
Research Article
SAI-YOLO: A Lightweight Network for Real-Time
Detection of Driver Mask-Wearing Specification on
Resource-Constrained Devices

Zuopeng Zhao,1,2 Kai Hao ,1,2 Xiaoping Ma,1,2 Xiaofeng Liu ,1,2 Tianci Zheng ,1,2

Junjie Xu ,1,2 and Shuya Cui 1,2

1School of Computer Science and Technology and Mine Digitization Engineering Research Center of
Ministry of Education of the People’s Republic of China, China University of Mining and Technology, Xuzhou 221116, China
2School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China

Correspondence should be addressed to Kai Hao; 515307059@qq.com

Received 31 July 2021; Revised 5 October 2021; Accepted 25 October 2021; Published 8 November 2021

Academic Editor: Gaurav Singal

Copyright © 2021 Zuopeng Zhao et al.,is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Frequent occurrence and long-term existence of respiratory diseases such as COVID-19 and influenza require bus drivers to wear
masks correctly during driving. To quickly detect whether the mask is worn correctly on resource-constrained devices, a
lightweight target detection network SAI-YOLO is proposed. Based on YOLOv4-Tiny, the network incorporates the Inception V3
structure, replaces two CSPBlockmodules with the RES-SEBlock modules to reduce the number of parameters and computational
difficulty, and adds a convolutional block attention module and a squeeze-and-excitation module to extract key feature in-
formation. Moreover, a modified ReLU (M-ReLU) activation function is introduced to replace the original Leaky_ReLU function.
,e experimental results show that SAI-YOLO reduces the number of network parameters and calculation difficulty and improves
the detection speed of the network while maintaining certain recognition accuracy. ,e mean average precision (mAP) for face-
mask-wearing detection reaches 86% and the average precision (AP) for mask-wearing normative detection reaches 88%. In the
resource-constrained device Raspberry Pi 4B, the average detection time after acceleration is 197ms, which meets the actual
application requirements.

1. Introduction

COVID-19 has ravaged the world, resulting in the cumu-
lative global diagnosis of 131.4 million individuals and a
cumulative death toll of 2.85 million as of April 6, 2021.
Human health was seriously threatened [1]. ,e COVID-19
virus is transmitted primarily via droplets and close contact
[2], and wearing a mask can substantially reduce the rate of
the virus spread [3]. In the field of public transportation,
because of the confined space of the bus and the high
mobility of personnel, bus drivers are required to wear
masks throughout the journey. However, to alleviate the
discomfort of wearing masks, most drivers often wear masks
incorrectly. ,e incorrect wearing of masks not only fails to
protect the drivers but also increases the risk of virus

transmission. ,us, it is necessary to detect the normative of
wearing a mask.

Currently, the detection algorithm of wearing a mask has
been widely studied. Although the traditional machine
learning algorithms such as HOG+SVM,
HAAR+AdaBoost [4] can detect the mask-wearing speci-
fications, they cannot meet the current requirements because
of the general detection effect and long detection time. In
2012, Alex Krizhevsky proposed the deep convolution neural
network (CNN) [5] model, AlexNet [6], showing that
convolutional neural networks are more efficient in feature
extraction than traditional algorithms and have better de-
tection performance. In 2014, Girshick et al. proposed a
region-based convolutional neural network (R-CNN) [7],
which uses a region-based recognition method to detect

Hindawi
Computational Intelligence and Neuroscience
Volume 2021, Article ID 4529107, 15 pages
https://doi.org/10.1155/2021/4529107

mailto:515307059@qq.com
https://orcid.org/0000-0003-3566-1573
https://orcid.org/0000-0002-4517-4413
https://orcid.org/0000-0002-2968-7999
https://orcid.org/0000-0003-4892-6390
https://orcid.org/0000-0002-2921-4331
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/4529107


objects. In 2015, the Fast R-CNN [8] and Faster R-CNN [9]
networks were proposed based on the R-CNN. Both of the
above network models belong to a two-stage algorithm.
Although they have high detection accuracy, they cannot
meet the real-time requirements owing to their complexity
and slow detection speed. In 2016, Redmon et al. proposed
the “you only look once” (YOLO) [10] algorithm, which
combines the phases of candidate selection and object
recognition, and used the method to directly predict the
boundary box of the target object to improve the detection
speed. In the same year, Liu et al. proposed the single shot
multibox detector (SSD) [11] algorithm, which draws on the
one-stage idea of YOLO and the anchor framemechanism in
the Faster R-CNN. Although detection speed is improved,
the accuracy of detection is considerably reduced.

YOLO algorithm has been developed over many years,
from YOLOv1, YOLO9000 [12], YOLOv3 [13] to YOLOv4
[14], continuously improving the detection accuracy while
maintaining the speed advantage. However, the volume,
the number of parameters, and the computing difficulty of
the model are still high, making it difficult to apply to
embedded devices with limited resources and computing
power. Recently, lightweight target detection algorithms
have been developed rapidly, such as MobileNet [15],
SqueezeNet [16], ShuffleNet [17], and MobileNet-SSD
[18], which have good detection performance. In 2020,
YOLOv4-Tiny was proposed by AlexeyAB, which main-
tains a certain detection accuracy while considerably
reducing the number of parameters. However, there is still
room for improvement in real-time performance. In this
study, to further improve the real-time performance of
target detection and explore the possibility of model
application in embedded devices, a new lightweight target
detection network is proposed, which can reduce the size
of the model and improve the detection speed while
maintaining the recognition accuracy.

,e rest of this article is organized as follows. Section 2
introduces the related research on the detection of face-mask
wearing. Section 3 introduces the network structure of
YOLOv4-Tiny and the commonly used attention models.
Section 4 introduces the structure of the new lightweight
target detection network SAI-YOLO and describes the in-
novations and improvements of the network. Section 5
describes the experimental results and comparative analysis
between the proposed network and other networks. Section
6 concludes this study and provides suggestions for future
research directions.

