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,is paper proposes an adaptive control scheme based on terminal sliding mode (TSM) for robotic manipulators with output
constraints and unknown disturbances. ,e fuzzy logic system (FLS) is developed to approximate unknown dynamics of robotic
manipulators. An error transformation technique is used in the process of controller design to ensure that the output constraints
are not violated. ,e advantage of the error transformation compared to traditional barrier Lyapunov functions (BLFs) is that
there is no need to design a virtual controller.,us, the design complexity of the controller is reduced.,rough Lyapunov stability
analysis, the system state can be proved to converge to the neighborhood near the balanced point in finite time. Extensive
simulation results illustrated the validity of the proposed controller.

1. Introduction

In recent decades, robotic manipulators have been widely
used in industrial and aerospace fields due to the rapid
development of artificial intelligence [1–6]. As the model
uncertainty, input, and measurement disturbance always
exist, some linear control schemes cannot obtain satisfactory
performance. ,erefore, many researchers utilize adaptive
control [7–11], robust control [12, 13], output-feedback
control [14, 15], and learning control strategies [16, 17] to
overcome above difficulties. ,e security issues caused by
output constraints cannot be ignored because humans in-
teract with robotic manipulators.

To handle the problem of output constraints, many
techniques have been developed [18–21]. In [22], a robust
adaptive neural network (NN) control is utilized to guar-
antee the prescribed performance of the multiple-input
multiple-output (MIMO) systems. In [23], a barrier Lya-
punov function is used to guarantee the output constraints,
which provides more flexibility and reduces the require-
ments for prerequisites. For nonlinear system, an optimal
control strategy which transforms the constrained system

into a novel one without output constraints is proposed in
[24]. In [25], an adaptive neural network tracking control is
proposed for robotic manipulators subjected to output
constraints. ,e output constraints of some systems are not
immutable; thus, to handle this problem, an asymmetric
barrier Lyapunov function is used in the design process of
the controller in [26]. Recently, a new robust control is
developed in [27]. ,is control method first converts the
output constraints into the error constraints. ,en, an error
transformation technique is employed, which changes the
constrained error system into an unconstrained system.

Intelligent controls have been widely used to cope with
model uncertainty due to their approximation ability.
According to combine fuzzy system or neural network with
adaptive control, online parameters estimation can be re-
alized, which improves the feasibility of the control scheme
[28–34]. A novel adaptive fuzzy controller is presented to
guarantee the stability of closed-loop system in [35]. For a
class of uncertain MIMO nonlinear systems in the discrete-
time form, a control strategy that uses higher order neural
networks to approximate the desired controllers is proposed
in [36]. An adaptive neural network scheme considering
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unknown output hysteresis is studied in [37], which used
only two learning parameters so that the computational
burden is greatly reduced. In [25], two neural networks are
utilized in the controller: one is used to approximate the
unknown dynamic model, and the other is used to ap-
proximate the error of the input dead zone.

Sliding mode control (SMC) is widely used in motion
control, because of its simple algorithm and good robustness
[38]. With the development of sliding mode control tech-
nology, there are many new sliding mode control schemes.
In [39], a radial basis function (RBF) neural network sliding
mode control scheme is used to realize the asymptotic
stability of rigid robotic manipulators, in which RBF neural
network is used to estimate unknown dynamics. An integral
sliding mode adaptive control scheme is proposed to realize
system signals uniformly ultimately bounded in [40]. A
second-order sliding mode control algorithm is presented in
[41]. Fast terminal sliding mode control schemes are used to
control the single input single output system (SISO) and the
robotic manipulators, respectively, in [42, 43]. Both have
achieved fast and high-precision tracking performance. For
dual-inertia driving systems, an adaptive control scheme
combining sliding mode with prescribed performance
function is proposed in [44]. ,ere are many papers that use
terminal sliding mode to control the manipulators, but few
researches on the manipulators with output constrains and
model uncertainty are carried out. And most of the existing
methods to solve the problem of output constrains are using
barrier Lyapunov function. ,ese methods need to design
additional virtual controllers, which will increase the
complexity of the controller.

