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As a crucial extension of Pawlak’s rough set, a fuzzy rough set has been successfully applied in real-valued attribute re-
duction. Nevertheless, the traditional fuzzy rough set is not provided with adjustable ability due to the maximal and minimal
operators. It follows that the associated measure for attribute evaluation is not always appropriate. To alleviate such
problems, a novel adjustable fuzzy rough set model is presented and further introduced into the parameterized attribute
reduction. Additionally, the inner relationship between the appointed parameter and the reduct result is discovered, and
thereby a nested mechanism is adopted to accelerate the searching procedure of reduct. Experiments demonstrate that the
proposed heuristic algorithm can offer us more stable reducts with higher computational efficiency as compared with the

traditional approaches.

1. Introduction

Rough set theory [1] is an effective mathematical tool to
qualitatively and quantitatively describe the uncertainty
information in data. Due to such characteristics, it has been
frequently applied in attribute reduction [2-9], which aims
to select a condition attribute subset that can retain the
identifiable ability of the original data. It should be pointed
out that among existing attribute reduction methods, fuzzy
rough set-based ones [10-15] are widely concerned with
handling indiscernibility and fuzziness in data with real-
valued condition attributes.

Up to now, attribute reduction with the fuzzy rough set
has been studied extensively, leading to a large variety of
algorithms for computing reducts [16-20]. Actually, the core
of these algorithms lies in the fuzzy relation induced from
the similarity between every two samples. Generally, a
method will be regarded as favorable if it empirically per-
forms well on the attribute evaluation used for identifying
the discernibility power of candidate attributes. For example,
Hu etal. [21] introduced Gaussian kernels to acquire T-fuzzy
equivalence relation and gave a more effective approach for
finding reducts; Hu et al. [22] also leveraged k-nearest

neighbor rule to develop a robust attribute reduction
method; Ye et al. [23] redefined two types of reflexive fuzzy-
neighborhood operators to evaluate attributes appropriately.
With a careful reviewing of these methods, unfortunately,
these technologies are not provided with adjustable ability.
Consequently, no matter how the analytical requirements
change, the characterizations of fuzzy rough sets are always
fixed. Such a case may result in inflexible attribute evaluation
such as the commonly used measure, i.e., approximate
quality, which can further cause the undesirable general-
ization performance of the final reduct.

To fill such a gap, a novel adjustable parameterized fuzzy
rough set model is presented firstly, and then the nested
strategy is introduced into the process of searching reducts.
Experimental results demonstrate that our proposal can
offer us more stable reducts with higher computational
efficiency as compared with the traditional approaches. The
main contributions of this study are outlined as follows:

(1) An adjustable fuzzy rough set model is constructed.
Two special fuzzy relations referred to as strong fuzzy
relation and weak fuzzy relation are developed and
discussed. Based on these two relations, a
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parameterized binary operator is reported and then
introduced into the construction of the adjustable
fuzzy relation, which can be adjusted by the setting of
the parameter. Additionally, we have also suggested
some properties of such fuzzy relation.

(2) The nested mechanism is adopted to perform the
procedure of attribute reduction. Our algorithm
consists of two aspects. One is attribute evaluation,
on the basis of the adjustable fuzzy rough set model,
the corresponding approximate quality is presented
to measure whether the candidate attribute is
qualified or not; the other is searching strategy,
considering the appointed parameter in the designed
model, the inner relationship between the parame-
ters and the reducts is discovered, and three types of
nested reduction are discussed to find the optimal or
near optimal reduct, which is defined as forward
nested reduction, reverse nested reduction, and
weakly rested reduction, respectively.

The rest of this paper is organized as follows. Section 2
provides some background materials on the fuzzy rough
set model and its attribute reduction. Section 3 introduces
the proposed adjustable fuzzy rough set model, and then
the nested strategy-based attribution reduction method is
presented. Section 4 describes data sets, evaluation met-
rics, and experimental settings and then analyzes the
results of comparative studies on 6 UCI data sets. Finally,
Section 5 summarizes and sets up several issues for future
work.