,e major contributions of this study are as follows:

(1) Propose a new lightweight network SAI-YOLO for
driver mask-wearing specification detection based
on YOLOv4-Tiny, which has an accuracy of 86.33%
and high detection speed on resource-constrained
devices

(2) Propose two improved structures RES-SEBlock and
FPN-CBAM with attention mechanism and exper-
imentally establish that they enhance the model
ability to extract key information and reduce the
calculation difficulty

(3) Collect and label 10,000 images of drivers wearing
masks from the real driving environment and es-
tablish a dataset called Masked_Imgs which contains
three categories of wearing masks, not wearing
masks, and not wearing masks correctly

(4) ,e SAI-YOLO network is implemented in the re-
source-constrained device Raspberry Pi 4B and the
collected real images are detected

2. Related Works

Face-mask-wearing detection has been extensively studied
in recent years, especially after the spread of COVID-19
worldwide. Researchers have focused on mask-wearing
detection algorithms based on traditional machine learning
and deep learning. Herein, we briefly review the existing
studies.

In [19], based on a classical machine learning method,
the authors have represented an implementation of principal
component analysis (PCA) on masked and nonmasked face
recognition. ,e accuracy of masked face image recognition
was on average 72% and nonmasked face recognition was on
average 95%, demonstrating that the PCA gives a poor
recognition rate for masked face images rather than non-
masked face images. In [20], the authors proposed a hybrid
model using ResNet-50 and classical machine learning
methods such as SVM, decision tree, and ensemble for face
mask detection. ,ree datasets were used to evaluate the
performance of the proposed methodology. ,e SVM
classifier achieved an accuracy of 99.64% in the real-world
masked face dataset and 99.49% in the simulated masked
face dataset. ,e authors in [21] also used ResNet-50. ,ey
proposed another model by using the YOLOv2 for the
detection of medical face masks instead of the SVM. Two
medical face mask datasets were combined as one dataset for
training and testing. ,e proposed model achieved the
highest average precision percentage of 81% when using
Adam optimizer. In [22], the authors proposed a system
using LogitBoost for detecting the presence or absence of the
mandatory medical mask in the operating room. In order to
have as few false positive face detections as possible without
losing mask detection, they used two face detectors, one for
detecting faces and the other for detecting medical masks.
,e proposed system rendered a recall above 95% with a
false positive rate below 5% for detecting faces and surgical
masks. In [23], the authors built a dataset called Indian
facemasks detection dataset [24] centered on the Indian
community where, alongside standard surgical masks, im-
ages of people wearing other types of home-made veils like
dupattas and handkerchiefs were also included. Based on
testing on the established dataset, they concluded that
YOLOv4 transcended both YOLOv3 and SSD-MobileNet
V2 in sensitivity and precision.

However, the above-mentioned studies only focused on
whether people wear masks, but ignored whether people
wear masks correctly. Although researchers and scientists
have shown that wearing a mask can help reduce the spread
of COVID-19, incorrect way of wearing masks does not
ensure the same. At present, only a small number of

2 Computational Intelligence and Neuroscience



researchers pay attention to whether people wear masks
correctly and have achieved good results. In [25], the authors
developed a new facemask-wearing condition identification
method by combining image super-resolution and classifi-
cation network (SRCNet). ,ey regarded facemask-wearing
condition identification as a kind of three-category classi-
fication problem, including no facemask-wearing, incorrect
facemask-wearing, and correct facemask-wearing. ,e
SRCNet achieved 98.70% accuracy and outperformed tra-
ditional end-to-end image classification methods.

In general, face mask wearing detection runs on a high-
performance computing platform. However, in some special
scenarios such as buses, it needs to run on resource-con-
strained devices.,ere are no lightweight models that can be
used on resource-constrained devices for real-time detection
of facemask-wearing condition. Hence, the SAI-YOLO is
proposed to identify facemask-wearing condition, which is
expected to have an application value, especially in the
prevention of an epidemic such as COVID-19.

3. Methodology

3.1. YOLOv4-Tiny Lightweight Network. YOLOv4-Tiny is a
simplified version of YOLOv4, which greatly reduces the
number and volume of parameters while maintaining high
recognition accuracy. Compared with YOLOv4, the back-
bone network of YOLOv4-Tiny consists of only three base
convolution layers (BCLs) and three CSPBlocks. Figure 1
shows the structure of the CSPBlock. Each CSPBlock
comprises three base convolution layers of size 3× 3 and one
of size 1× 1. Moreover, two residual edges are added to
improve the learning performance of the network, and the
maximum pooled layer with a convolution core size of 2× 2
is added as output. ,e CSPBlock incorporates the CSPNet
[26] structure, doubling the number of gradient paths by
using a split-merge strategy across phases, thereby effectively
reducing the computational load of the model. In addition,
due to the cross-stage strategy, the adverse effects of cas-
cading with explicit feature mapping replicas can be miti-
gated. As shown in Figure 2, the base convolution layer
includes the convolution layer with a core size of 3 × 3, the
normalization layer, and the Leaky-ReLU used as the acti-
vation function.

,e backbone network of YOLOv4-Tiny is shown in
Table 1, where C represents the number of channels output
and K represents the size of the convolution core. Since
several convolution cores of different sizes are used in the
CSPBlock module, they are listed separately in the table and
S represent the step stride. In the middle of the backbone
network and the head, a neck is added, which uses the FPN
[27] structure for reference to collect and fuse the two ef-
fective feature layers output by the second CSPBlock module
and the last convolution layer. In the neck, the output of the
last convolution layer is operated on two operations: the first
is to output the predicted result directly after convolution,
and the second is to do convolution and upsampling, and
stack the results with the CSPBlock output. Compared with
the PANet [28] structure used by YOLOv4, the FPN used by
the neck improves the path from bottom to top, transfers the

strong features of the lower layer to the higher layer, and
improves the network’s ability to extract information from
the lower layer and the accuracy of prediction. ,e neck
structure is shown in Figure 3.

3.2.AttentionMechanism. ,e attention mechanism derives
from the selective attention mechanism of the human eye,
which allows the eye to filter out a large amount of useless
information and focus only on a specific object. Attention
models were originally applied to the recurrent neural
network (RNN) and have since been widely used in CNN.
,e attention mechanism trains an additional mask layer to
acquire the importance of different channels in the attention
domain and assigns weight values corresponding to the
importance to enable the feature extractor pay more at-
tention to important information. Both the squeeze-exci-
tation method proposed by Hu et al. [29] and the residual
attention network proposed by Wang et al. [30] apply the
attention mechanism and achieve high-accuracy detection
results.

