of the es-
timate, as shown in [13]. Hence, we can design the following
adaptive law to online calculate 􏽢W as

_􏽢W � − ΓM1, (23)

with Γ > 0 being the adaptive learning gain.

Remark 3. /e adaptive law (23) is driven by the estimation
error 􏽥W. /e purpose of this new learning algorithm is to
guarantee the convergence of estimate 􏽢W to unknown
weight W. /erefore, the learning algorithm given in this
paper is different from those used in the existing ADP
methods, e.g., [3, 21], which employ the gradient-based
methods [22] to guarantee the boundedness of 􏽢W only.

To illustrate the convergence of the proposed learning
algorithm, the positive definiteness of thematrix P defined in
(20) will be introduced:

Lemma 2. When the regressor Ξ in (18) fulfills the persistent
excitation (PE) condition, the matrix P defined in (20) is
positive.

4e convergence of the proposed learning algorithm can be
summarized as follows.

Theorem 1. For the adopted critic NN with adaptive law
(23), if the regressor vector Ξ in (18) satisfies the PE condition,
the critic NN weight error 􏽥W exponentially converges to a
small bounded set around zero.

Proof. For Lemma 2, the matrix P is positive definite when
the regressor Ξ satisfies the PE condition, i.e., the minimum
eigenvalue λmin(P)> δ > 0. Hence, a Lyapunov function can
be chosen as V1 � 1/2 􏽥W

TΓ− 1 􏽥W, and its derivative _V1 along
with (23) can be derived as

_V1 � 􏽥W
TΓ− 1 _􏽥W � − 􏽥W

T
P 􏽥W + 􏽥W

T
v, (24)

which further implies

_V1 � 􏽥W
TΓ− 1 􏽥W + 􏽥W

T
v≤ − ‖ 􏽥W‖ δ‖ 􏽥W‖ − εv( 􏼁. (25)

/us, we have that the estimation errors of NNweight 􏽥W

will converge to a compact set Ω: 􏽥W|
���� 􏽥W≤ εv/δ􏽮 􏽯, in which

the size of this set depends on the approximation error εv

and the excitation level δ, i.e., for an arbitrarily small NN
approximation error (according to the NN approximation
property, this error can be arbitrarily small for sufficient NN
nodes, i.e., ∇εv(x)⟶ 0 with l⟶∞). /erefore, 􏽢W can
converge to W. In the ideal case, i.e., εHJB � 0 and v � 0, then

HJB Equation

Critic NN

Robust Control

Cost Function

u

x

Uncertain System

Figure 1: Schematic of the proposed control system.
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we know the estimation errors of weights 􏽥W converge to
zero exponentially. □

For system (2) with practical optimal control (15) and
adaptive law (23), if the regressor Ξ satisfies the PE con-
dition, the error 􏽥W converges to a small set around zero.
Moreover, the actual optimal control u in (15) converges to a
region around its optimal solution u∗ in (14), i.e.,
‖u − u∗‖≤ εu. Hence, the original robust control problem is
resolved.

4. Simulation

4.1. Numerical Simulation. Consider an uncertain system as

_x � f(x) + g(x)(u + b(x)u) + g(x)d(x), (26)

where f(x) �
− x1 + x2

− 0.5x1 − 0.5x2(1 − (cos(2x2) + 2)
2
)

􏼢 􏼣,

g(x) �
0

cos(2x1) + 2􏼢 􏼣, x � x1, x2􏼂 􏼃
T ∈ R2 is the system

state, u ∈ R is the control input, and the term k(x) � r2x
2
2

with r2 ∈ [0, 1] and d(x) � r1x1 sin(x2) with r1 ∈ [− 1, 1]

denote the uncertainties.
Because the uncertain terms b(x) � r2x

2
2 ≥ 0 and d(x) �

r1x1 sin(2x2) are bounded by ‖d(x)‖ � |p1x1 sin(2x2)|≤
|x1| � dmax(x), then we can obtain the optimal control
problem as

_x � f(x) + g(x)u, (27)

with the cost function as

V(x) � 􏽚
∞

t
d
2
max(x) + x

T
Mx + u

T
Nu􏼐 􏼑ds. (28)

As given in [18], the optimal cost function is written as

V
∗
(x) � x

2
1 + 2x

2
2. (29)

/en, we can obtain its optimal solution as

u
∗

� −
1
2
N

− 1
g

T
V
∗
x � − cos 2x1( 􏼁 + 2( 􏼁2x2. (30)

A critic NNwill be used to approximate the cost function
V; thus, the activation function σ(x) is defined as

σ(x) � x
2
1, x1x2, x

2
2􏽨 􏽩

T
. (31)

To realize the simulation, we set the learning parameters
Γ � 100 and ℓ � 10, the initial system state is given as
x0 � 1, − 0.2􏼂 􏼃

T, the initial weight 􏽢W(0) � 0, and the
weight matrices are set as M � I andN � I.

