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It is difficult for the autonomous underwater vehicle (AUV) to recognize targets similar to the environment in lacking data labels.
Moreover, the complex underwater environment and the refraction of light cause the AUV to be unable to extract the complete
significant features of the target. In response to the above problems, this paper proposes an underwater distortion target
recognition network (UDTRNet) that can enhance image features. Firstly, this paper extracts the significant features of the image
by minimizing the info noise contrastive estimation (InfoNCE) loss. Secondly, this paper constructs the dynamic correlation
matrix to capture the spatial semantic relationship of the target and uses thematrix to extract spatial semantic features. Finally, this
paper fuses the significant features and spatial semantic features of the target and trains the target recognition model through
cross-entropy loss. 'e experimental results show that the mean average precision (mAP) of the algorithm in this paper increases
by 1.52% in recognizing underwater blurred images.

1. Introduction

Underwater target recognition has difficulties in sample data
collection and labeling, making it difficult to obtain labeled
sample datasets. Unsupervised representational learning can
extract significant features of images from unlabeled datasets
and use them for target classification and detection tasks.
'is method can improve the accuracy of underwater target
recognition effectively in the case of insufficient tags.
Moreover, unsupervised representational learning ignores
some details of the image and only learns distinguishable
features, which can also improve the recognition speed of the
algorithm.

However, the scattering and refraction of light in the
underwater environment cause the target to be blurred and
distorted in the images taken by the AUV. Shoals of fish,
currents, and complex underwater terrain can obscure the
target. In this case, unsupervised representational learning is
unable to extract the complete significant features for target
recognition. 'e graph structure establishes the topology of
correlation between nodes through vertices and edges and

contains rich spatial semantic information. Semantic rela-
tionship graphs can compensate for incomplete significant
features.

Graph convolutional networks (GCNs) can extract
features of graph structures and gain the spatial semantic
relations of targets effectively. However, the spatial semantic
relationship graphs of the targets are usually static graphs
obtained by computing the label co-occurrence relationships
in the whole dataset. In the underwater environment, the
number of sample data from different classes in the dataset is
unevenly distributed. In this case, a static spatial semantic
relationship graph will reduce the generality of the model
[1]. Constructing a dynamic spatial semantic relationship
graph can improve the robustness of the algorithm.

To address the above problems, this paper proposes an
underwater distortion target recognition network (UDTR-
Net) via enhanced image features. 'e method allows fast
recognition of underwater distortion targets in the absence
of significant features.

'e following are the main contributions in the meth-
odology of this paper:
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(1) In this paper, the original sample data are compared
with positive and negative samples in the feature
space, respectively. 'e proposed algorithm trains
the feature extraction network by minimizing the
InfoNCE loss function to extract the visual signifi-
cant features of the target. 'is method can improve
the target recognition accuracy in the absence of data
labels.

(2) 'is paper adds the label information of the current
image in the static correlation matrix. 'e proposed
algorithm constructs the dynamic correlation matrix
to represent the spatial semantic relationships of the
targets. 'is matrix can extract dynamic spatial se-
mantic features to compensate for the lack of sig-
nificant features caused by target distortion and
occlusion.

(3) 'e proposed algorithm fuses the significant features
and spatial semantic features of the target and trains
the target recognition model through cross-entropy
loss. 'e experimental results show that the method
effectively solves the problem of low recognition
accuracy when the target is distorted and obscured.

'e rest of this paper is presented as follows. Section 2
describes the related work. Section 3 introduces the visual
significant feature extraction model, the spatial semantic
feature extraction model, and the underwater distortion
target recognition algorithm via enhanced image features.
Section 4 verifies the effectiveness of the methods in this
paper through simulation experiments. Section 5 concludes
the paper.

2. Related Work

Absorption and scattering of light cause difficulties in un-
derwater image acquisition. It is expensive to produce large
annotated underwater datasets. In the absence of data tags,
AUV has difficulty in identifying targets that are similar to
their environment. Unsupervised representational learning
can extract distinguishable features of images using unla-
beled data. Wang et al. [2] proposed an adversarial corre-
lated autoencoder (AdvCAE) for unsupervised multiview
representation learning. 'is method eliminates the differ-
ences in data from multiple views due to different distri-
butions. Also, Han et al. [3] proposed a semisupervised
multiview manifold discriminant intact space (SM2DIS)
learning method for image classification.'is method learns
the complete feature representation by multiview data. Le-
Khac et al. [4] summarized the existing literature on contrast
learning and proposed a generalized framework for contrast
representation learning. 'e framework simplifies and
unifies many different contrast learning algorithms and
addresses the application of the contrast learning framework
to the field of computer vision. Chen et al. [5] extended the
existing contrast learning algorithm by embedding an at-
tention mechanism and proposed an attention-augmented
contrastive (A2C) learning method. 'e method can im-
prove the learning efficiency and generalization ability of the
algorithm. Li et al. [6] proposed an intermediate-level