Early attention mechanism studies analyzed the brain
imaging mechanism and used a winner-take-all [31]

BCL, k3x3

BCL, k3x3

BCL, k3x3

BCL, k1x1

MaxPool Layer, k3x3

Part1 Part2

Concat

Concat

Figure 1: CSPBlock structure.

BCL Conv2d Batch_Norm Leaky_ReLU

Figure 2: Structure of base convolutional layer.

Table 1: Structure of YOLOv4-Tiny.

Input Operator c k s
416× 416× 3 Base Conv2d 32 2 2
208× 208× 32 Base Conv2d 64 2 2
104×104× 64 CSPBlock 128 3,1 1
52× 52×128 CSPBlock 256 3,1 1
26× 26× 256 CSPBlock 512 3,1 1
13×13× 512 Base Conv2d 512 3 1

Computational Intelligence and Neuroscience 3



mechanism to study how to model attention. In recent years,
most research on the combination of deep learning and
visual attention mechanisms has focused on the use of masks
to form attention mechanism. ,e principle of mask is to
identify the key features in the image data through additional
layers of new weight. ,rough learning and training, the
deep neural network can learn the areas that need attention
in each new image, which forms attention. Now, in the field
of computer vision, the domains of attention can be divided
into spatial, channel, and mixed domains. Among them, the
channel attention module is mainly modeled by the cor-
relation between different channels and key information,
and the original feature layer is weighted to highlight the
channels with key information and suppress the rest of the
channels. ,e structure of the channel attention module is
shown in Figure 4(a).

,e spatial attentionmodule proposed by Jaderberg et al.
[32] forms a mask layer with the degree of pixel correlation
by extracting the relationship and relative position of each
pixel point in the space. By calculating the weights of the
pixel points through the degree of correlation, the pixel
points carrying important information are retained to
achieve the function of feature selection and fusion. ,e
structure of the spatial attention module is shown in
Figure 4(b).

Because the spatial attention module ignores the in-
formation in the channel domain and processes the image
features in the channel equally, it can only be applied in the
original image feature extraction stage. By contrast, the
channel attention module focuses only on the global average
pooling of information within a channel, ignoring local
information within each channel. Because of the limitations
of a single attention module, researchers have begun to mix
different attention modules, and many excellent methods
have been proposed. In [33], the authors proposed DANet,
which combines the spatial attention module and channel
attention module in parallel to form a hybrid domain at-
tention mechanism. In [34], the authors proposed a con-
volutional block attention module (CBAM), which
combines the channel attention module and the spatial
attentionmodule in series to form a hybrid domain attention

mechanism. ,ey also found through experiments that
placing the channel attention module first can achieve better
results. ,e structure of the CBAM is shown in Figure 4(c).

4. Proposed Network SAI-YOLO

To meet the requirements of target detection on resource-
constrained embedded devices and further improve the
recognition speed, SAI-YOLO is proposed. It improves the
backbone and feature pyramid of YOLOv4-Tiny, which in
turn improves the real-time detection performance of the
network while maintaining the recognition accuracy.

First, YOLOv4-Tiny uses three CSPBlock modules in the
backbone. Although the CSPBlock module reduces the
calculation difficulty and the number of parameters of the
network, the real-time detection performance still needs to
be improved. To improve the detection speed, this study uses
two RES-SEBlock modules to replace two CSPBlock mod-
ules. ,e structure of RES-SEBlock is shown in Figure 5(a).
In the RES-SEBlock module, referring to the intensely
inverted residual network [35], the input is processed along
three paths. In path 1, a maximum pooling layer with a
convolution kernel size of 2× 2 is added to the residual edge.
In path 2, the original 3× 3 convolution kernel is replaced by
3×1 and 1× 3 convolution kernels based on the Inception
[36] structure. ,is not only reduces the parameters of the
module but also expands the receptive field of feature ex-
traction. In addition, in the convolution process, to improve
the ability to extract key features, the SE-Block module is
added. ,e structure of the SE-Block module is shown in
Figure 5(b). SE-Block combines the channel attention
mechanism and assigns different weights to different fea-
tures, which enables the network to extract key features
more effectively. Compared with the CSPBlock module, the
RES-SEBlockmodule greatly reduces the number of network
parameters and the difficulty of calculation, which is more
conducive to the improvement of real-time detection per-
formance. In path 3, referring to the ShuffleNet model, an
average pooling layer with a convolution kernel size of 3 × 3
is added to the residual edge. After the average pooling layer,

Input
26×26×256

Input
13×13×512

Output
13×13×256

Conv

Cancat

YOLO head

YOLO head

Output
26×26×384

Conv+UpSample

Figure 3: Neck structure.

4 Computational Intelligence and Neuroscience



the output is added to path 2 as an additional residual
connection.

To accurately measure the difference in computational
difficulty between the two modules, a comparison is made in
terms of the floating-point operator (FLOPs). When the
input size is Hin ×Win ×Cin and the output is
Hout ×Wout ×Cout, the convolution kernel size is set to k, the
convolution kernel parameter is set to k2, and the FLOPs is
calculated as follows:

FLOPs � Hout × Wout × Cin × Cout × k
2
. (1)

We assume that the original image size entered by the
backbone network is 416× 416, and after two convolutions,
the output size is 104×104, and the number of channels is
64. Based on the above data, the calculated FLOPs for
CSPBlock are

FLOPs � 1042 × 32 × 642 + 1042 × 32 × 32 × 64 + 1042 × 32 × 322 + 1042 × 642 � 7.42 × 108. (2)

,e FLOPs of RES-SEBlock are

FLOPs � 1042 × 12 × 64 × 32 + 522 × 32 × 322 × 12 + 522 × 96 × 64 × 12 + 64 × 522 × 23 + 522 ×(32 + 2 + 2) � 6.51 × 107.
(3)

Input
Output

MaxPool

AvgPool
Shared MLP

Concat+
Sigmod

(a)

Input

Localisation net

Sampler
Output

Jθ (G)

Grid
generator

(b)

Channel
Attention
Module

Spatial
Attention
Module

Input Output

(c)

Figure 4: Attention module. (a) Channel attention. (b) Spatial attention. (c) Attention module.

