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The optimization problems are taking place at all times in actual lives. They are divided into single objective problems and
multiobjective problems. Single objective optimization has only one objective function, while multiobjective optimization has
multiple objective functions that generate the Pareto set. Therefore, to solve multiobjective problems is a challenging task. A
multiobjective particle swarm optimization, which combined cosine distance measurement mechanism and novel game strategy,
has been proposed in this article. The cosine distance measurement mechanism was adopted to update Pareto optimal set in the
external archive. At the same time, the candidate set was established so that Pareto optimal set deleted from the external archive
could be effectively replaced, which helped to maintain the size of the external archive and improved the convergence and diversity
of the swarm. In order to strengthen the selection pressure of leader, this article combined with the game update mechanism, and a
global leader selection strategy that integrates the game strategy including the cosine distance mechanism was proposed. In
addition, mutation was used to maintain the diversity of the swarm and prevent the swarm from prematurely converging to the
true Pareto front. The performance of the proposed competitive multiobjective particle swarm optimizer was verified by
benchmark comparisons with several state-of-the-art multiobjective optimizer, including seven multiobjective particle swarm
optimization algorithms and seven multiobjective evolutionary algorithms. Experimental results demonstrate the promising

performance of the proposed algorithm in terms of optimization quality.

1. Introduction

In the field of engineering, aviation scheduling, optimal control,
and others, most of the optimization problems are multi-
objective optimization problems (MOPs) [1]. MOPs are dif-
ferent from single objective optimization problems. More
objective functions need to be optimized, which have the
characteristics of conflict or influence each other [2]. This means
that it is impossible for all the objective function values to be
optimal, in which the optimal solution for one objective
function may be the worst solution for another objective.
Therefore, a set of trade-oft solutions, known as Pareto optimal
set, is adopted to represent the best possible compromises
among objectives in MOPs. The practical problems are con-
sidered to have the characteristics of high-dimensional

nonlinearity and strong constraints, so classic optimization
algorithms (conjugate gradient method [3], Newton method
[4], simplex algorithm [5], etc.) can no longer solve MOPs
effectively. With the development of science and technology, the
emergence of intelligent control makes multiobjective optimi-
zation reach a more advanced stage. The method of optimal
control conditions can take different paths. For example, the
introduction of the deformable MEMS device in [6] has a
positive effect on improving optimal control. In addition, the
intelligent optimization algorithm, which belongs to the bionic
algorithm, has also attracted the attention of researchers.
Among them, the particle swarm optimization (PSO) algorithm
[7], which has the advantages of simple operation, fast velocity,
wide application range, and few setting parameters, has become
the focus of more researchers.


mailto:yanmin7813@163.com
https://orcid.org/0000-0003-0000-4661
https://orcid.org/0000-0002-1571-5370
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6440338

PSO derived from the simulation of complex adaptive
systems which was an evolutionary computation method
based on swarm intelligence was proposed by Kennedy and
Eberhart in 1995. It was developed inspired by the social
behavior of a swarm of animals like birds. In PSO, indi-
viduals were called particles and each particle represents a
potential solution. The swarm consists of a group of particles
flying through the search space searching for the optimal
solution, like birds searching for food. Individuals called
“particles” in PSO “flow” through the ultradimensional
search space. The position change of particles in the search
space was based on the individual’s social and psychological
intention surpassing other individuals successfully. It could
communicate with other individuals and change its struc-
ture and behavior according to the process of “learning” or
“accumulating experience.” Therefore, changes in the ve-
locity and position of particles will be affected by the ex-
perience of other particles.

With the development of intelligent algorithms, the
relative simplicity and the practical success of single ob-
jective optimizer have motivated researchers to extend the
usages of PSO from the single objective optimization
problems into MOPs. In 2002, Coello et al. extended PSO
from a single objective to multiple objectives, which was
used to solve MOPs for the first time [8]. In the research of
multiobjective particle swarm optimization (MOPSOs),
there are at least two fundamental issues to be addressed. The
first issue is how to use a standard to select excellent global
leader as the learning sample of all particles flight to guide
other particles in the population. Due to the important
influence of the leader in the search direction, the random
selection of global learning samples in the external archives
may lead the algorithm to be trapped into a local optimum.
At present, most of MOPSOs based on dominance use the
infinite external archive to store nondominated solutions, so
the maintenance and update of the external archive are also
very important. The second issue is how to balance con-
vergence and diversity of the swarm. It is crucial to the
performance of MOPSOs, because PSO-based multi-
objective optimizations are very likely to be trapped into the
local optimum (or one of many optima) of MOPs due to
their fast convergence.