feature representation framework for unsupervised repre-
sentation learning via sparse autoencoders. Experimental
results show that the method reduces the number of pa-
rameters for unsupervised representation learning.

'e complex underwater environment and light re-
fraction make it difficult for the AUV to extract the complete
significant features of the target. 'e images contain rich
spatial semantic relationships. Su et al. [7] proposed a new
multigraph embedding discriminative correlation feature
learning algorithm. 'e method captures the intrinsic
geometric structure of each view and learns nonlinear
correlation features with good recognition ability. Ma et al.
[8] proposed a multiscale spatial context-based deep net-
work for semantic edge detection (MSC-SED). 'e network
obtains rich multiscale features while enhancing high-level
feature details. Yang et al. [9] proposed to combine struc-
tured semantic relevance to solve the problem of missing
labels in multilabel learning. Zhao et al. [10] designed a
multitasking framework to jointly handle the weather clues
to the segmentation task and the weather classification task.
'is method solves the problem of poor performance of
single weather tag classification. Khan et al. [11] proposed a
new multilabeled deep GCN. 'e network can extract dis-
criminative features from the irregular structure to enhance
the classification results. Nauata et al. [12] proposed to
model the complex relationships between labels through a
structured inference neural network. 'e experimental re-
sults show that the method improves the applicability and
robustness of the algorithm. Chen and Gupta [13] proposed
a spatial memory network (SMN) that can model instance-
level contexts. 'is method can improve the target detection
accuracy by using the contextual relationship of the object.

For the problems of underwater environment inter-
ference and algorithm real time, Cai et al. [14] proposed a
collaborative multi-AUV target recognition method based
on migration reinforcement learning. Zhang et al. [15]
proposed a semantic spatial fusion network (SSFNet) to
bridge the gap between low-level and high-level features.
Moniruzzaman et al. [16] proposed a Faster R-CNN al-
gorithm using the Inception V2 network. 'is method can
improve the average detection accuracy of the algorithm in
the case of a small difference between the target and the
surrounding boundary. Wang et al. [17] proposed a
multiview visual-semantic representation method for few-
labeled visual recognition (MV2S). 'e method uses the
visual and semantic representation of the image to predict
the class of the image. To improve the convergence speed of
the algorithm, Cai et al. [18] designed an effective outer
space acceleration algorithm. Sun and Cai [19] proposed a
multi-AUV target recognition method based on GAN-
meta learning. 'e experiment result shows that this
method can improve the generalization ability of the
model. Cai et al. [20] proposed a maneuvering target
recognition method based on multiview optical field re-
construction. 'is method can ignore the effect of shooting
angle on target recognition results. Chen et al. [21] pro-
posed a new iterative visual inference framework. 'e
framework effectively improves the target recognition
accuracy. To solve the problem of data double-
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computation, Cai et al. [22] proposed a multiview optical
field reconstruction method based on migration rein-
forcement learning.

3. Proposed Method

'is paper proposes the UDTRNet that can enhance image
features. 'is method can make up for the lack of visual
significant features through the spatial semantic features of
the target. Firstly, the proposed algorithm trains the feature
extraction network through the InfoNCE loss function to
extract the visual significant features of the target. 'en, the
dynamic correlation matrix is constructed to represent the
spatial semantic relationship of the target, and the spatial
semantic features of the target are extracted through this
matrix. Finally, this paper fuses the significant features and
spatial semantic features of the target and trains the target
recognition model through cross-entropy loss. 'e algo-
rithm effectively solves the problem of low accuracy of target
recognition under interference such as distortion and oc-
clusion. 'e overall process of the algorithm is shown in
Figure 1.

3.1. Visual Significant Feature Extraction Model.
Unsupervised representation learning can ignore some
details of the image. 'is paper trains a significant feature
extraction model to extract distinguishable feature repre-
sentations of images. 'e training process is shown in
Figure 2.