Computational Intelligence and Neuroscience 5



Formulas (2) and (3) show that the FLOPs of the RES-
SEBlock module are about one-eleventh of the CSPBlock
module, which also shows that the RES-SEBlock module can
improve the speed of network detection.

Although RES-SEBlock accelerates network detection,
compared with CSPBlock, its ability to extract features and
the accuracy of recognition decrease. To solve this problem,
two improvement measures are adopted. First, a CBAM
structure is added to the feature pyramid, which forms the
FPN-CBAM structure as shown in Figure 4(c). ,e CBAM
combines the spatial attention module with the channel
attention module, wherein the former is used to analyze the
dependence of features in space and the latter is used to
weigh the feature maps of different channels. ,us, more
favorable feature maps are obtained for classification. After
the CBAM module, invalid features are suppressed, while
key features are extracted and improved. ,e resulting
feature map is more conducive to target classification and
detection, thus improving the accuracy of network detec-
tion. Second, the activation function Leaky-ReLU is replaced
by M-ReLU [37]. Leaky_ReLU and ReLU are not differ-
entiable near 0, creating problems for this gradient descent
process. By slightly modifying the ReLU, M-ReLU makes it
differentiable for all the weight values. M-ReLU is defined by

σ � (max 0, z)
1.0000001

. (4)

Based on the above improvements, the overall structure
of SAI-YOLO is shown in Figure 6. In the SAI-YOLO
network, two RES-SEBlock modules are mainly used to

replace two CSPBlock modules, leaving only one CSPBlock
module to extend the feature extraction field. In addition, the
use of the FPN-CBAMmodule instead of the FPNmodule in
YOLOv4-Tiny can increase the extraction of key feature
information and inhibit the extraction of unnecessary
information.

5. Experimental Results and Analysis

5.1. Dataset and Experimental Settings. In this study, the
experimental platform is Intel Core I5 9400F processor, with
NVIDIA GeForce RTX 2070S 8Gmemory, and the software
environment is PyCharm2020.1.3, with PyTorch deep
learning framework. ,e VOC2007 and VOC2012 datasets
[38], and MAFA datasets [39] are used to pretrain models.
Finally, the Masked_Imgs dataset collected from the driver
video monitoring platform is used to train the network and
test the performance of SAI-YOLO and other popular target
detection networks.

VOC2007 and VOC2012 datasets are divided into 20
target object categories (without background). ,is study
uses the VOC07 + 12 combination to train the network,
which consists of 16,551 images, including the VOC2007
training set and VOC2012 training and test set. ,e network
performance was tested using the VOC2007 test set con-
taining 4,952 images.

,e MAFA dataset, published in 2017 by Ge et al.,
consists of 30,811 images and contains 35,806 obscured
faces. Of the 30,811 tagged images, 25,876 were for the
training set and 4,935 were for the test set. ,e labels in the

Input
(104×104×64)

BCL_M-ReLU, k1×1
(104×104×32)

BCL_M-ReLU,
k (1×3,3×1)
(52×52×32)

Concat

Part1 Part3

MaxPool Layer,k2x2
(52×52×64)

BCL_M-ReLU, k1×1
(52×52×64)

SE-Block

Scale

Output

AvgPool Layer,k3×3
(52×52×64)

Part2

Concat

(a)

Input
52×52×32

Global pooling
52×52×32

FC Layer
52×52×2

Leaky_ReLU

FC Layer
52×52×32

Sigmod

Ouput
52×52×32

(b)

Figure 5: Structure of RES-SEBlock. (a) RES-SEBlock. (b) SE-Block.

6 Computational Intelligence and Neuroscience



training set are divided into three categories: mask face,
2eyes, and occluder. ,e test set is also labeled the same,
replacing the original label types.

All images in the Masked_Imgs dataset are provided by
the driver’s video monitoring platform. A total of 600
driving videos of different drivers are provided by the
monitoring platform, including 200 each in the morning, at
noon, and in the evening. In each video, five groups of
images are collected. Each group contains three types of
images: the driver does not wear a mask, correctly wears a
mask, and incorrectly wears a mask. In addition, to enhance
the diversity of the dataset, 1,000 images are collected from
these videos under special conditions such as strong light
exposure and face obstacle occlusion. A total of 10,000
images are captured in this study, as shown in Figure 7.
,ese images are divided into training and verification sets
in a 9 :1 ratio. Finally, 9,000 images of the training set and
1,000 images of the verification set are obtained. LabelImg
[40] is used to label the images of the dataset and generate
the corresponding XML file.

5.2. Performance Evaluation Indicators. ,ere are many
evaluation indexes for the object detection algorithm [41],
such as the commonly used mAP, FLOPs, and MB. In this
study, accuracy, precision, recall rate, and mAP are used to
evaluate the performance of the target detection model on
the dataset. Accuracy is the ratio of correctly predicted
observations. ,e recall rate is the ratio of the number of
samples that are correctly predicted for the class to the total
number of samples; it is also called the sensitivity or hit rate.
Precision refers to the ratio of the number of category
samples correctly predicted to the total number of samples
predicted for that category [42]. ,e calculation methods for
these indicators are as follows:

accuracy � 1 −
a

m
􏼒 􏼓 × 100%,

precision �
TP

TP + FP
× 100%,

recall �
TP

TP + FN
× 100%,

(5)

where a is the number of samples misclassified,m is the total
number of samples, TP is the number of positive samples
correctly classified by the model, and FP is the number of
negative samples misclassified by the model as positive
samples. FPS is used to assess the real-time detection per-
formance of the model, and MB is used to assess the size of
the model. By weighing these performance indicators ex-
perimentally, a more applicable model for embedded mobile
devices is discussed.