To better solve the trajectory tracking problem of a class
of manipulators with output constrains and model uncer-
tainty, a novel adaptive fuzzy control scheme that combines
error transformation with finite time sliding surface is
designed. Using the fuzzy logic system to approximate
model uncertainty can improve tracking performance. ,e
problem of output constraints is solved by introducing an
error transformation function. ,is error transformation
function changes the output constraints into the error
constrains. ,erefore, not only can it be ensured that the
output constraints are not violated, but also the transient
response can be improved.,e error after conversion is used
in the sliding mode surface, and the convergence of the
system is proved by the Lyapunov stability theorem. ,e
main contributions are summarized as follows:

(1) To prevent the contravention of output constraints,
the error transformation is used in the controller
design. ,e introduction of virtual controller is
avoided which reduces the cost of calculation. At the
same time, the effect of transient response is
improved.

(2) Modify the sliding mode surface. ,e transformed
error is applied to the sliding surface, which
guarantees that system output constraints not
only are not violated but also achieve the steady-
state error converge to near the balanced point in
finite time.

In what follows, first, the dynamic model, fuzzy logic
system, and error transformation are presented, followed by
the derivation of the controller. ,en, the stability analysis
andmathematical proof are given.,e paper ends with some
comparative simulations and conclusions.

2. Problem Formulation and Preliminaries

2.1. Dynamic Model of the Robotic Manipulator. An n-de-
gree-of-freedom robotic manipulator with unknown dis-
turbance can be described as

M(q)€q + C(q, _q) _q + G(q) � τ + τd, (1)

where M(q) denotes the symmetric positive definite inertia
matrix, C(q, _q) represents the Coriolis/centripetal torque,
G(q) is the gravity torque, τd denotes the unknown external
disturbances, τ is the control input torque, and q is the
angular position.

Property 1 (see [25]). ,e matrix M(q) is positive definite
symmetric matrix.

Property 2 (see [25]). ,e matrix _M − 2C(q, _q) is skew-
symmetric.

In practice, due to modeling error, physical parameter
perturbation, and other factors, the systemmodel always has
uncertainty; thus, the following formula holds:

M � M0 + Mn,

C � C0 + Cn,

G � G0 + Gn,

(2)

where M0, C0, andG0 denote the nominal part of the model
and Mn, Cn, andGn denote the mode uncertainty.

,e control problem is to design a control law to ensure
the system output state q can track the desired qd and to
guarantee the constraints are not violated simultaneously. In
order to verify the feasibility of proposed control scheme, the
following assumptions are given.

Assumption 1 (see [27]). For every desired trajectory qdi
, the

inequality − kdi
≤ qdi
≤ kdi

is held, where positive constants
kdi

, kdi
denote the lower and upper bound, respectively.

,ere exists positive constant k∗di
satisfying

max kdi
, kdi

 ≤ k∗di
< koi

for any koi
> 0.

Assumption 2 (see [45]). ,e disturbance τd is bounded
such that τd ≤ τ holds for positive constants τ.

Assumption 3 (see [46]). ,e reference trajectory qd and its
first two time derivatives _qd, €qd are bounded. Moreover, the
angular position q and speed _q are measurable.

2.2. Fuzzy Logic Systems. ,e fuzzy system can be used to
approximate unknown nonlinear function due to their
universal approximation ability. ,e advantage of fuzzy
system is that it can use linguistic information effectively
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[47]. ,e structure of fuzzy system is shown in Figure 1. ,e
design steps of fuzzy system are as follows [16]:

(1) Define Ni fuzzy sets for each variable xi.
(2) Set z � 

n
i�1 Ni fuzzy IF-THEN rules: if x1 is A

k1
1 and

. . . and xn is A
kn

1 ; then y is Wk1k2 , where
ki � 1, 2, . . . , Ni, i � 1, . . . , n.