'is paper uses ResNet as the network structure of the
significant feature extraction model f(·). 'e last fully
connected layer of the network outputs a 128-dimensional
feature vector. 'e representation h of the image is obtained
by normalizing the feature vector, which is expressed as
h � f(X). 'en, the characterization vector of the image is
nonlinearly projected into the vector z through the fully
connected layer g(·). 'is method can amplify invariant
features and enhance the ability of the network to recognize
targets in different views. 'is paper trains the coding
network f(·) by minimizing the loss function.

In this paper, N original images are randomly enhanced.
'e images in the real underwater scene have the character-
istics of blurring, distortion, and incompleteness. 'is paper
uses random cropping, random color distortion, and random
Gaussian blur to obtain enhanced samples of the original
image. 'e number of negative samples is the important factor
affecting model representation learning. 'is paper constructs
the feature library to store all the enhanced samples in the
training process. For the images input by the feature extraction
network, there are positive samples k+ from the same image as
the input samples and negative samples k− from different
images in the feature library.

'e significant feature extraction network maximizes the
consistency among different enhanced views of the same
image and minimizes the consistency among enhanced
views of different images. 'is method can learn the
characterization of image distinguishability. 'is paper
designs a loss function so that the representation of the input

image is similar to the positive samples and not similar to the
negative samples.'e similarity of the images is expressed by
the cosine similarity of the feature vectors, which is calcu-
lated as follows:

sim zq, zk􏼐 􏼑 �
zq · zk

zq

�����

����� zk

����
����
, (1)

where zq � g(hq) denotes the nonlinear projection of the
representation vector of the input image and zk denotes the
nonlinear projection of positive or negative sample repre-
sentations in the feature library. 'e loss function of the
significant feature extraction model is given by

Lq � −log
exp sim zq, zk+􏼐 􏼑/τ􏼐 􏼑

exp sim zq, zk+􏼐 􏼑/τ􏼐 􏼑 + 􏽐k−exp sim zq, zk−􏼐 􏼑/τ􏼐 􏼑
,

(2)

where q is the feature representation of the input image, k+ is
the feature representation of positive samples, k− is the
feature representation of negative samples, and τ is used to
zoom in on the similarity metric of the image representation.

'e feature library can make the number of negative
samples larger and improve the training effect. However, the
phenomenon also increases the difficulty in updating the
feature library encoder fk. 'is paper dynamically updates
the feature library encoder fk by the encoder fq of the input
samples. 'e parameters of the encoder fq and fk are
denoted as θq and θk, respectively. θk is updated as follows:

mθk + 1 − θq􏼐 􏼑⟶ θk, (3)

where the momentum coefficient m ∈ [0, 1). During the
training process, θq updates the parameters by stochastic
gradient descent. When θq is updated, θk updates the pa-
rameters according to the above process. After completing the
training, the encoder fq can extract the significant features of
the image. 'e significant features of the images are as follows:

f � fq(x), (4)

where x is the input test image and fq is the encoder with
completed training.

3.2. Spatial Semantic Feature ExtractionModel. 'e target in
the underwater image is distorted.'e algorithm is unable to
extract the significant features of the target completeness.
'is phenomenon can reduce the accuracy of target rec-
ognition. 'is paper extracts the spatial semantic features
among nodes by edge traversal and updating the nodes in the
graph. 'e spatial semantic feature extraction model is
shown in Figure 3.

'is paper constructs the spatial semantic relation graph
G � V, E{ } for the target, where V is the set of nodes and E is
the edge set. 'e node indicates the category of the target. 'e
edges represent the spatial semantic relationships among dif-
ferent targets. Assume that the dataset includes C target cat-
egories. 'e set of nodes V can be represented as
v0, v1, . . . , vC−1􏼈 􏼉. 'e element vc indicates the category c. 'e
edge set E is the correlation matrix that can represent the
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correlation among different objectives. However, the static
correlation matrix mainly explains the co-occurrence of labels
in the training dataset. 'e correlation matrix of each input
image is fixed.'ismatrix does not explicitly utilize the content
of each input image.'is paper constructs the local correlation
matrix B for each specific input image. 'e global correlation
matrix and the local correlation matrix are fused as the overall
correlation matrix. 'e results are as follows:

A � ωEE + ωBB �

a00 · · · a0(C−1)

⋮ ⋱ ⋮

a(C−1)0 · · · a(C−1)(C−1)

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

, (5)

where ωE and ωB denote the weights. 'e element acc′
denotes the probability of having both target c′ and target c

in the image, i.e., the correlation between target c′ and target
c. 'is paper uses the labels of the training set to calculate the
correlation between different category pairs in the input
images.