5.3. Experimental Results and Analysis

5.3.1. Model Performance Comparison. In this section, ex-
periments were performed on VOC, MAFA, and Maske-
d_Imgs datasets using different popular lightweight object

detection networks, namely, MobileNet-SSD, YOLOv3-
Tiny, YOLOv4-Tiny, and the proposed SAI-YOLO.

To ensure the fairness of the results, the experiments
were tested using a weight file with the highest mAP value.
,e experimental results on the VOC and MAFA datasets
are shown in Tables 2 and 3. In terms of detection accuracy,
as shown in Table 2, YOLOv3-Tiny achieved the minimum
mAP value of 70.87%, followed by MobileNet-SSD, with a
mAP of 72.70%. ,e second highest mAP was the YOLOv4-
Tiny network, which was 75.67%. ,e SAI-YOLO network
was 1.92% higher than YOLOv4-Tiny and much higher than
the other two networks. In Table 3, it can be seen that the
mAP values tested on the MAFA dataset were lower than
those on VOC dataset. However, the SAI-YOLO network
still achieved the maximum mAP value of 68.53%, 6.18%
higher than the minimummAP value achieved by YOLOv3-
Tiny at the cost of less model size. Compared to the tests on
the VOC0712 andMAFA datasets, the mAP values tested on
the Masked_Imgs dataset have considerably increased. As
shown in Table 4, the SAI-YOLO network achieved a
maximum mAP value of 86.33%, 0.87% higher than that of
YOLOv4-Tiny and 2.79% higher than that of MobileNet-
SSD. YOLOv3-Tiny achieved a minimum mAP value of
80.14%. In addition, in the three experiments, the SAI-
YOLO network model size was the smallest, which confirms
that the designed network can be more easily applied to
resource-constrained devices. ,e results of SAI-YOLO and
YOLOv4-Tiny networks on the MAFA dataset are shown in
Figure 8. It can be seen that both networks have poor de-
tection performance for eyes, but SAI-YOLO is generally
better for eye detection.,is also indicates that the proposed
network enlarges the eye feature weight and increases the
extraction of eye features.

When testing on the Masked_Imgs dataset using the
SAI-YOLO network, the AP values for each category are
shown in Figure 9. Here, the recognition AP value was 0.9
for correctly wearing amask and 0.88 for incorrectly wearing
a mask. ,e lowest AP value was identified for wearing a
mask, with only 0.82. ,is is because, in the actual driving
environment, drivers may change their head posture for
various purposes, including drinking water, smoking, and
watching mobile phones, which covers their faces [43, 44].
Figure 10 shows the effect of SAI-YOLO network prediction
on the Masked_Imgs dataset.

5.3.2. FPS Comparison and Ablation Experiment. To verify
the real-time detection performance of SAI-YOLO, different
resolution sizes of video are input into SAI-YOLO and
YOLOv4-Tiny.,e test was conducted on NVIDIA GeForce
RTX 2070S. As shown in Table 5, FPS gradually increased as
the resolution of the input video decreased. Compared with
YOLOv4-Tiny, the proposed networks had higher FPS
values. When the video resolution was 640×480, the FPS
reached 174.2. ,is also proves that the SAI-YOLO network
has high detection speed and real-time performance.

In addition, to verify the effect of the designed modules
on the network performance, RES-SEBlock, FPN-CBAM,
and M-ReLU activation function were added to the

Computational Intelligence and Neuroscience 7



YOLOv4-Tinymodel separately and tested while keeping the
other experimental parameters unchanged. ,e dataset used
in the experiment was VOC2007. By comparing the first and
fourth rows of Table 6, it can be seen that only using RES-
SEBlock to replace CSPBlock not only reduced the model
size but also improved the detection speed; the FPS increased
by 24.9. However, as the speed increased, the accuracy
decreased by 3.97%. Comparison of the second and fourth
rows indicates that using the FPN-CBAM module increased
the accuracy by 4.2%; however, because of the increase in the
parameters, the model size increased slightly and the FPS
decreased by 7.8. By comparing the results of the third and
fourth lines, it can be seen that with the use of M-ReLU as
activation function, the detection accuracy achieves 78.54%,
2.87% higher than the YOLOv4-Tiny.

5.3.3. Illumination and Occlusion Experiment. In this sec-
tion, we tested the performance of the SAI-YOLO and
YOLOv4-Tiny models by running them on a set of images
containing specific characteristics types, including occlu-
sion, poor lighting, and intense lighting. In the illumination
test, 450 images were used; 150 in intense light, 150 in weak
light, and 150 in normal light. Some of the renderings are
shown in Figure 11, where (a) is the intense-light detection
result diagram and (b) is the weak-light detection result
diagram. ,e accuracy under three different lighting con-
ditions is shown in Figure 12. It can be seen that the SAI-
YOLO network showed higher detection accuracy than

YOLOv4-Tiny in intense, weak, or normal light conditions.
In the obstacle-blocking test, the detection effects of some
images were obtained, as shown in Figure 13, and the sta-
tistical results are listed in Table 7. ,e detection accuracy of
the SAI-YOLO network under partial occlusion was 71.5%,
which is 2.1% higher than that of YOLOv4-Tiny. Overall, the
proposed SAI-YOLO model can complete real-time detec-
tion of targets with high accuracy and overcome the effect of
light and obstacles; moreover, it has superior performance
compared to YOLOv4-Tiny.

5.3.4. Experiments in Raspberry Pi 4B. In the above ex-
periments, the device used is NVIDIA GeForce RTX 2070S,
and experiments have verified that the SAI-YOLO network
has a faster detection speed than other lightweight networks.
In this section, the SAI-YOLO network and two other
lightweight networks are ported to the resource-constrained
device Raspberry Pi 4B for testing. ,e dataset used for the
test is Masked_Imgs.