In this article, a novel multiobjective particle swarm
optimization based on cosine distance mechanism and game
strategy was proposed, which was called GCDMOPSO. To
maintain the update mechanism of the external archive, the
cosine distance was used to delete the worst particles in the
external archive. At the same time, the same number of
particles was selected in the candidate set to supplement the
deleted particles in the external archive to maintain the
update of the external archive dynamically. The main
contributions of this article were as follows:

(1) Dynamic maintenance of the external archive up-
dates. After each iteration of the algorithm, the
nondominated solutions selected from the candidate
set were added to the external archive. When the
number of nondominated solutions in the external
archive exceeded the maximum size, the cosine
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distance was used to compare the degree of crowding
of the nondominated solutions in the archive, and
the most crowded solutions were deleted. Then, it
could also identify the removed solutions and update
the crowding degree of all solutions in the domain
(i.e., after deleting the most crowded solutions,
recalculate the cosine distance of all other solutions).
This method achieves better diversity and
preservation.

(2) The method by which the individual was selected. In
the update process of this algorithm, the fitness value
of each individual was calculated through non-
dominated sorting, which will generate individuals
of the same ranking value. The individuals with the
same ranking value were selected into the candidate
set, and the Euclidean distance between each indi-
vidual and the origin of the coordinate was calcu-
lated. Then the Euclidean distance from each
individual to the coordinate origin was sorted in
ascending order. In order to maintain the updating
of external archive dynamically, when we delete the
particles in the external archive, we need to put the
same number of individuals into the archive.

(3) The selection of the global leader. Based on the re-
cently developed competitive group optimizer and
combined game mechanism, this article proposed a
novel global leader selection strategy based on the
game mechanism. Randomly select two non-
dominated solutions in the external archive, and
compare the cosine distances of the two non-
dominated solutions, respectively. The winner was
selected as the global leader, leading other particles to
fly. We can keep all obtained solutions converging
along the real Pareto front.

The remaining part of this article is structured as follows.
Section 2 describes the related definitions of the MOPs and
MOPSOs briefly, as well as the related works from which the
main ideas are inspired for designing the new algorithm in
this article. Then, the details of the proposed GCDMOPSO
are described in Section 3. Section 4 is the experimental part
of GCDMOPSO. GCDMOPSO is compared with some
selected MOPSOs and MOEAs in this article. Finally, the
conclusions are drawn in Section 5.

2. Background

2.1. MOPs. In this section, the definition of the funda-
mentals of the MOPs is presented. The mathematical forms
of the MOPs are described as follows:

min y = F(x) :(fl(x),fz(x),.‘.,fm(x))

{gi(x)zo, i=12,...,p (1)
s.t. ,

hj(x)=0, i=L2...,q

where x = [x,%;,...,%X . ..,xg] is the decision vector of D
dimension, x € X, and X is the decision space;

Xg min <X4<Xg mao A=1,2, .., Dy X4 a and x4 i, are
the upper and lower bounds of each dimension vector; y is
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the objective vector, y € Y, and Y is the objective space; m is
the total number of optimization objectives; {g; (x) <0} is
the i—th inequality constraint h;(x) =0 is the i-th
equality constraint. These two constraints determine the
feasible region of the solution.

MOPs are different from single objective problems, so
the same problem-solving ideas cannot be adopted by the
former. It is impossible for a certain solution of MOPs to
achieve optimal results for all objectives at the same time,
and different solutions cannot be compared due to different
objective functions. Therefore, when solving a MOP, a set of
solutions are usually obtained, and these solutions have
different effects for different objective functions. The solu-
tions in this set are called the nondominated solutions or
Pareto optimal solutions. The following is a detailed in-
troduction to the related concepts.

Definition 1. Pareto dominance, x, € X, x, € X, X are two
feasible solutions of this MOP, and x, is dominant by
comparison with x,,, expressed as x,< x,,, if and only if

Vk e {1,2,....m} fi(x,) < fr(x )AL € {L,2,...,m), fi(x,) < fi(x,).
(2)

Definition 2. For Pareto optimal, x* € X is the Pareto op-
timal solution on X, if and only if the following conditions
are satisfied

Ix € X: x<x". (3)

That is, there is no better solution than x* in the set X, so
x* is the optimal solution in X, which is also called non-
dominated solution or noninferior solution.