(3) Using the fuzzy inference engine and the defuzzifier,
the fuzzy system can be obtained as

f �


l
k�1yk 

n
i�1μAk

i
xi(  


l
k�1 

n
i�1 μAk

i
xi(  

, (3)

with μAk
i
(xi) � exp[− ((xi − cik)2/2b2ik)], where μAk

i
(xi) de-

notes the Gaussian membership function. cik and bik denote
the center and the width of the Gaussian function,
respectively.

For clarity, we now arrange (3) into the following form:
f � ΘΦ(x), (4)

where Θ � [y1, . . . , yl]
T is the free parameters and Φ(x) is

given as

Φ(x) �


n
i�1 μAk

i
xi( 


l
k�1 

n
i�1 μAk

i
xi(  

. (5)

,erefore, a nonlinear function can be expressed as

f � ΘΦ(x) + ε, (6)

where ε is the approximation error which satisfies ‖ε‖≤ ‖ε‖; ε
is a positive constant.

2.3. Error Transformation. To realize the control goal, we
first define the tracking error as

e1 � q − qd, (7)

where q � [q1, . . . , qi, . . . , qn], i � 1, . . . , n, denotes the po-
sition vector of each joint, qd � [qd1

, . . . , qdi
, . . . , qdn

] de-
notes the target trajectory, and e1 can be expressed as
[e11, e12, . . . , e1n].

Lemma 1 (see [27]). Consider an Euler-Lagrange system. If
the initial error satisfies ei(0)< kbi

, ∀i � 1, . . . , n and the
transformed error variables are bounded, then the closed-loop
error is bounded and the output of system x1i remains
bounded by the imposed output constraints, e.g., |x1i|< koi

,
∀i � 1, . . . , n.

To ensure the constraints are not violated, we use an
error transformation as [27]. ,is method changes the
output constraints into error constraints and it can be
expressed as

kbi
� koi

− k
∗
di

, (8)

where k∗di
is defined in assumption 1, koi

are the output
constraints of the output qi, and kbi

are the error constraints.
,ey are shown in Figure 2.

For the next stability analysis, the error transformation
variable z1 is defined as

z1 � _e1 + P1 e1( e1, (9)

where P1(e1) is a symmetric diagonal matrix, defined as

p1

k
2
b1

− e
2
11 

. . . 0

⋮
pi

k
2
bi

− e
2
1i 

⋮

0 · · ·
pn

k
2
bn

− e
2
1n 
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, i � 1, . . . , n,

(10)

where pi are positive constants that we need to design.
e1i

are the tracking errors on ith robot joint and defined in
(7).

,e time derivative of z1 in (9) can be calculated as

_z1 � €e1 + _P1 e1( e1 + P1 e1( _e1

� €e1 + diag
2pie

2
i

k
2
bi

− e
2
i 

2
⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦_e1 + diag
pi

k
2
bi

− e
2
i

⎡⎢⎢⎣ ⎤⎥⎥⎦_e1

� €e1 + P2 e1( _e1,

(11)

where P2(e1) is a symmetric diagonal matrix, which is
obtained by extracting common factors from the two
rightmost items in (11) and can be expressed as

Rules

Input Fuzzy
generation Defuzzifier

Inference
engine

Output

Figure 1: Structure of the fuzzy system.
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, i � 1, . . . , n.

(12)

3. Controller Design

According to the above conversion of errors, the original
system with output constraints is transformed into an un-
constrained system. By Lemma 1, we just need to design a
controller to ensure the variable z1 is bounded so that the
system can track the desired trajectory and the output
constraints are not violated. ,e control structure is shown
in Figure 3.

A terminal sliding mode variable is defined as

r � z1 + k1sig
a2e1 � _e1 + P1 e1( e1 + k1sig

a2e1, (13)

where k1 is a positive constant. a2 � (p/q) is satisfied p< q

and p and q are coprime positive odd numbers.
siga(·) � | · |asgn(·), and sgn(·) denotes the signum
function.