,is experiment mainly tested the average detection time
of a single image. To increase the speed of the detection
performance on Raspberry Pi 4B, we used ncnn [45], a high-
performance neural network inference computing frame-
work optimized for mobile platforms. As shown in Table 8,
the average detection time of the SAI-YOLO network was
the shortest, at 197ms, which is 45ms lower than that of the
YOLOv4-Tiny network and 24ms lower than that of the
MobileNet-SSD network. ,is also verifies the superiority of

Input (416×416×3)

BCL_M-ReLU (kernel:3×3,stride:2)

Input

BackBone

FPN-CBAM

Output_Size:208×208×32

BCL_M-ReLU (kernel:3×3,stride:2)

Output_Size:104×104×64

RES-SEBlock

Output_Size:104×104×128

RES-SEBlock

Output_Size:52×52×256

CSPBlock

Output_Size:26×26×512

Maxpool Layer (kernel:2,stride:2)
Output_Size:52×52×128

Maxpool Layer (kernel:2,stride:2)
Output_Size:26×26×256

Maxpool Layer (kernel:2,stride:2)
Output_Size:13×13×512

BCL_M-ReLU (kernel:3×3,stride:2)

Output_Size:13×13×512

BCL_M-ReLU (kernel:1×1,stride:1)

Output_Size:13×13×256

CBAM

Output_Size:13×13×256

BCL_M-ReLU (kernel:1×1,stride:1)

UpSampling (Output_Size:26×26×128)

CBAM

Output_Size:26×26×384

YOLO Head

Output_Size:13×13×255

YOLO Head

Output_Size:26×26×255

Concate

Output_Size:26×26×384

Channel
Attention

Spatial
Attention

Output

CBAM

××

Figure 6: ,e proposed SAI-YOLO network structure.

8 Computational Intelligence and Neuroscience



Figure 7: Masked_Imgs dataset.

Table 2: Results on the VOC0712 dataset.

Network Dataset Model size (MB) mAP (%)
MobileNet-SSD VOC0712 23.3 72.70
YOLOv3-Tiny VOC0712 33.1 70.87
YOLOv4-Tiny VOC0712 22.6 75.67
SAI-YOLO VOC0712 20.4 77.59

Table 3: Results on the MAFA dataset.

Network Dataset Model size (MB) mAP (%)
MobileNet-SSD MAFA 24.5 64.97
YOLOv3-Tiny MAFA 34.6 62.35
YOLOv4-Tiny MAFA 23.2 66.94
SAI-YOLO MAFA 21.4 68.53

Table 4: Results on the Masked_Imgs dataset.

Network Dataset Model size (MB) mAP (%)
MobileNet-SSD Masked_Imgs 23.1 83.54
YOLOv3-Tiny Masked_Imgs 31.6 80.14
YOLOv4-Tiny Masked_Imgs 22.4 85.46
SAI-YOLO Masked_Imgs 20.1 86.33

Computational Intelligence and Neuroscience 9



the SAI-YOLO network in terms of detection speed.
Figure 14 shows the effect of the SAI-YOLO network on
drivers wearing mask recognition on the resource-con-
strained device. In summary, compared with YOLOv4-Tiny,

the SAI-YOLO network reduces the parameter amount and
calculation difficulty, improves the detection speed, guar-
antees certain recognition accuracy, and is more suitable for
porting to resource-constrained devices.

(a)

(b)

Figure 8: Effect comparisons on MAFA dataset: (a) SAI-YOLO and (b) YOLOv4-Tiny.

0.0

without_mask

mask_weared_incorrect

with_mask

0.2 0.4
Average Precision

mAP = 86.33%

0.6

0.82
0.88

0.90

0.8 1.0

Figure 9: Average precision of the SAI-YOLO in Masked_Imgs dataset.

10 Computational Intelligence and Neuroscience



Figure 10: Detection results on Masked_Imgs.

Table 5: FPS of the networks in videos of different resolutions.

Video resolution YOLOv4-Tiny SAI-YOLO
1920 × 1080 101.5 114.5
800 × 600 125.4 144.3
640 × 480 157.7 174.2

Table 6: ,e impact of different modules on the network.

Network Dataset Model size (MB) mAP (%) FPS
YOLOv4-Tiny (RES-SEBlock) VOC0712 19.5 72.70 150.3
YOLOv4-Tiny (FPN-CBAM) VOC0712 23.2 80.87 117.6
YOLOv4-Tiny(M-ReLU) VOC0712 22.6 79.54 124.8
YOLOv4-Tiny VOC0712 22.6 76.67 125.4

(a) (b)

Figure 11: Illumination test. (a) Strong light exposure and (b) poor light exposure.

Computational Intelligence and Neuroscience 11



78.8

84.3

89.8

79.7

85.1

90.5

70

75

80

85

90

95

Bright Weak Normal
Ac

cu
ra

cy
 (%

)

Different Illumination Test Results

YOLOv4-Tiny
SAI-YOLO

Figure 12: Different illumination test results.

Figure 13: Occlusion test.

Table 8: ,e average time of different networks on Raspberry Pi 4B.

Network Average time (ms)
MobileNet-SSD 1368
YOLOv4-Tiny 1537
SAI-YOLO 1194
MobileNet-SSD(ncnn) 221
YOLOv4-Tiny(ncnn) 242
SAI-YOLO(ncnn) 197

Table 7: Results of obstruction detection.

Network Accuracy (%) Number of test images
YOLOv4-Tiny 71.5 200
SAI-YOLO 73.6 200

12 Computational Intelligence and Neuroscience



6. Conclusions

To solve the problem of detecting drivers wearing masks in
the epidemic period, a lightweight network SAI-YOLO
based on YOLOv4-Tiny was proposed.,e network replaces
two CSPBlock structures with RES-SEBlock structures,
which reduces the number of network parameters and
computational difficulties. At the same time, a hybrid at-
tentionmechanism is added to improve the extraction of key
feature information. ,e SAI-YOLO network can detect the
wearing specifications of face masks in real-time and effi-
ciently on resource-constrained devices. Using MAFA,
VOC2007, VOC2012, andMasked_Imgs dataset to train and

test the network, the experimental results showed that the
SAI-YOLO network achieved a mAP of 86% for face-mask-
wearing detection and recognition of 88% for mask-wearing
specifications. ,e average detection time after acceleration
on the resource-constrained device Raspberry Pi 4B was
197ms, which meets the practical application requirements.

In the future, we will continue to optimize the SAI-
YOLO network structure, reduce the number of network
parameters and computing difficulties, and conduct more
experiments in embedded devices. In addition, the network
has a high rate of error detection for wearing mask speci-
fications under abnormal angles, which can be improved in
the future.