Definition 3. For Pareto optimal set, for the MOPs, the
optimal solution set can be defined as follows:

pr={xeX|Ix' € X, fr(x), (k=1,2,...,m}. (4)

Definition 4. For Pareto optimal front, the curved surface
consisting of the objective function values corresponding to
all Pareto optimal solutions in Pareto optimal solution set is
called Pareto front:

PE={F(x") = (f1(x ) f2(x7) s fru (x7))Ix" € p7}
(5)

2.2. Multiobjective Particle Swarm Optimization. MOPSO is
an improvement of PSO. In PSO, the individual birds in
the population are abstracted as massless particles. Each
particle has its own velocity and position. The position
and velocity of i particle are expressed as
x; = (X1, X5 .- > Xx; p) and v; = (v, Vpp, . . ., V; p), respec-
tively. Searching for food in N is the space, and food is
considered as the optimal solution. Particles are updated
according to the following formula:

3

v;(t+ 1) = wv,(t) + c;r, (pbest; (t) — x; (1)) ©)
+ ¢ 1, (gbest; () — x; (1)),

X, (t41) = x, (1) + v (£ + 1), )

The right side of equation (6) consists of three parts. The
first part is the inertia quantity, where w is the inertia weight.
Its size determines how much the particle inherits to the
current velocity. If the value of w is large, the overall search
capability of the algorithm will be enhanced; if the value of w
is small, the local search function of the algorithm will be
improved. w is generally limited to a random number less
than 1. The second part is the cognition of the individual,
which represents the movement of the individual to the best
position according to his historical flight experience. Among
them, pbest represents he optimal position of the individual,
7, is a random number normally distributed in the interval
(0, 1), and ¢, is the learning factor, representing the degree of
particles learning. The third part is the amount of social
cognition, which leads to the amount of particles that move
to the global optimal position. gbest represents the global
optimal position, r, is a random number normally dis-
tributed in the interval (0, 1), and c, is the learning factor,
where ¢, = ¢, = 2 is usually taken. The coordination of these
three parts determines the overall performance of the
algorithm.

With the deepening of research, many scholars have
extended PSO to MOPSO, so that the algorithm is more
suitable to solve MOPs. In MOPs, the number of the optimal
solutions is not unique due to the increase of constrained
objective. Combined with PSO, the difference of MOPSO is
not only the selection of the historical optimal position and
the global leader under multiple constraints but also the
storage of the historical optimal position and the global
leader. Therefore, MOPSOs used the external archive
mechanism to solve storage problems and used the external
archive to save the nondominated solutions generated
during the search in the entire swarm. The nondominated
solutions in the external archive are not dominated by any
other particles in the external archive. Therefore, all non-
dominated solutions in the external archive should meet the
two following requirements: (a) The nondominated solu-
tions in the external archive collection do not have a mutual
dominance relationship, and it is impossible to compare
which of the nondominated solutions are better. (b) The
introduced particles are stronger than the solutions in the
original external archives, and the weaker solutions in the
original external archives should be eliminated.

2.3. Existing MOPSOs. The first PSO variant was proposed
by Coello et al. [9]. The authors incorporated the concept of
Pareto advantage into the method of PSO. The local optima
and the global optima in the swarm were determined by the
Pareto dominance principle. For the first time, the secondary
storage library (i.e., the external archive) was used to store
the nondominated solutions obtained after each iteration.
This was the first time that PSO has been used to solve



MOPs. Compared with classic MOEAs such as NSGA-II [10]
and PAES [11], the first MOPSO proposed was more
competitive in solved MOPs, but it was unable to solve
MOPs with complex landscapes. To address this issue, Sierra
and Coello et al. [12] proposed an improved PSO-based
multiobjective optimization, in which Pareto advantage and
congestion factor were used to select a list of available
leading solutions; and the swarm was divided into three
subswarms simultaneously; then different mutation opera-
tors were suggested for different subswarms divided by users
in advance. In addition, the experience of this algorithm
used ¢ dominance to fix the size of the external archive.
Experimental results show that the performance of the
improved optimization on MOPs with multiple local fronts
is more competitive.

A speed-constrained MOPSO was proposed by Nebro
etal., called SMPSO [13], in which the velocity of all particles
was restricted in order to tackle MOPs with multimodal
landscapes. The SMPSO allowed new effective particle po-
sitions to be generated when the velocities were too large.
Other features of the SMPSO included polynomial mutation
as turbulence factor and the external archive was comprised
of nondominated solutions which were found during the
search process. However, most of MOPSOs could not solve
MOPs effectively due to the fact that velocities in such al-
gorithms were too rapid.