'e spatial semantic relationship of the target is learned
through the spatial semantic relationship diagram. Each
node vc has a correlation ht

c at time step t. 'is parameter
indicates the degree of correlation among the node and other
nodes. In this article, each node corresponds to a specific
target category. 'e spatial semantic feature extraction
model aims to learn the spatial semantic relationship among
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objects. When the step length t � 0, the spatial semantic
relationship and the feature vector are initialized and
expressed as h0

c � f. 'e framework aggregates information
from neighboring nodes.

a
t
c � 􏽘

c′

acc′( 􏼁h
t−1
c , 􏽘

c′

ac′c( 􏼁h
t−1
c

⎡⎢⎢⎣ ⎤⎥⎥⎦. (6)

'e model encourages the dissemination of information
among highly correlated nodes. 'is paper learns spatial
semantic relations through information transfer in graphs.
'e proposed algorithm updates the spatial semantic rela-
tions of the target by aggregating the feature vector at

c. 'e
iterative process is as follows:

z
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(7)

where σ(·) is a logarithmic sigmoid function, tanh(·) is a
hyperbolic tangent function, and ⊙ denotes the multipli-
cation operator between elements. 'e target node aggre-
gates the information of surrounding nodes to achieve the
interaction between the feature vectors corresponding to
different nodes. 'e iterative process lasts for T times. 'e
obtained spatial semantic relation is H � hT

0 , hT
1 , . . . , hT

C−1􏼈 􏼉.

3.3. Underwater Distortion Target Recognition Method via
Enhanced Image Features. 'is section extracts the candi-
date regions of the target on the visual significant feature
map of the image. 'e proposed algorithm fuses visual

significant features and spatial semantic features to ac-
complish target recognition.

'is paper obtains the target anchor boxes by sliding the
window on the significant feature f. 'e window size is 3∗ 3.
'e algorithm predicts multiple target anchor boxes simul-
taneously in each window. 'e maximum number of anchor
boxes per position is denoted as k. Each anchor box maps a
low-dimensional feature. 'e features are input to the classi-
fication (cls) layer and the regression (reg) layer. 'e reg layer
outputs the coordinates of the vertices of the k-group anchor
boxes.'e cls layer outputs the label and confidence level of the
anchor box. For the feature mapping of W × H, the proposed
method generates k × W × H target anchor boxes.

'is paper indicates the prediction accuracy of the model
by intersection over union (IoU). 'e model assigns a binary
label to each target candidate frame. Candidate boxes with IoU
greater than 0.7 are positive labels. Candidate boxes with IoU
less than 0.3 are negative labels. If there is no anchor box with
IoU greater than 0.7, the algorithm selects the candidate box
with the largest IoU as the positive label. In addition, non-
positive and negative labels and candidate frames that cross the
image boundary are of no value to the training for the model.
'is article deletes it to save calculation time.

'is paper considers anchor boxes as nodes in the semantic
relationship graph. 'e proposed method fuses the significant
features fc of nodes and spatial semantic features ht

c to predict
the target types of nodes. 'e fused features are represented as

Pc � FP fc, h
T
c􏼐 􏼑, (8)

whereFP is a feature fusion output function.'is functionmaps
fc and hT

c to the feature vectorPc.'e feature vectorPc includes
the significant features and spatial semantic information of the
target. 'is paper feeds this feature vector into a fully connected
classification layer to predict the target category score.
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'e cls layer of the model is used for object classification
and outputs the discrete probability distribution for each
anchor box. 'e cls layer outputs a C + 1-dimensional array
S. 'is array represents the probability that the object be-
longs to C categories and background. 'e array S is usually
calculated by the fully connected layer using the SoftMax
function.