Differentiating (13), we can get

_r � €e1 + P2 e1( _e1 + k1a2 e1



a2− 1

_e1. (14)

Multiplying (14) by M0(q), one has

M0 _r � M0 + Mn( €e1 − Mn€e1 + M0P2 e1( _e1 + M0k1a2 e1



a2− 1

_e1

� τ + τd − C(q, _q) _q − G(q) − M€qd − Mn€e1 + M0P2 e1( _e1 + M0k1a2 e1



a2− 1

_e1

� τ + τd − C(q, _q)r + C(q, _q)r − C(q, _q) _q − G(q)

− M€qd − Mn€e1 + M0P2 e1( _e1 + M0k1a2 e1



a2− 1

_e1

� τ + τd − C0(q, _q)r − Cn(q, _q)r + C(q, _q)r − C(q, _q) _q

− G(q) − M€qd − Mn€e1 + M0P2 e1( _e1 + M0k1a2 e1



a2− 1

_e1

� τ + τd − C0(q, _q)r + M0P2 e1( _e1 + M0k1a2 e1



a2− 1

_e1 − F q, _q, €qd, _e1, _e1( ,

(15)

where F(q, _q, €qd, e1, _e1) � M€qd + Mn€e1 + G(q) + C(q, _q) _q −

C(q, _q)r is the unknown dynamics. ,e nonlinear dynamics
function F(q, _q, €qd, e1, _e1) is continuous and thus it can be
approximated by a FLS as

ΘΦ(Z) � F q, _q, €qd, e1, _e1(  + ε, (16)

where Θ is the optimal constant parameter vector. Φ(·) is the
fuzzy basis function. Z � [q, _q, €qd, e1, _e1] is the input vector. ε
is the approximation error of the FLS, which satisfies ‖ε‖≤ ‖ε‖.
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Figure 2: Error transformation.
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,en, substituting (16) into (15), the open-loop error
system can be obtained as

M0 _r � τ + τd − C0(q, _q)r + M0P2 e1( _e1

+ M0k1a2 e1



a2− 1

_e1 − ΘΦ(Z) + ε.
(17)

,e optimal parameter vector Θ cannot be obtained in
practice. ,us, the estimation Θ replaces Θ in the process of
designing the controller. ,us, the estimation of the non-
linear function can be expressed as

F q, _q, €qd, e1, _e1(  � ΘΦ(Z). (18)

,e fuzzy system parameter Θ can be updated by the
following adaptive law:

_Θ � − Γ[Φ(Z)r + σ Θ], (19)

where Γ is a positive gain matrix and σ denotes the forgetting
factor.

Remark 1. ,e adjustment of learning gain Γ needs to
balance rapidity and stability. A large Γ will improve the
adaptation speed, but will lead to high-frequency oscillations
in the control response. Conversely, a small Γ will suppress
high-frequency oscillations, but will reduce the adaptation
speed. ,e forgetting factor is a positive constant, which is
usually chosen as a small value. ,e role of forgetting factor
is to improve the robustness to bounded disturbance and to
accelerate the adaption speed.

A TSM-based controller is designed to obtain the
convergence of system state. Based on (17) and subsequent
stability analysis, the control law τ is designed as

τ � − kr − M0P2 e1( _e1 − M0k1a2 e1



a2− 1

_e1

+ ΘΦ(Z) − βsigr2r,
(20)

where k and β are positive constants that designed by de-
signer. r2 � (m/n) is satisfied m< n and m and n are coprime
positive odd numbers.

Substituting (20) into (17), the closed-loop tracking error
system can be obtained as

M0 _r � − kr + τd − C0(q, _q)r + ΘΦ(Z) + ε − βsigr2r, (21)

where Θ is the error between ideal value and estimated value.

Remark 2. Contrary to conventional TSM control scheme,
e.g., [46], the error transformation is used in the controller to
prevent the contravention of output constraints. ,is error
transformation technique changes the output constraints
into error constraints. Consequently, the transient response
is improved. Compared with barrier Lyapunov function, the
advantage of error transformation is that the virtual vari-
ables are not designed.