The above MOPSOs only used a single search strategy to
update particle’s velocity. So, Lin et al. proposed a novel
MOPSO based on multiple search strategies [14], which used
a decomposition method to transform MOPs into a set of
aggregation issues, and then allocated each particle ac-
cordingly to optimize each aggregation issue. This algorithm
designed two search strategies to update the velocity of each
particle. After that, all nondominated solutions visited by
particles were preserved in an external archive, and the
evolutionary search strategy was further executed to ex-
change useful information between them. These multiple
search strategies enabled this novel MOPSO to handle
various MOPs more effectively.

In contrast to the MOPSOs where the global optimal
solution is determined by dominance relations, Zhang and Li
used the framework of MOEA/D [15] to try to embed the
decomposition mechanism into the PSO-based multi-
objective optimization for the first time and proposed a
MOPSO by decomposing a MOP into a number of single
objective optimization problems [16]. The algorithm used the
PSO search method instead of the genetic operator. Later, an
improved version of this multiobjective optimization called
SDMOPSO [17] was proposed by Al Moubayed et al. In
SDMOPSO, the global optima were only selected from the
neighborhood of particles, and crowded files were used to
preserve the diversity of swarm leaders. Dai et al. divided the
solution space into multiple subspaces and retained only one
optimal solution in each subspace so that the nondominated
solutions can be evenly distributed. This MOPSO was based
on object space decomposition [18]. Based on the decom-
position method, Martinez and Coello also proposed a ver-
sion of multiobjective optimization called dMOPSO [19], in
which the global leader was determined according to the
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scalar aggregation value. Moreover, a memory reinitializa-
tionstrategy was used when a particle reached a certain value.
The main aim of this approach was to preserve diversity and
to avoid trapping in local fronts. Although the improvement
of this algorithm holds a lower computational cost than most
of the other MOPSOs which often need to maintain an ar-
chive, it is difficult to converge to the true Pareto front when
dealing with complex models.

In 2020, Alkebsi and Du proposed a novel MOPSO. This
algorithm was a novel archive update mechanism based on
the nearest neighbor method, called MOPSONN [20]. In the
early stage of this algorithm, the external archive was
updated based on the nearby distance measurement. In later
generations, two new rules were used, namely, the maximum
cost rule and the cost sum rule, to update the archive. These
two archive update strategies updated the nondominated
solutions in the archives.

In addition, a few scholars have improved the MOPSOs
from the aspect of parameter setting to make the MOPSO
more optimized [21]. In view of the effective analysis of the
abovementioned existing algorithms, this article combined
with the cosine distance update mechanism and the meshing
strategy. A novel multiobjective game particle swarm op-
timization based on the cosine distance update mechanism
was proposed, which effectively improves the convergence
and diversity of solving MOPs. The following section de-
scribes the proposed algorithm in detail.

2.4. Acronyms in the GCDMOPSO. In order to read the
article more clearly, a table of acronyms is listed in this
article. The specific contents are shown in Table 1.

3. The Proposed the GCDMOPSO

In this section, the details of our proposed GCDMOPSO are
introduced. The algorithm generates a new population from
all individuals initialized randomly. The particles of this
population will generate many levels according to their
dominance relationship. The first-level individuals gener-
ated by the nondominated relationship flow into the can-
didate set, and a new external file is further created. Then,
based on the grid technology and the cosine distance
strategy, the individuals introduced in the candidate set are
screened to dynamically maintain the external archive. At
the same time, the nondominated solutions in the external
archives are screened through game strategy as the global
leader to guide other individuals to fly. After that, this
program updates the velocity and position of the group
according to equations (6) and (7).

3.1. Selection of Introduced Particles. Any individual only
chooses the appropriate type of talents as the learning object,
and only the outstanding individuals will be selected into the
external archives as leaders to lead other individuals to
update and iterate. According to the previous MOPSOs, the
program calculated the fitness value of each individual and
randomly selected individuals with the same ranking value
as candidate solutions to enter the external archive to guide
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TaBLE 1: List of acronyms.