2. Related Work

2.1. Fuzzy Rough Set Model. Formally, a decision system DS
can be considered as the 5-tuple < U, CUD, V, f >, in which
U= {xy, x,,. . ., x,,} is a nonempty finite set of n samples called
the universe of discourse; C={ay, d,,. . ., a,,,} is a nonempty
finite set of condition attributes aimed to characterize the
samples; D is the decision attributes; Yae CUD, V,, is the
domain of attribute a; £ UxA— V is an information
function.

Let U # ¢ be a universe of discourse. F: U— [0, 1] is a
fuzzy set [24] on U, F (x) € [0, 1] is the membership function
of F. F (U) is the set of all fuzzy sets on U, fuzzy subset R € F
(Ux U) is a fuzzy relation, and (U, R) is referred to as a fuzzy
approximation space. A fuzzy relation R may own the fol-
lowing properties: (1) R is linear if and only if Vx € U, Iy € U,
R (x, y) =1holds; (2) R is reflexive if and only if Vx € U, R (x,
x) =1 holds; (3) R is symmetric if and only if Vx, y € U, R (x,
¥) =R (y, x) holds; (4) R is transitive if and only if Vx, y, z € U,
Ay (R (x,¥), R (y, 2)) <R (x, 2). The fuzzy relation R discussed
in this paper is reflexive at least.

Definition 1. Let<U, CUD, V, f>be a decision system,
Va, € C, the fuzzy relation induced by attribute a; is repre-
sented in the form of the following:
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where 1 is the number of samples in U, and r; ; € [0, 1] is the
similarity between x; and x;.

By the fuzzy relation in Definition 1, we can have the
following:

(1) Rl = R2 54 Vx,-, xj e U, Rl (x,-, x]) :RZ (.xl', x]) holds.

(2) R= R1 U R2 & Vx,-, Xj € U, R= maX{Rl (xi, .xj‘), R2 (Xi,
x;)} holds.

(3) R= R1 n Rz =4 Vx,-, .XJ' € U, R= min{Rl (x,-, xj), R2 (x,-,
x;)} holds.

(4) Rl c R e Vx,-, .xj € U, Rl (x,-, x]) SRZ (x,-, x]) hOldS.

Definition 2 (see [24]). Let U # ¢ be a universe of discourse,
R is a fuzzy relation on U, VF € F (U), the fuzzy lower and
upper approximations of F in the fuzzy approximation space
(U, R) are denoted by R(F) and R(F), respectively,Vx € U,
the memberships that x belongs to, R(F) and R(F), are
defined as follows:

R(F)(x) = }?5 max (1 - R(x, y), F(y)),

_ 2
R(F) () = sup min (R (x, ) F () 2
ye

where R (x, y) is the similarity between x and y based on the
fuzzy relation R.

The pair [R(F), R(F)] is referred to as a fuzzy rough set
of F.

2.2. Attribute Reduction in Fuzzy Rough Set. Attribute re-
duction is an effective way to eliminate irrelevant and re-
dundant information in a decision system. It aims to achieve
the minimal subset of condition attributes, which preserves a
specified measure of discernibility power invariant. The
common measures of discernibility power contain depen-
dency function [25-27], information entropy [28, 29], and
monotonic measure [30]. For simplicity, we take approxi-
mate quality as an example in this subsection.

Definition 3. Let<U, CUD, V, f>be a decision system,
VB C C, Rp is the fuzzy relation generated by the set of at-
tributes B, U|IND (D) ={d,, d,, ... , d,} is the partition in-
duced by the decision D, and then the approximate quality of
U|IND (D) with respect to B in the fuzzy rough set is defined
as follows:

U2, Ry (d)] T max(Re (@)(x;))
o U

(3)

>

Y(B’D) =
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where U is the sample set, B is the attribute set, D is the
decision set, Rp is the fuzzy relation generated by the set of
attributes B, x; is the jth sample combined with U, [e| is the
cardinality of a set, and d; is a decision class.

By Definition 3, we can see that y (B, D) reflects the
approximation abilities of the granulated spaces generated
by the set of attributes B to characterize the decision D.
Literatures [21, 31] have proved that approximate quality is
monotonic with the increasing or decreasing of condition
attributes in a decision system, i.e, y (B}, D)<y (B, D) if
B; € B, cC. In addition, it is obvious that 0<y (B, D)<1
holds.