S � s
0
, s

1
, . . . , s

C
􏼐 􏼑. (9)

'is paper trains the model by minimizing the loss
function. 'e loss function consists of two components:
classification loss and regression loss. 'e calculation is
shown as follows:

L �
1

Ncls
􏽘

i

􏽘

C

c�1
s
∗
i log σ s

c
i( 􏼁( 􏼁 + 1 − s

∗
i( 􏼁log 1 − σ s

c
i( 􏼁( 􏼁 + λ

1
Nreg

􏽘
i

P
∗
i R Ti − T

∗
i( 􏼁, (10)

where i denotes the number of anchor boxes. c is the target
category. sc

i denotes the predicted probability of the target type
in anchor box i. s∗i is the real label of anchor box i. Ti denotes
the coordinates of the four vertices of the target anchor box. T∗i
is the vertex coordinates of the real target region. R is the
smooth L1 function. sc

i and Ti are given by the classification
and regression layers. Ncls and Nreg denote the normalization
of the loss function. Ncls is numerically equal to the minimum
batch size for training. Nreg is equal to the number of target
anchor boxes. λ is the weight. σ(·) is the sigmoid function.

4. Experimental Results and Analysis

In this experiment, training and testing are performed in
TensorFlow.'e simulation calculation runs on small server
(RTX 2080Ti GPU, 64G of RAM, and Win10 64-bit oper-
ating system).

4.1. Experimental Dataset. In this paper, the three datasets,
Cognitive Autonomous Diving Buddy (CADDY) underwater
dataset, Underwater Image Enhancement Benchmark (UIEB),
andUnderwater Target dataset (UTD) are used for training and
testing.'e visual salient feature extraction model is trained by
13,000 unlabeled images. In addition, 426 labeled images are
used to train and test the spatial semantic feature extraction
model and target recognition network. 'e dataset is divided
into training set and test set according to the ratio of 6.5 : 3.5.

4.2. Implementation Details. 'e model is trained by the
stochastic gradient descent (SGD) optimizer with a weight
decay of 0.0005 and a momentum of 0.9. 'e training batch is
256 and the initial learning rate is 0.01. 'e whole training
process is iterated 70,000 times, in which the learning rate
decays at 56,000 and 63,000 iterations with a decay rate of 0.1.

FFBNet
SiamFPN
SA-FPN

Faster R-CNN
Ours

Figure 4: Conventional underwater image target recognition results.
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4.3. Experimental Results. 'emodel proposed in this paper
fuses visual significant features and spatial semantic features
for target recognition. 'is method can solve the problem of
low recognition accuracy under interference such as target
distortion and blurring. For underwater images with dif-
ferent disturbances, this section designs three sets of sim-
ulation experiments to verify the effectiveness of the
proposed algorithm. 'e algorithm evaluation criteria are
mAP and recognition time.

For underwater images with different interferences,
three sets of simulation experiments are designed to verify
the effectiveness of the proposed algorithm.

4.3.1. Conventional Underwater Image Recognition Results.
'is section evaluates the recognition performance of the
proposed algorithm in conventional underwater images and
compares it with FFBNet [23], SiamFPN [24], SA-FPN [25],
and Faster R-CNN [26].'e recognition results are shown in
Figure 4, and the recognition accuracy and recognition
speed are shown in Table 1.

As can be seen from Table 1, FFBNet takes 0.09 s to
recognize an underwater image, which has the fastest rec-
ognition speed among all the compared algorithms. How-
ever, the mAP of the algorithm is only 0.7132. On the
contrary, Faster R-CNN has the highest mAP and the lowest
recognition speed, respectively, 0.7466 and 0.397 s. SiamFPN
and SA-FPN greatly reduce the recognition time at the
expense of partial accuracy. 'e proposed algorithm in this
paper can better balance the recognition speed and accuracy.
In the recognition of conventional underwater images, the
overall performance of this proposed algorithm is better
than that of FFBNet and Faster R-CNN. At the same time,
compared with SiamFPN and SA-FPN, the proposed al-
gorithm has lower recognition time and higher recognition
accuracy.

4.3.2. Underwater Blurred Image Recognition Results.
'is section evaluates the performance of the proposed
algorithm to recognize underwater blurred images and
compares it with FFBNet [23], SiamFPN [24], SA-FPN [25],

Table 1: Conventional underwater image target recognition accuracy and time.

Method Torpedo Torpedo wake Submarine Frogman Bubble AUV mAP Time
FFBNet 0.5397 0.5584 0.8019 0.7775 0.6423 0.9591 0.7132 0.090
SiamFPN 0.5855 0.5795 0.8638 0.7444 0.7012 0.9681 0.7404 0.227
SA-FPN 0.5858 0.7172 0.8733 0.7207 0.6175 0.8312 0.7243 0.240
Faster R-CNN 0.6685 0.7554 0.7777 0.778 0.6815 0.8182 0.7466 0.397
Ours 0.6851 0.5682 0.888 0.7513 0.6362 0.9478 0.7461 0.215
'e bold values indicate excellent indicators of each algorithm.