Figure 14: Detection test on Raspberry Pi 4B.

Computational Intelligence and Neuroscience 13



Abbreviations

HOG: Histogram of oriented gradients
HAAR: Haar-like features
AdaBoost: Adaptive Boosting
SVM: Support vector machines
ReLU: Rectified linear unit
mAP: Mean Average Precision
AP: Average Precision
CSPBlock: Cross stage partial block
RES-
SEBlock:

Residual and squeeze-excitation block

FPN-
CBAM:

Feature pyramid network with convolutional
block attention module

YOLO: You only look once
SSD: Single shot multibox detector
CNN : Convolution neural network
PCA: Principal component analysis
LogitBoost: Logistic Boosting
SRCNet: Super-resolution and classification network
FPN: Feature pyramid network
BCL: Base convolution layer.

Data Availability

,e data used to support the findings of this study cannot be
shared at this time as the data also form part of an ongoing
study.

Conflicts of Interest

,e authors declare that there are no conflicts of interest
regarding the publication of this study.

Acknowledgments

,is research was supported by the National Natural Science
Foundation of China (no. 51874300) and Xuzhou Key R&D
Program (no. KC18082).

References

[1] A. Rahmani and S. Y. H. Mirmahaleh, “Coronavirus disease
(COVID-19) prevention and treatment methods and effective
parameters: a systematic literature review,” Sustainable Cities
and Society, vol. 64, Article ID 102568, 2020.

[2] M. Shorfuzzaman, M. S. Hossain, and M. F. Alhamid, “To-
wards the sustainable development of smart cities through
mass video surveillance: a response to the COVID-19 pan-
demic,” Sustainable Cities and Society, vol. 64, no. 2021,
Article ID 102582.

[3] C. Matuschek, F. Moll, H. Fangerau et al., “Face masks:
benefits and risks during the COVID-19 crisis,” European
Journal of Medical Research, vol. 25, no. 32, 2020.

[4] Z. Zhao, Z. Zhang, X. Xu, Y. Xu, H. Yan, and L. Zhang, “A
lightweight object detection network for real-time detection
of driver handheld call on embedded devices,” Computational
Intelligence and Neuroscience, vol. 2020, Article ID 6616584,
12 pages, 2020.

[5] D. H. Hubel and T. N. Wiesel, “Early exploration of the visual
cortex,” Neuron, vol. 20, no. 3, pp. 401–412, 1998.

[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet
classification with deep convolutional neural networks,”
Communications of the ACM, vol. 60, pp. 84–90, 2012.

[7] Z. Cai, N. Vasconcelos, and R.-C. N. N. Cascade, “Delving
into high quality object detection,” in Proceedings of the IEEE/
CVF Conference on Computer Vision and Pattern Recognition,
pp. 6154–6162, Salt Lake City, UT, USA, 2018.

[8] R. Girshick, “Fast R-CNN,” in Proceedings of the IEEE In-
ternational Conference on Computer Vision, pp. 1440–1448,
Santiago, Chile, December 2015.

[9] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: towards
real-time object detection with region proposal networks,” in
Proceedings of the Advances in Neural Information Processing
Systems, pp. 91–99, MIT Press, Montreal, Canada, December
2015.

[10] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only
look once: unified, real-time object detection,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 779–788, IEEE Computer Society, Las Vegas,
NV, USA, June 2016.

[11] W. Liu, D. Anguelov, D. Erhan et al., “SSD: single shot
multibox detector,” in Proceedings of the European Conference
on Computer Vision, pp. 21–37, Springer, Cham, Switzerland,
October 2016.

[12] J. Redmon and A. Farhadi, “YOLO9000: better, faster,
stronger,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 7263–7271, Honolulu, HI,
USA, July 2017.

[13] J. Redmon and A. Farhadi, “YOLOv3: an incremental im-
provement,” 2018, https://arxiv.org/abs/1804.02767.

[14] A. Bochkovskiy, C.-Y.Wang, and H. Liao, “YOLOv4: Optimal
Speed and Accuracy of Object Detection,” 2020, https://arxiv.
org/abs/2004.10934.

[15] A. G. Howard, M. Zhu, B. Chen et al., “Mobilenets: efcient
convolutional neural networks for mobile vision applica-
tions,” 2017, https://arxiv.org/abs/1704.04861.

[16] F. N. Iandola, S. Han, and M. W. Moskewicz, “Squeezenet:
AlexNet-Level accuracy with 50x fewer parameters and <0.5
MB model size,” 2017, https://arxiv.org/abs/1602.07360.

[17] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: an ex-
tremely efficient convolutional neural network for mobile
devices,” Proc. of the IEEE Conf. on Computer Vision and
Pattern Recognition, pp. 6848–6856, Salt Lake City, UT, USA,
2018.

[18] chuanqi305/MobileNet-SSD, 2018, http://github.com/
chuanqi305/MobileNet-SSD.

[19] M. S. Ejaz, M. Islam, M. Sifatullah, and A. Sarker, “Imple-
mentation of principal component analysis on masked and
non-masked face recognition,” in Proceedings of the 2019 1st
International Conference on Advances in Science, Engineering
and Robotics Technology (ICASERT), pp. 1–5, Dhaka, Ban-
gladesh, 2019.

[20] M. Loey, G. Manogaran, M. H. N. Taha, and N. E. M. Khalifa,
“A hybrid deep transfer learningmodel withmachine learning
methods for face mask detection in the era of the COVID-19
pandemic,” Measurement, vol. 167, Article ID 108288, 2020.

[21] M. Loey, G. Manogaran, M. Taha, and N. E. M. Khalifa,
“Fighting against COVID-19: a novel deep learning model
based on YOLO-v2 with ResNet-50 for medical face mask
detection,” Sustainable Cities and Society, vol. 65, Article ID
102600, 2020.

[22] A. Nieto-Rodŕıguez, M. Mucientes, and V. Brea, “System for
medical mask detection in the operating room through facial
attributes,” IbPRIA, vol. 9117, 2015.