Definition 4. Let< U, CUD, V, f>be a decision system,
VB C, B is referred to as a reduct of C if and only if

(1) y(B,D)#y(C,D)
(2) VB' ¢ B,y(B',D)#y(B,D)

In a fuzzy rough set, the similarity of samples will de-
crease with the number of attributes increasing, and then the
lower approximation of the decision system will increase.
That is to say, the positive region will be enlarged. It is well
known that the samples of the positive region are usually
regarded as to be certain. Therefore, the certainty of the
decision system will improve. It is consistent with our in-
tuition that new attributes (features) will bring more in-
formation about granulation and classification.

Let<U, CUD, V, f>be a decision system, Va,e BCC,
and we define a coefficient as the significance of at relative to
decision D.

Sig;, (@, B, D) = y(B, D) — y(B ~{a,}, D), (4)

Sig;, (a,, B, D) reflects the change of approximate quality if
attribute g, is eliminated from B. Similarly, we can also
define the following:

Sigou (B, D) = y(B+{a,},D) =y (B,D), (5

where a;, € C-B, Sig,, (a,,B,D) reflects the change of
approximate quality if attribute a, is introduced into B. From
the above perspective, many researchers [9, 32-34] itera-
tively select the most significant attributes with forward
greedy algorithm until no more deterministic rules gener-
ating with the increasing of attributes.

Formally, a forward attribute reduction algorithm can be
designed as follows.

For Algorithm 1, if approximate quality y (-, -) is replaced
by some other measures of discernibility power, then it can
also be used to compute reducts with different measurement
indices.

3. Adjustable Fuzzy Rough Set

3.1. Strong and Weak Fuzzy Rough Set Model. In< U, CUD,
V., f>,Va, € C(1<t<m), a series of fuzzy relations R, can be
induced by each attribute a,. For all the m condition at-
tributes, we can consider the following two special fuzzy
relations.

(1) Strong fuzzy relation: RS=R,NR,N---NR,,
RScorresponds to the strong fuzzy relation matrix
M (R%). In M (RS), Vx; xj € U, the similarity between
x; and x;, denoted by r};, is minimum.

(2) Weak fuzzy relation: R¥ = R,UR,U--- UR,,, R¥
corresponds to the weak fuzzy relation matrix
M (R¥).In M (R¥), Vx;, x; € U, the similarity between
x; and x;, denoted by r}}, is maximum.

Definition 5. Let U # ¢ be a universe of discourse, RS is a
strong fuzzy relation on U, VF € F (U), the strong fuzzy lower
and upper approximations of F in the fuzzy approximation
space (U, RS) are denoted by RS (F) andRS (F), respectively,
Vx € U, the membership that x belongs to RS (F) and RS (F)
are defined as follows:

R’ (F)(x) = ian] max (1 - R*(x, y), F(»)),
yG

_ (6)
R*(F)(x) = sup min (R’ (x, y), F(y)),
ye

where RS (x, y) is the similarity between x and y based on the
strong fuzzy relation RS.

The pair[R® (F), R* (F)] is referred to as a strong fuzzy
rough set of F.

Definition 6. Let U # ¢ be a universe of discourse, R is a
weak fuzzy relation on U, VFe F (U), and the weak fuzzy
lower and upper approximations of F in the fuzzy ap-
proximation space (U,RY) are denoted by R“ (F) and
Rv(F), respectively, Vx € U, the memberships that x belongs
to, R” (F) and R¥ (F), are defined as follows:

RY (F)(x) = in(f} max (1 - R" (x, ), F(»)),
ye

_ 7
RY(F)(x) = sug min (RY (x, y), F(¥)), @
ye

where RY (x, y) is the similarity between x and y based on the
weak fuzzy relation R¥.

The pair [RY (F), R¥(F)] is referred to as a weak fuzzy
rough set of F.