FFBNet
SiamFPN
SA-FPN

Faster R-CNN
Ours

Figure 5: Underwater blurred image recognition results.
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and Faster R-CNN [26].'e recognition results are shown in
Figure 5. 'e recognition accuracy and recognition speed of
each algorithm are shown in Table 2.

As can be seen in Table 2, the accuracy of each algorithm
in recognizing underwater blurred images has decreased.

'e mAP of the algorithm in this paper is 0.6652, which is
ahead of other comparison algorithms. Compared with the
state-of-the-art target recognition algorithm SA-FPN, the
mAP of the proposed algorithm is improved by 1.52%.
Moreover, the algorithm in this paper has a great lead in

Table 2: Underwater blurred image recognition accuracy and recognition time.

Method Torpedo Torpedo wake Submarine Frogman Bubble AUV mAP Time
FFBNet 0.4177 0.645 0.6177 0.7097 0.655 0.7695 0.6358 0.110
SiamFPN 0.4381 0.4113 0.7005 0.678 0.6798 0.8697 0.6296 0.242
SA-FPN 0.3951 0.5325 0.6749 0.7041 0.6667 0.9269 0.6500 0.272
Faster R-CNN 0.4439 0.6091 0.669 0.6669 0.6828 0.7156 0.6312 0.397
Ours 0.5158 0.579 0.7633 0.7614 0.5786 0.7932 0.6652 0.215
'e bold values indicate excellent indicators of each algorithm.

FFBNet
SiamFPN
SA-FPN

Faster R-CNN
Ours

Figure 6: Underwater distorted image recognition results.

Table 3: Underwater distorted image recognition accuracy and recognition time.

Method Torpedo Torpedo wake Submarine Frogman Bubble AUV mAP Time
FFBNet 0.465 0.4876 0.7224 0.7222 0.6369 0.8012 0.6392 0.100
SiamFPN 0.4909 0.5808 0.6815 0.7291 0.6618 0.8468 0.6652 0.225
SA-FPN 0.4899 0.5462 0.7734 0.6734 0.6197 0.833 0.6559 0.239
Faster R-CNN 0.5008 0.5111 0.749 0.6383 0.652 0.878 0.6549 0.404
Ours 0.5296 0.4873 0.6597 0.7379 0.6517 0.8156 0.6470 0.214
'e bold values indicate excellent indicators of each algorithm.
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identifying torpedo, frogman, and submarine targets. 'e
reason is that the method in this paper can enhance the
target features through spatial semantic relations.

4.3.3. Underwater Distortion Image Recognition Results.
'is section evaluates the performance of the proposed
algorithm to recognize underwater distorted images and
compares it with FFBNet [23], SiamFPN [24], SA-FPN [25],
and Faster R-CNN [26].'e recognition results are shown in
Figure 6. 'e recognition accuracy and recognition speed of
each algorithm are shown in Table 3.

As can be seen from Table 3, the SiamFPN algorithm has
the best recognition effect on underwater distorted images.
'e recognition accuracy is 0.6652, and the recognition
speed is 0.225 s. 'ough the average recognition accuracy of
the algorithm in this paper is 1.82% lower than that of
SiamFPN, the algorithm has faster recognition speed. 'is
paper also analyzes the recognition results of single-type
targets. 'e algorithm in this paper is more effective in
identifying distorted torpedo and frogman targets.

5. Conclusion

In the case of many underwater interferences, it is difficult
for AUVs to extract the complete significant features of the
target. 'is paper uses spatial semantic features to make up
for the lack of distinctive visual features. Firstly, this paper
extracts the significant features of the image by minimizing
the InfoNCE loss. Secondly, this paper constructs the dy-
namic correlation matrix to capture the spatial semantic
relationship of the target and uses the matrix to extract
spatial semantic features. Finally, this paper fuses the salient
features and spatial semantic features of the target and then
trains the target recognition model through cross-entropy
loss. In the recognition of underwater conventional images
and distorted images, the comprehensive performance of the
algorithm in this paper is better than that of existing al-
gorithms.When recognizing underwater blurred images, the
mAP of the algorithm in this paper is improved by 1.52%
compared with the existing algorithm.
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