14 Computational Intelligence and Neuroscience

https://arxiv.org/abs/1804.02767
https://arxiv.org/abs/2004.10934
https://arxiv.org/abs/2004.10934
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1602.07360
http://github.com/chuanqi305/MobileNet-SSD
http://github.com/chuanqi305/MobileNet-SSD


[23] A. Gola, S. Panesar, A. Sharma, G. Ananthakrishnan,
G. Singal, and D. Mukhopadhyay, MaskNet: Detecting Dif-
ferent Kinds of Face Mask for Indian Ethnicity, Springer,
Singapore, 2021.

[24] G. Ananthakrishnan, A. Gola, S. Panesar, A. Sharma, and
G. Singal, “Indian Facemasks detection dataset,” Mendeley
Data, vol. V2, 2020.

[25] B. Qin and D. Li, “Identifying facemask-wearing condition
using image super-resolution with classification network to
prevent COVID-19,” Sensors, vol. 20, 2020.

[26] C.-Y. Wang, H. Liao, I.-H. Yeh, Y.-H. Wu, P.-Y. Chen, and
J.-W. Hsieh, “CSPNet: a new backbone that can enhance
learning capability of CNN,” in Proceedings of the 2020 IEEE/
CVF Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), pp. 1571–1580, Seattle, WA, USA, June
2020.

[27] T. Lin, P. Dollar, and R. Girshick, “Feature pyramid networks
for object detection,” 2016, https://arxiv.org/abs/1612.03144.

[28] S. Liu, Q. Lu, H. Qin, J. Shi, and J. Jia, “Path aggregation
network for instance segmentation,” in Proceedings of the 2018
IEEE/CVF Conference on Computer Vision and Pattern Rec-
ognition, pp. 8759–8768, Salt Lake City, UT, USA, June 2018.

[29] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation net-
works,” in Proceedings of the 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 7132–7141, Salt
Lake City, UT, USA, June 2018.

[30] F. Wang, M. Jiang, C. Qian et al., “Residual attention network
for image classification,” in Proceedings of the 2017 IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 6450–6458, Honolulu, HI, USA, July 2017.

[31] L. Itti and C. Koch, “Computational modelling of visual at-
tention,” Nature Reviews Neuroscience, vol. 2, no. 3,
pp. 194–203, 2001.

[32] M. Jaderberg, K. Simonyan, A. Zisserman, and
K. Kavukcuoglu, “Spatial transformer networks,” 2015,
https://arxiv.org/abs/1506.02025.

[33] J. Fu, J. Liu, H. Tian, Z. Fang, and H. Lu, “Dual attention
network for scene segmentation,” in Proceedings of the 2019
IEEE/CVF Conference on Computer Vision and Pattern Rec-
ognition (CVPR), pp. 3141–3149, Long Beach, CA, USA, June
2019.

[34] S. Woo, J. Park, J.-Y. Lee, and I.-S. Kweon, “CBAM: Con-
volutional Block Attention Module,” 2018, https://arxiv.org/
abs/1807.06521.

[35] Y. Li, D. Zhang, and D.-J. Lee, “IIRNet: a lightweight deep
neural network using intensely inverted residuals for image
recognition,” Image and Vision Computing, vol. 92, 2019.

[36] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “In-
ception-V4, inception-ResNet and the impact of residual
connections on learning,” 2017, https://arxiv.org/abs/1602.
07261.

[37] M. Agarwal, S. Gupta, and K. K. Biswas, “A new Conv2D
model with modified ReLU activation function for identifi-
cation of disease type and severity in cucumber plant,” Sus-
tainable Computing: Informatics and Systems, vol. 30, Article
ID 100473, 2021.

[38] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and
A. Zisserman, “,e pascal visual object classes (VOC) chal-
lenge,” International Journal of Computer Vision, vol. 88,
no. 2, pp. 303–338, 2010.

[39] S. Ge, L. Jia, Q. Ye, and L. Zhao, “Detecting masked faces in
the wild with LLE-CNNs,” in Proceedings of the 2017 IEEE
Conference on Computer Vision and Pattern Recognition,
pp. 426–434, CVPR), Honolulu, HI, USA, July 2017.

[40] LabelImg, 2016, https://github.com/tzutalin/labelImg.
[41] K. Bernardin, E. Alexander, and R. Stiefelhagen, “Multiple

object tracking performance metrics and evaluation in a smart
room environment,” 2006, https://cvhci.anthropomatik.kit.
edu/%7Estiefel/papers/ECCV2006WorkshopCameraReady.
pdf.

[42] Z. Zhao, C. Ye, Y. Hu, C. Li, and X. Li, “Cascade and fusion of
multitask convolutional neural networks for detection of
thyroid nodules in contrast-enhanced CT,” Computational
Intelligence and Neuroscience, vol. 2019, Article ID 7401235,
13 pages, 2019.

[43] Z. Zhao, S. Xia, X. Xu et al., “Driver distraction detection
method based on continuous head pose estimation,” Com-
putational Intelligence and Neuroscience, vol. 2020, Article ID
9606908, 10 pages, 2020.

[44] Z. Zhao, N. Zhou, L. Zhang, H. Yan, Y. Xu, and Z. Zhang,
“Driver fatigue detection based on convolutional neural
networks using EM-CNN,” Computational Intelligence and
Neuroscience, vol. 2020, Article ID 7251280, 11 pages, 2020.

[45] Ncnn, 2017, https://github.com/Tencent/ncnn.

Computational Intelligence and Neuroscience 15

https://arxiv.org/abs/1612.03144
https://arxiv.org/abs/1506.02025
https://arxiv.org/abs/1807.06521
https://arxiv.org/abs/1807.06521
https://arxiv.org/abs/1602.07261
https://arxiv.org/abs/1602.07261
https://github.com/tzutalin/labelImg
https://cvhci.anthropomatik.kit.edu/%7Estiefel/papers/ECCV2006WorkshopCameraReady.pdf
https://cvhci.anthropomatik.kit.edu/%7Estiefel/papers/ECCV2006WorkshopCameraReady.pdf
https://cvhci.anthropomatik.kit.edu/%7Estiefel/papers/ECCV2006WorkshopCameraReady.pdf
https://github.com/Tencent/ncnn