3.2. Adjustable Fuzzy Rough Set Model. In a general way,
suppose that M is an index set, Vt € M, Ykt € [0, 1], then a
parameterized binary operator [17] can be defined as
follows:

rtré%xkt: {k,: t € M} < [0,A],

A 3 . .
tEVMkt: rtreljl\}[lkt. {ky: t e M} [A, 1], (8)
A: others,

where A€[0, 1].
k, € [0, 1], then

Especially, let index set M=2, Vki,

max (k, k,): ki, ky € [0,A],
k¥ ky =4 min(k;,ky): kpk, € [A, 1], (9)
A: others,
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(ii) Outputs: A reduct B.
(iii) Step 1. B—, compute y(C, D);

Step 3., where Sig;, (a;,,C, D)
Step 4. Compute;y (B, D)
(iv) Step 5. Do

(3) Compute y (B, D);

Until y(B, D) = y(C, D)
Step 6. Va, € B, if y(B - {a,}, D)

(i) Inputs: A decision system DS = <U,CUD,V, f>

Step 2. Va, € C, compute Sig;, (a,,C, D)
= max{Sig;, (a,,C, D): Va, € C}

(1) compute Va, € C - B Sig, (a,, B,D) = y(B + {a,}, D) - y(B, D)
(2) B—BU {at,} where Sig,, (a;,, B, D) = max{Sig,, (a,, B, D): Va, € C - B}

=y(C, D) then B—B - {a,}

=y(C,D) -y(C—{a,}, D)

ALGorITHM 1: Heuristic approach to compute reduct (HACR).

where A € 0, 1]. Obviously, ?, is a generalization of maximal
operator (max) and minimal operator (min), Vﬁ < pmk can be
adjusted by setting up the value of A. Especially, if A =0, then
9 =min; if A=1, then | =max.

Theorem 1. Let M is an index set, Yt€ M, Vk,€[0, 1],
thenmin,yk, <V} Kk, < max,yk,.

Proof. By formula (11), we can discuss in following three
cases:

(1) If {k,: t e M} C

max,,k, holds.

(2) If {k,:teM}c

max,,k, holds.

[0,A], then min, .k, <V} kK,

IA

[, 1], then min, .k, =V} k

(3) Otherwise, it is obvious that min,¢yk, < Vi, ,k, =
A <max,yk, holds.

In<U, CUD, V, f>,Va, e C (1 <t<m), a series of fuzzy
relations R; can be induced by each attribute at Vux; x;€ U,
the similarity between x; and x; based on all the m fuzzy
relations, denoted by r? j» can be adjusted by the above binary
operator. The fuzzy relation constructed by r}, is referred to
as an adjustable fuzzy relation, and it is denoted by R*. R}
corresponds to the adjustable fuzzy relation matrix M
(RY). O

Theorem 2. Let< U, CUD, V, f> be a decision system. The
adjustable fuzzy relation R* can be obtained by adjusting the
value of A between strong fuzzy relation R® and weak fuzzy
relation RY, namely, Vx;, x;€ U, then r?j =rj;Vri.

Proof. Since r{; <r, we can discuss in the following three

i =Tip
cases:
(1) Vx,, o %€ U, If {r;;, r}<[0,A], by formula (8), then
=Vicism

=r};(=b £ Vb* - 4ac/2a), by for-

)
mula (9), then rijr

”ij = MaXyctomtij

= max (r} “’) = rU, accord-

ij>

A
ingly, r}; = rj;vr holds.

) Vx,, xeU, If {rs T riek ¢
rrllrl1<t<m ij =

A, 1], by formula (8), then
by formula (9)

V1<t<m ij
then rier ' = min (r
rS er holds.
(3) Otherw1se, by foxmula (8), r

formula (9), 7] Vr
holds.

1]’
U,rw) i i accordingly, r}; =

= A, by
i = =r; Vr

V1<t<m

=1, accordlngly,

O

Definition 7. Let U # ¢ be a universe of discourse, R* is an
adjustable fuzzy relation on U, VFeF (U), the adjustable
fuzzy lower and upper approximations of F in the fuzzy
approximation space (U, RY) are denoted by R* (F) and
RA(F), respectively, Vx € U, the membership that x belongs
to R (F) and R} (F) are defined as follows:

R(F) () = inf max(1-R' (5 ). F (), (10)
F(F) (x) = sug min(R’\ (x, y),F(y)), (11)
ye

where R* (x, y) is the similarity between x and y based on the
adjustable fuzzy relation R*.