Acronyms The full name of an acronym
MOPs [1] Multiobjective optimization problems
PSO [7] Particle swarm optimization
MOPSOs Multiobjective particle swarm optimization algorithms
MOEAs Multiobjective evolutionary algorithms
GCDMOPSO Multiobjective particle swarm optimization based on cosine distance mechanism and game strategy
MOPSO [9] Handling multiple objectives with particle swarm optimization
NSGA-II [10] A fast and elitist multiobjective genetic algorithm
PAES [11] Approximating the nondominated front using the Pareto archived evolution strategy
SMPSO [13] A new PSO-based metaheuristic for multiobjective optimization
MMOPSO [14] A novel multiobjective particle swarm optimization with multiple search strategies
MOEA/D [15] A multiobjective evolutionary algorithm based on decomposition
SDMOPSO [17] A novel smart multiobjective particle swarm optimization using decomposition
dMOPSO [19] A multiobjective particle swarm optimizer based on decomposition
MOPSONN ([20] A fast multiobjective particle swarm optimization algorithm based on a new archive updating mechanism
IGD [22] Inverted generational distance
NMPSO [23] Particle swarm optimization with a balance able fitness estimation for many-objective optimization problems
MOPSOCD [24] An effective use of crowding distance in multiobjective particle swarm optimization
MPSO/D [18] A new multiobjective particle swarm optimization algorithm based on decomposition
An evolutionary many-objective optimization algorithm using reference point-based nondominated sorting
NSGA-IIT [25] . . .
approach, part I: solving problems with box constraints
1[\§8EAIGDNS A multiobjective evolutionary algorithm based on an enhanced inverted generational distance metric
SPEAR [27] A strength Pareto evolutionary algorithm based on ‘ref.ererhlce direction for multiobjective and many-objective
optimization
SPEA2 [28] Improving the strength Pareto evolutionary algorithm
IBEA [29] Indicator-based selection in multiobjective search
N The population size
M The number of objectives
D Dimension of the decision variable
FEs The maximum number of evaluations
pe Crossover probability
P Mutation probability
SBX Simulated binary crossover
PM Polynomial-based mutation
1, The distribution indexes of SBX
N The distribution indexes of PM
F Parameters set by the author in differential evolution
CR Parameters set by the author in differential evolution
div The division network number of cells
pbest Personal best particle
gbest Global best particle

other individuals to fly. Due to the fact that the fitness value
was calculated to generate the first-level ranking value after
the iterative update of the algorithm may have the same
value, the random selection method in the previous algo-
rithm could not better select the candidate solution. This
article has improved it in this part. As shown in Figure 1, in
our algorithm, a candidate set is added. The fitness value of
each individual is calculated, and the first-level individuals
flow into the candidate set. At the same time, the candidate
set is regarded as a grid, and the Euclidean distance from the
fitness value of each individual to the origin of the coor-
dinate is recalculated. Then the distance from each indi-
vidual to the origin of the coordinate is sorted in ascending
order, and individuals closer to the origin of the coordinates
are selected into the external archive. If the nondominated
solutions in the external archive do not reach the maximum
size, all individuals in the candidate set are entered into the

external archive according to the individual fitness ranking
value, and they are stored; if the nondominated solutions in
the external archive reach the maximum size, the individuals
with the smaller cosine distance in the external archive will
be eliminated.

In other words, in order to maintain the number of
particles in the external archive mechanism at stable level,
when a certain number of particles are deleted, the same
number of particles will be added from the candidate set.

3.2. Maintenance and Update of External Archives.
Archiving strategy is an important part of MOPSOs. Ex-
cellent maintenance capabilities can not only improve the
search efficiency of the algorithm but also improve the
convergence of the algorithm on the other hand. This article
mainly adopts the external archive scheme to store the
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FIGURE 1: Schematic diagram of selecting introduced particles.

fi

nondominated solutions generated during the entire itera-
tive update. The maintenance principle of the external ar-
chive mainly uses the cosine distance measurement
mechanism. The cosine distance measurement mechanism is
usually used in the field of text classification. Since the text
space and the multiobjective space are both multidimen-
sional spaces, they have certain similarities at the same time.
Therefore, the cosine distance measurement mechanism is
applied to the multiobjective optimization. If a dimension is
represented by a vector, the dimension of a vector can be
regarded as a single objective. The cosine distance between
objectives can be used to determine the density relationship
between individuals.