3.1. Stability Analysis

Lemma 2 (see [48]). If a Lyapunov function V(x) is
bounded and its derivative _V(x)≤ − λV(x) + C, where λ
and C are positive constants, then the solution x is
bounded.

Lemma 3 (see [43]). For a second-order system like (1),
if there is a positive definite function V(x) and
parameters λ1, λ2 > 0, 0< c< 1, v≥ 0 satisfies the following
inequality:

_V(x) + λ1V(x) + λ2V
c
(x)≤ v, (22)

then the system state can converge to the compact set Ω,
defined by

Ω ≔ x|V(x)≤min
v

λ1
,

v

λ2
 

(1/c)⎧⎨

⎩

⎫⎬

⎭

⎧⎨

⎩

⎫⎬

⎭, (23)

and the upper bound of convergence time T satisfies

T �
1

λ1(1 − c)
ln
λ1V

1− c
x0(  + λ2
λ2

. (24)

,e main conclusions of this paper can be summarized
as follows.

Theorem 1. Consider robotic dynamic system (1), with
bounded assumptions and initial conditions; TSM-based
adaptive fuzzy controller is given as (20), as well as adaptive
law (19):

(1) =e closed-loop system is ultimately uniformly
bounded and the output constraints are not
violated

(2) =e tracking error e1 converges to neighborhood near
the zero point in finite time

Proof

(1) A positive definite Lyapunov function is chosen as

V1 �
1
2

rM0r +
1
2

ΘΓ− 1 Θ. (25)

,e time derivative of (25) is

Error
transformation TSM AFTSM

Fuzzy
system

Robotic
manipulator

q

q
d

e1 z1

τ

Θ⌃Ф (Z)

Figure 3: Diagram of the proposed control structure.
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_V1 � rM0 _r +
1
2

r _M0r + ΘΓ− 1 _Θ

� − kr
2

− β|r|
r2rsgn(r) + rτd + rε

+ r ΘΦ(Z) − r ΘΦ(Z) − σ ΘT Θ,

(26)

where (19) and (21) are used.
According to average value inequality, we can get

rτd + rε≤ r
2

+
1
2
τ2d +

1
2
ε2 ≤ r

2
+
1
2
τ2d +

1
2
ε2. (27)

Since− ΘT Θ � − ΘT
(Θ + Θ) � − ΘT Θ − ΘTΘ and − ΘTΘ

≤ (1/2) ΘT Θ + (1/2)ΘTΘ, it simply implies

− ΘT Θ≤ −
1
2

ΘT Θ +
1
2
ΘTΘ. (28)

Substituting (27) and (28) into (26), we can obtain

_V1 ≤ − (k − I)r
2

− β r
2


r2+1( )/2( )
+
1
2
τ2

+
1
2
ε2 −

1
2
σ ΘT Θ +

1
2
σΘTΘ

≤ − ρV + C,

(29)

where ρ and C are positive constants defined as

ρ �
2λmin(k − I)

λmax M0( 
,
σ
Γ− 1 ,

C �
1
2
τ2 +

1
2
ε2 +

1
2
σΘTΘ.

(30)

To ensure that ρ> 0, gains k are selected to satisfy

λmin(k − I)> 0. (31)

According to Lemma 2, it can be concluded that r and Θ
are bounded. From expression (13), we can infer thatz1 is
bounded. Further, based on Lemma 1, it can be concluded
that the error of the system is bounded and the output
constrains are not violated.

(2) A positive definite Lyapunov function is chosen as

V2 �
1
2

rM0r. (32)

Differentiating (32), we can get

_V2 � rM0 _r +
1
2

r _M0r

� − kr
2

− βsigr2r
2

+ rτd + r ΘΦ(Z) + rε

≤ − k −
3
2

I r
2

− β r
2


r2+1( )/2( )
+
1
2
τ2 +

1
2
ε2 +

1
2
l
2 Θ2

≤ − ρ1V2 − ρ2V
r2+1( )/2( )

2 + c,

(33)

where ρ1, ρ2, and c are positive constants defined as

ρ1 �
2λmin(k − (3/2))

λmax M0( 
,

ρ2 � β
2

λmax M0( 
 

r2+1( )/2( )

,

c �
1
2
τ2 +

1
2
ε2 +

1
2
l
2 Θ2.