The pair [R* (F), R}(F)] is referred to as an adjustable
fuzzy rough set of F.

Theorem 3. Let<U, CUD, V, f>be a decision system,
VFeF (U), then
(1) R (F) = R* (F);
(2) R(F) = R (F);
(3) R.(F) = R (F);
(4) R (F) = R¥(F).
Proof. By formula (8), we havev = min and V = max.
(1) By formula (10),¥x € U,R" (F) (x) = inf ,; max (1 -
R%(x, y), F(y))
= infyeU max (1l - R°(x, y),F(y)) = R° (F)(x), ac-
cordingly, R® (F) = R (F) holds.
(2) By formula (11), VxeU, RO(F)(x) = SUp .y Min
(R%(x, y), F(y)) = sup,y min
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(R (x, %), F(y)) = R (F) (), accordingly,
RO(F) = R (F) holds.

(3) By formula (10), Vx € U, R' (F)(x) = inf yeu max (1 -
R! (%, ), F(y)) = inf o, max(l - R¥

(x, ), F(y)) = R¥ (F)(x), accordingly,
R! (F) = R¥ (F) holds.
(4) By  formula  (11), VxeU, RI(F)(x)=

sup ey min (R' (x, ), F(y)) = sup,,y min (R”
(x, ), F(y)) = R¥(F) (x), accordingly,
RI(F) = R¥(F) holds.

Theorem 3 tells us that both strong and weak fuzzy rough
sets are special cases of an adjustable fuzzy rough set, and an
adjustable fuzzy rough set is a generalization of strong and
weak fuzzy rough sets. O

Theorem 4. Let<U, CUD, V, f>be a decision system,
VFeF (U), then

(1) R® (F)<R* (F)C R® (F);
(2) B (F)CR} (F)CRY (F).

Proof. By Theorem 1, we have min, .k, <V} ,k, <
max,k,, then RS (x, y) <R'(x, y) <R¥ (x, y).

(1) Vxe R¥ (F), R” (F)(x) = inf yeu max (1 - R (x, y),
F(y)) <inf ; max(1 - R* (x ), E(»)) = R* (F)
(x), accordmgly,Rw (F)C R* (F) holds. Similarly, it
is not difficult to prove R* (F)< R® (F) holds.

(2) Vx€RS(F), R*(F )(x) = sup,y min (R° (x, y), F(y))
<SUp,ey min (R* (x, y),F ~ (y)) = RM(F)(x), ac-
cordingly, RS (F)SR*(F) holds. Similarly, it is not
difficult to prove R* (F)CR¥ (F) holds.

Theorem 4 tells us that adjustable fuzzy lower approx-
imation is between weak and strong fuzzy lower approxi-
mations, and adjustable fuzzy upper approximation is
between strong and weak fuzzy upper approximations. [

3.3. Approximate Reduction in Adjustable Fuzzy Rough Set.
As discussed in Subsection 2.2, approximate quality reflects
the relevance between condition attributes and decision, and
it can be used to measure the significance of a candidate
attribute. Similarly, we will give the definition of approxi-
mate quality in strong, weak, and adjustable fuzzy rough sets
firstly.

Definition 8. Let< U, CUD, V, f>be a decision system,
VBCC, R},RY and R}, are the strong, weak, and adjustable
fuzzy relations generated by the set of attributes B, re-
spectively, U|IND (D)={d,, d,. . ., d,} is the partition
induced by the decision D, then the approximate quality of
U|IND (D) with respect to B in the strong, weak, and
adjustable fuzzy rough sets are defined as follows,
respectively:

5
1maxR d.
y*(B,D) = |U d)' ] 1<1<p( ( )( ))’
|U| U
llmax R¥ (d; x;
(B D) = |U R (d)| ] 1<1<p( ( )( )>,
vl U]

)L U ‘max RA d
oy s )] TP pes(E @)
vl U]

(12)

where Ry,RY, and R’; are the strong, weak, and adjustable
fuzzy relations generated by the set of attributes B, re-
spectively, U is the sample set, B is the attribute set, D is the
decision set, | - | is the cardinality of a set, and di is a decision
class.