Figure 2 shows the estimated value of the evaluation NN
weights. It can be seen from Figure 2 that the estimated NN
weight converges to a certain value. /is result verifies the

convergence of /eorem 1 and the effectiveness of the
proposed learning algorithm, which indicates that estimated
critic NN weight 􏽢W converges to its true value, i.e.,
W � 1, 0, 2􏼂 􏼃. To better display the performance of the
proposed learning method, the error between the ideal cost
function V∗ and practical coat function 􏽢V is given in Fig-
ure 3, where we can obtain the fairly satisfactory approxi-
mation performance. In fact, the simulation results in
Figures 2 and 3 can be also found in [13]; different from [13],
this paper considers the uncertainties involved in control
input. Figure 4 shows the change of the state of the con-
trolled system under the derived optimal control, which
shows that the closed-loop system is asymptotically stable.
/e corresponding control input is shown in Figure 5,
bounded and smooth.

4.2. Application to Robotic Systems. /is section will develop
a simulation based on a 2-DOF robot [18, 23]. To realize the
simulation, the robotic systems model can be defined as

M(q)€q + C(q, _q) + F( _q) + G(q) � τ, (32)

where q is the joint variables, τ is the generalized forces,
M(q) denotes the inertia matrix, C(q, _q) is the centripetal
vector, F(q) is the friction vector, and G(q) defines the
gravity vector. In this section, we denote
W(q, _q) � C(q, _q) + F( _q) + G(q). /ere are uncertainties in
M(q) and W(q, _q) due to the unknown load on the ma-
nipulator and unmodeled frictions.

/e inertia matrix can be derived as

M(q) �
M11 M12

M21 M22

⎡⎣ ⎤⎦, (33)

where M11 � J1 + J2 + m1r
2
1 + m2l

2
1 + m2r

2
2 +2m2l1r2 cos

(q2) + mLl21 + mLl22 + 2mLl1l2 cos(q2), M12 � J2 + m2r
2
2+

m2l1r2 cos(q2) + mLl22 + mLl1l2 cos(q2), and M22 � J2+

m2r
2
2 + mLl22.
/e centripetal vector is

C(q, _q) �
C1

C2
􏼢 􏼣, (34)

where C1 � (m2l1r2 + mLl1l2)(2 _q1 − _q2) _q2 sin(q2) and
C2 � (m2l1r2 + mLl1l2) _q21 sin(q2).

/e friction vector and gravity matrix are

F( _q) �
b1 _q1

b2 _q2
􏼢 􏼣, G(q) �

G1

G2
􏼢 􏼣, (35)

where G1 � (m1gr1 + m2gr1 + mLgr1)sin(q1) + (m2 gr2+

mLgl2)sin(q1 + q2) and G2 � (m2gr2 + mLgl2)sin(q1 + q2).
Some model parameters are given as m1 � 9.387/kg,

m2 � 1.729/kg, l1 � l2 � 0.250/m, b1 � b2 � 0.14, r1 �

0.053/m, r2 � 0.170/m, J1 � 0.1190/kg.m2, J2 �
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0.0652/kg.m2, mL � [0, 3]kg, and g � 9.8m/s. With above
system dynamics, the state equation of the system can be
given as [18]

_x � f(x) + g(x)(u + b(x)u) + g(x)d(x), (36)

where x � [x1, x2, x3, x4]
T � [q1, q2, q3, q4]

T, f(x) �
0
x2

􏼢 􏼣,

g(x) �
0
1􏼢 􏼣, b(x) � M(x1)

− 1M0(x1) − I≥ 0, M0 is the

value of M when the load is 0. d(x) � M(q)− 1 (W0(q, _q)

− W(q, _q)), and W0 is the value of W when the load 0.
In this simulation, we set the initial weight 􏽢W(0) � 0;

when the load mL � 3 kg, we choose the leaning parameters
ℓ � 21 and Γ � 0.1 and weight matrices M � I and N � I.
/e initial states are q1(0) � 15°, q2(0) � 15°, _q1(0) � 0, and
_q2(0) � 0.
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Figure 6 shows the estimated critic NN weights. It can
be seen from Figure 6 that the estimated NN weight
converges to certain value. /is result verifies the con-
vergence of /eorem 1 and the effectiveness of the pro-
posed learning algorithm. Figure 7 shows the change of
the controlled system state under the derived optimal
control when the load condition is set mL � 3 kg, which
shows that the closed-loop system is asymptotically stable.
/e corresponding control input is shown in Figure 8.
Although it jitters at first, it tends to be smooth when it
stabilizes.

From above simulation results, we have that the
proposed learning method and control technique are
effective.

5. Conclusion

/e purpose of this paper is to address the robust control
problem of the uncertain systems via developing an adaptive
critic learning method. To this end, the robust control
problem of the uncertain systems is transformed into an
optimal control problem of the nominal systems via
selecting the cost function. /en, a single NN is used to
reformulate the cost function, where the unknown cost
function can be represented as a known term; then, an
adaptive critic learning method based on the adaptive pa-
rameter estimation technique is presented to obtain the
optimal cost function such that the optimal control problem
can be solved. Simulations are given to show the effec-
tiveness of the proposed leaning algorithm and control
method. Future work will focus on the robust tracking
control with uncertain systems.
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