(34)

Based on Lemma 3, auxiliary variable r can converge to
the region Ωr defined as

Ωr � r ∈ R
n
|r≤

�
2

√
Y , (35)

where Y is defined as

Y � min
c/ρ1

λmax M0( 
 

(1/2)

,
c

ρ1
 

1/ r2+1( )( )

λmax M0( ( 
− (1/2)

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(36)

And the upper bound of convergence time is as follows:

Tr �
2

ρ1 1 − r2( 
ln

ρ1V
1− r2
3 (s(0)) + ρ2

ρ2
 . (37)

Once sliding mode variable reaches the sliding surface
r � 0, (12) can be expressed as

_e1 � − P1 e1( e1 − k1sig
a2e1. (38)

Another positive Lyapunov function is designed as

V �
1
2
e
2
1. (39)

After derivative (39), one has
_V � e1 _e1. (40)

Substituting (38) into (40), we can obtain
_V � e1 − P1 e1( e1 − k1sig

a2e1( 

� − P1 e1( e
2
1 − k1sig

a2e
2
1

≤ − 2κ1V − 2 a2+1( )/2( )k1V
a2+1( )/2( ),

(41)

where κ1 � λminP1(e1) is a positive constant.
According to Lemma 3, the upper bound of convergence

time of error variable e1 is as follows:

Te �
2

2κ1 1 − a2( 
ln
2κ1V

1− a2( )/2( ) e1(0)(  + 2 a2+1( )/2( )k1

2 a2+1( )/2( )k1

.

(42)

Based on (37) and (42), position tracking error converges
to neighborhood near the zero point in finite time and
convergence time T satisfies

T≤Te + Tr. (43)

All the proof has been completed. □
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3.2. Simulation. In this section, to verify the practicability of
the presented controller, a 2-DOF robotic manipulator is
used for the simulation. ,e mode matrices are defined as

M0(q) � M11, M12; M21, M22 ,

C0(q, _q) � C11, C12; C21, 0 ,

G0(q) � G1; G2 ,

τd � τd1, τd2 ,

(44)

where M11 � (m1 + m2)r
2
1 + m2r

2
2 + 2m2r1r2 cos(q2), M22 �

m2r
2
2, M12 � M21 � m2r

2
2 + m2r1r2 cos(q2), C11 � − m2r1

sin(q2) _q2, C12 � − m2r1 sin(q2)( _q1 + _q2), C21 � m2r1 sin
(q2)q1, G1 � (m1 + m2)r1 cos(q2) + m2r2 cos(q1 + q2), G2 �

m2r2 cos(q1 + q2), τd1 � 0.5 + 0.3 sin(t), and τd2 � 0.3+

0.5 cos(2t). Parameters appearing above are shown in
Table 1.

Mode uncertainties Mn, Cn, Gn are set as
Mn � 0.01M0, Cn � 0.02C0, Gn � 0.01G0. ,e initial states
q1, q2, _q1, _q2 are set as q1 � q2 � 0.005 and _q1 � _q2 � 0. ,e
control goal is to make the output q track the target tra-
jectory q1d � q2d � 0.3 sin(t). ,e output constraints are set
as ko1 � ko2 � 0.305.

To verify the validity of the proposed control scheme,
there are two controllers that are used as comparison in the
following:

(1) AFTSM: this is the controller proposed in this paper.
,e parameters of TSM controller are given as
k � [20; 20], k1 � [5; 5], β � [5; 5], α2 � (5/7),
r2 � (7/11). ,e parameters of error transformation
are imposed as p1 � p2 � 1. For fuzzy approximator,
the initial values of free parameter are all set as 3.,e
fuzzy learning gain parameters Γ � [10, 10], and the
adaptive parameter σ should be set as a small value
[0.01, 0.01], because a large value will suppress the
adaptive speed.