Theorem 5. Let<U, CUD, V, f>be a decision system,
VB<CC, then y¥ (B, D)<y (B, D)<y* (B, D).

Proof. By Theorem 4, we have Rz (d,)S Rg" (d;)S R® (d;),
it is obvious that y* (B, D) < yA (B,D) <y*(B, D) holds.

Theorem 5 tells us that approximation quality in the
adjustable fuzzy rough set is between that in weak and strong
fuzzy rough sets.

Algorithm 1 can also be applicable for attribute re-
duction in the adjustable fuzzy rough set, which is similar to
the classic fuzzy rough set. Nevertheless, in practice, the
criteria of reduction are too harsh in Algorithm 1. To expand
the application scope of attribute reduction (dimension
reduction, feature selection), some researchers
[9, 21, 27, 28, 31, 35] have introduced the threshold ¢ to
control the change of discernibility power for relaxing the
criteria of reduction, and they also consider B as a reduct of
C satistying the following conditions: (1) y (C, D)) -y (B,
D)<eg (2) VB'CB, y (C, D))-y (B, D)>e¢. The above
conditions show that ¢ is aimed at eliminating redundant
attributes as much as possible while maintaining the change
of approximate quality in a smaller range. In general, ¢ is
recommended to be 0%-10% of the original approximate
quality in a decision system.

Formally, a tolerant forward approximate reduction
algorithm in the adjustable fuzzy rough set can be designed
as follows. O

3.4. Nested Strategy-Based Reduction in Adjustable Fuzzy
Rough Set. Algorithm 2 is an enhancement version of Al-
gorithm 1, which introduced a tolerant parameter to im-
prove the efficiency of attribute reduction. However, in real-
world applications, we always encounter data with too many
objects or attributes. In this circumstance, starting with an
empty set for the attribute reduction process may be time
consuming and result in algorithm performance degrada-
tion. In order to deal with this issue, a nested strategy-based
attribute reduction approach is introduced into the



adjustable fuzzy rough sets model. In this subsection, some
notions of the nested strategy-based reduction, i.e., Forward
Nested Reduction, Reverse Nested Reduction, and Weakly
Nested Reduction, are firstly presented.

Definition 9 (Forward Nested Reduction [36]). In a pa-
rameterized model, if the reducts on different approxima-
tions satisfy VReduct (f8), IReduct («), we have Reduct («) €
Reduct (f) which holds; then this type of nested structure is
“Forward Nested Reduction.”

Definition 10 (Reverse Nested Reduction [36]). In a pa-
rameterized model, if the reducts on different approxima-
tions satisfy VReduct (f8), IReduct («), we have Reduct («) 2
Reduct () which holds; then this type of nested structure is
“Reverse Nested Reduction.”

Definition 11 (Weakly Nested Reduction [36]). In a pa-
rameterized model, if the reducts on different approxima-
tions satisfy VReduct (), IP2>Reduct (), we have
P> Reduct («) which holds; then this type of nested structure
is “Forward Weakly Nested Reduction.”

By Definition 9-Definition 11, we know that the forward
nested structure satisfies that there exists a smaller reduct
included in the known larger reduct (the former is a subset of
the latter), and the reverse nested structure satisfies that
there exists a larger reduct containing the known smaller
reduct (the latter is a subset of the former). However, the
weakly nested structure is a much weaker relation than the
inclusion relation of forward and reverse nested structure,
that is, the intersection relation of two reducts.

Theorem 6. Let<U, CUD, V, f>be a decision system,
VB < C, approximate quality y* (B, D) is monotonic with B in
the adjustable fuzzy rough set, then with the parameter A
increasing, the weakly nested reduction holds.

Theorem 6 presents a necessary condition for con-
structing nested attribute reduction. In light of the nested
strategy of reduction, an algorithm is designed as follows to
search for a different reduct quickly with an existing reduct.
The detailed processes are presented in Algorithm 3.

The most striking difference between Algorithm 3 and
Algorithm 2 is that the prereduct is considered for searching
new reduct in Algorithm 3. When the parameters are changed,
the reduction under the new parameters can be obtained by
changing only a few attributes sets of reduction with the
original parameters. Since the proposed algorithm NS-
THACR does not need to add attributes from an empty at-
tribute set, the operation steps of approximation and ap-
proximation quality under repeated calculation are greatly
reduced, and the efficiency of reduction execution is improved.

4. Experimental Analysis

To evaluate the performance of our nested strategy-based
heuristic attribute reduction approach, 6 real-world UCI
data sets have been employed in this paper. Table 1 sum-
marizes some details of these experimental data sets. All the
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experiments are run on a workstation equipped with a
3.10 GHz processor and a 8.00 G memory. The programming
language is Matlab R2014b.

In the context of this paper, 10-fold cross-validation (10-
CV) is used for evaluating the effectiveness of the proposed
algorithm in our experiments. In the following experiments,
all samples are broken into ten groups of the same size, the
nine groups compose the training set, and the one group
composes the testing set. The attribute reduction process is
repeated 10 times in turn and the mean value and standard
deviation of 10 experimental results are recorded.

In this section, we focus on the elapsed time com-
parison for computing reduct by using the nested reduction
strategy or not. The comparison in this part is set up as
follows: (1) Ten values of the parameter A are selected on the
interval [0, 1] with the step length 0.1. (2) Seven values of ¢
are chosen to control the changes of approximate quality,
i.e., 0%, 2%, 4%, 6%, 8%, 10%. In fact, ¢ = 0% means that the
approximate quality of obtained reduct is equal to the
original decision system and similar explanations can be
achieved for another six values. (3) In order to show the
effectiveness of the nested reduction strategy, THACR
discussed in Algorithm 2 is presented as a benchmark
algorithm. The detailed results are shown in the following
Tables 2 -7. In these six tables, the first row is the elapsed
time of computing THACR and the second row is the
elapsed time of computing NS-THACR and the minimum
elapsed time is bold. With a careful study of these tables, we
can obtain the following remarks.

(1) From the results in Tables 2-7, it can be seen that for
all experiments, the elapsed time of computing NS-
THACR is better than the elapsed time of computing
THACR, and the calculation time is reduced by more
than 80 percent. In addition, the difference between ¢
and A also has a certain impact on the experimental
results, and the time consumed by the two methods
is also different. The choice of these two parameters
also requires different attempts in the experiment to
search for an appropriate subset of attributes.

(2) The elapsed time of computing reduct by THACR is
higher than that of computing reduct by NS-
THACR. For example, when we search for a reduct
for dataset E. coli (Table 3), if we set A=0.3 and
£=8%, then we can note from Table 3 that the av-
erage elapsed time of THACR is 2.5724, whereas the
average elapsed time of NS-THACR is 0.2282, the
computing time is decreased by 91.12 percent. For
dataset Seeds (Table 6), in the attribute reduction
process, if we choose 1 =0.7 and & =2%, then we can
obtain the average elapsed time of THACR, which is
0.7392 and the average elapsed time of NS-THACR,
which is 0.1376, and the computing time, which is
decreased by 81.38 percent.

(3) In general, the elapsed time of =0 is higher than
others in these two algorithms. For instance, in
dataset Glass (Table 4), if we set A =0.8, we can note
that the average elapsed time of THACR is 2.0171
when &=0%, whereas the average elapsed time of
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Inputs: A decision systemDS = <U,CUD,V, f >, the adjustable parameter A, the threshold ¢ for controlling the change of
approximate quality;