(2) TSM: this is a general fast terminal sliding mode
controller without error transformation and fuzzy
approximation. ,e parameters of TSM control-
ler are given as k � [20; 20], k1 � [5; 5], k2 � [6; 6],
β � [5; 5] α2 � (5/7), r2 � (7/11).

Remark 3. Sliding mode parameter 0< a2 < 1 in (13) will
lead to singular problem. So, in the simulation process, use
subsection function φ(e) instead of original siga2e. ,e
subsection function φ(e) is designed as

φ(e) �
|e|

a2 sgn(e), s � 0 or s≠ 0, |e|> χ,

l1e + l2|e|
2sgn(e), s≠ 0, |e|≤ χ,

 (45)

where χ is a sufficiently small and bounded positive constant.
a2 � (p/q) is satisfied p< q and p and q are coprime positive
odd numbers. l1 � (2 − a2)χa2− 1 and l2 � (a2 − 1)χa2− 1.

,e simulation results are shown in Figures 4–12. Figure 4
indicates that the above two control schemes all can track
desired trajectory qd. But it can be clearly seen that the
AFTSM with error transformation gives smaller error and
better tracking performance. Figure 5 indicates that the

tracking errors of proposed controller and TSM all can
converge to the neighborhood near the balanced point in
finite time. Compared with AFTSM, the convergence rate
of TSM is slower than AFTSM, and the transient perfor-
mances are inferior to AFTSM. Moreover, the output
constraints are not limited. ,e FLS approximation error is
shown in Figure 6. It can be seen from the picture that the
nonlinear function is well approximated by fuzzy logic
system. ,e norms of fuzzy adaptive weights are shown in
Figure 7, from which we can get that the fuzzy weights are
bounded. Figure 8 gives the tracking errors under different
initial conditions. From the figure, it can be seen that the
convergence time is different for different initial state q.
,e absolute value of the initial state q is smaller; the
convergence speed is faster.

,e discontinuity of sign function sgn(·) can cause
system chattering. In order to reduce the chattering of the
system, the hyperbolic tangent function ϖ(s, ρ) � ((eρs −

1)/(eρs + 1)) is used instead of the sign function. By choosing
appropriate parameter ρ, the chattering phenomenon and
the tracking performance of the system can be balanced.
Here, choose ρ as 2. Comparing Figure 9 with Figure 10, it

Table 1: Model parameters of the manipulator.

Parameters Description Unit Value
m1 Mass of link 1 kg 1
m2 Mass of link 2 kg 1.5
r1 Length of link 1 m 1
r2 Length of link 2 m 0.8
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Figure 4: Position tracking performance of joint 1 and joint 2.
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can be seen that the hyperbolic tangent function can reduce
chattering. To verify the robustness of the system to different
disturbances, we added three disturbance comparison
groups in the simulation. ,e three groups are set as
d1 � [tan(t) + 0.7; tan(t) + 0.7], d2 � [0.4 + 2 sin(t)cos(t);

0.2 + 3 sin(t)cos(t)], d3 � [2 sin(t)q1 + _q1; 3 cos(q1) + 2 _q1].

,e results are shown in Figure 11; from the picture, one can
find that the system still maintains good tracking perfor-
mance in response to different disturbances. Figure 12 is the
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position tracking of step function. ,e selection of the initial
state of the system should ensure that the initial error is
satisfied |e1|< kb. It can be seen from the figure that AFTSM
still has a good tracking effect for the step response.
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4. Conclusions

In this paper, we developed a TSM-based fuzzy adaptive
control scheme for robotic manipulators with output con-
straints and unknown disturbances. An error transforma-
tion is used to solve the problems of output constraints. ,e
transient response of the system is improved simultaneously.
Fast terminal sliding mode can improve convergence speed
and reduce chattering. ,erefore, the errors converge to the
neighborhood near the balanced point in a very short time.
To verify the effectiveness of the proposed scheme, two
control schemes are used as a contrast in simulation. ,e
simulation results show that the proposed control method
possessed enhanced robustness and better tracking
performance.
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