Outputs: A reduct B.
Step 1. compute y*(C, D);
Step 2. computeSig;, (a,,C, D) = y* (C,D) - y*(C - {a,}, D)
Step 3. where Sig;, (a,,, C, D) = max{Sig;, (a;,C, D): Va, € C}
Step 4. Compute y* (B, D)
Step 5. Do
(1) compute;Va, € C - B Sig, . (a,, B, D) = y* (B + {a,}, D) — y" (B, D)
(2) where; B—BU {at,}, Where Sig,, (a,,, B, D) = max{Sigy" (a,, B, D): Va, € C - B}
(3) Compute;y* (B, D)
Until y*(C,D) - y* (B,D)<¢
Step 6. Va, € B, if y* (C,D) - y* (B - {a,}, D) < ¢ then B—B{a,}
ArGoriTHM 2: Tolerant heuristic approach to compute reduct (THACR).
Inputs: A decision system. DS = <U, Reduct(A3) UD,V, f > the existing parameter Azand a new parameter A, the threshold ¢ for
controlling the change of approximate quality;
Outputs: A new reduct B of A,.
Step 1. B—Reduct (/\/3)
Step 2. Compute the approximate qualities of y*« (B, D)and y*« (C, D), respectively;
Step 3. If %« (C,D) — " (B,D) > ¢
go to Step 4
Else If y" (C,D) -y (B,D) <e
go to Step 5
End
End
Step 4. Do
(1) Va, € C - B, compute;Sig, , (a,, B, D) = " (B + {a,}, D) - y* (B, D)
(2) where.B—BU {at,};Sigout(a,,,B, D) = max{Sig,,, (a,, B, D): Va, € C — B};
(3) Compute yAa (B, D);
Until y*(C,D) -y (B,D) <e¢
Step 5. Va, € B, if y* (C, D) - y* (B - {a,}, D) <¢ then B—BU {a,}
ALGoriTHM 3: Nested strategy-based tolerant heuristic approach to compute reduct (NS-THACR).
TaBLE 1: The characteristics of experimental data sets from UCL

ID Data sets Abbr. Samples Attributes Abbr. Classes

1 Diabetes Diab 768 8 Real value 2

2 E. coli E. coli 336 7 Real value 8

3 Glass Glass 214 10 Real value 6

4 Iris Iris 150 4 Real value 3

5 Seeds Seeds 210 7 Real value 3

6 Wine Wine 178 13 Real value 3

THACR is 1.7782 when £ = 6%. As far as NS-THACR
is concerned, the average elapsed time is 0.2985 when
£=0%, whereas the average elapsed time is 0.2032
when e=6%. It is because that e=0% is too strict;
that is, the approximate quality of reduct must be
equal to the original dataset. Therefore, more time is
needed to search for an appropriate attribute subset.

In addition, the proposed method is compared with
two other popular attribute reduction methods, one is the
classical Nested Strategy-based Heuristic Approach to
Computing Reduct (NS-HACR), and another is DMF-FN
[36, 37]. MF-FN is the nested reduction approaches
designed by the discernibility matrix. The detailed results
of the above six data sets are shown in Figure 1, in which
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Average elapsed time

Diab Ecoli Glass Iris Seeds  Wine
Data sets

B NS-THACR
B MF-FN
3 NS-HACR

FiGure 1: Elapsed time of three different algorithms.

xx axis denotes different data sets and yy is the average
elapsed time of three different algorithms. It is difficult to
note from Figure 1 that the proposed method NS-THACR
obtained the minimum elapsed time. With the above
discussions, we can conclude that the proposed NS-
THACR method is an effective and eflicient attribute
reduction method.

5. Conclusions

In this paper, we have discussed some weaknesses in at-
tribute reduction based on the traditional fuzzy rough set,
which is often constructed by the operator without ad-
justability, and thereby a new adjustable fuzzy rough set has
been presented. In our approach, a parameterized operator
has been applied to develop strong and weak fuzzy relations,
and such two special relations can offer fuzzy rough set
model adjustability. Furthermore, inspired by the inner
relationship between parameter and reduct, we have also
employed a nested mechanism to accelerate the searching
process of parameterized reduct.

The following topics deserve our further investigations:
(1) some evolutionary algorithms [2] such as particle swarm
optimization algorithm and ant colony algorithm can be
applied to find the optimal parameter used in our proposed
model; (2) some accelerated searching strategy [12] such as
sampling technique and attribute group technique can be
used to further reduce the elapsed time over one single
parameter.

Data Availability

To evaluate the performance of our nested strategy-based
heuristic attribute reduction approach, 6 real-world UCI
data sets have been employed in this paper. Table 1 sum-
marizes some details of these experimental data sets. All the
experiments are run on a workstation equipped with a
3.10 GHz processor and a 8.00 G memory. The programming
language is Matlab R2014b.
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