Definition 5. For weight ratio, suppose that the population
size is N and the objective function value of particle i is
expressed as f; (x), fi (%),..., fie (%), fin, (x). For the
i — th particle, the weight ratio of the objective function value
in the k dimension is as follows:

_ fi (%)

SN Fa o) (®)

ik

Definition 6. For cosine distance, suppose that the objective
vector of any particle i is  expressed as
di= W, Wy, ..., Wy,...,W,,); according to the cosine
formula, the cosine distance between two objectives is

CD(d;,d;) =1 - cos(d;,d;)
L Thoyt Wi x Wy ©)
2
VI (Wil x T (W)

In this article, in order to better control the size of the
external archive, the size of the external archive is set to 200.
As shown in Figure 2, the objective space is divided into k
subregions. Then a subregion with highest density is se-
lected, and the cosine distance between each nondominated
solution in each subspace and its neighboring particles is
compared. The smaller cosine distance between the non-
dominated solution and its neighboring particles, the greater

the density of the nondominated solution and the poorer
distribution.

The GCDMOPSO calculates the cosine distance between
the nondominated solution and its neighbor particles
according to Definitions 5 and 6 and sorts the cosine dis-
tance in ascending order. Then, the nondominated solutions
with minimum cosine distance, minimum angle, and
maximum density are selected for dynamic deletion. In
addition, only one nondominated solution is deleted. Then
the cosine distances of other nondominated solutions are
recalculated, and the nondominated solution with the
smallest cosine distance is deleted. The solid black dots are
the remaining nondominated solutions, and the hollow
circles are the deleted individuals, with a deletion rate of
40%. At the same time, the same number of individuals is
selected in the set of candidate solutions to supply the
nondominated solutions deleted in the external archive to
maintain the update of the external archive.

Leaders guiding the optimization process are an effective
way to design MOPSOs. Among the many strategies cur-
rently available, the direction that prompts particles to ex-
plore some potential areas guides the search. The cosine
distance strategy proposed in this article is quite different
from the random strategy proposed in the past. Figure 3
shows a schematic diagram of the comparison between the
cosine distance strategy and the random strategy. First of all,
all the evaluation indicators of the two strategies
(ZDT1-ZDT4 and ZDT6, DTLZ1-DTLZ5, UF1-UF10) are
run 30 times, respectively. The data of all evaluation indi-
cators running 30 times are sorted in descending order into
30 levels. Then all the evaluation indicators of each level are
averaged. The ordinate indicates the average of all evaluation
indicators for each level, and the abscissa indicates that each
strategy has been run 30 times. It can be seen from Figure 3
that, in the same level, the average of the cosine distance
strategy is better than the average of the random strategy
significantly, which fully illustrates the feasibility of the
cosine distance strategy.

Figure 4 shows that the GCDMOPSO used the cosine
distance strategy to detect the evolution state. Taking ZDT1
as an example, it was compared to seven state-of-the-art
MOPSOs and seven classic MOEAs on ZDT1. (a) shows the
convergence trajectory of the GCDMOPSO and seven
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MOPSOs on ZDTI; (b) shows the convergence trajectory of
the GCDMOPSO and seven MOEAs on ZDTI1. The ex-
perimental results indicate the promising convergence speed
of the proposed GCDMOPSO in comparison with the seven
state-of-the-art MOPSOs and seven classic MOEAs on
ZDTI.

As further observations, Figure 5 presents the non-
dominated set associated with the best IGD value among 30
runs obtained by the GCDMOPSO, and then MOPSOs and
MOEAs were compared on multiobjective DTLZ1. The
nondominated sets were obtained by dMOPSO, MOPSO,
NMPSO, SMPSO, MOPSOCD, MPSO/D, MMOPSO,
NSGA-II, NSGA-III, MOEA/D, MOEAIGDNS, SPEAR,
SPEA2, IBEA, and GCDMOPSO, respectively. The experi-
mental results showed that the proposed GCDMOPSO
outperforms the compared MOPSOs and MOEAs in terms
of both convergence and diversity on multiobjective DTLZ]1.

3.3. Selection Strategy of Global Leader. In MOPSOs, each
individual has location information and velocity informa-
tion, as well as the characteristics of information exchange
between individuals. These individuals can learn from the
best position in history (pbest) and the best position in the
world (gbest) and then their position and velocity are
updated through equations (6) and (7) in Section 2 to
produce a new generation of groups. The choice of the global
optimal position (gbest) is closely related to the distribution
of nondominated solutions. If few dense nondominated
solutions are distributed in a certain area, the sparsely
distributed particles are more likely to become the global
optimal particles. In order to strengthen the selection
pressure of gbest, it was combined with the game update
mechanism. Thus, a novel global optimal selection strategy
of the game strategy was proposed. The original game group
optimizer theory divides the original population into two
parts: game success and game failure. The failed part of the
game strategy learns from the successful part of the game,
and the population is updated iteratively on this basis.
References for the specific game process can be found in
[30]. The game strategy proposed in this article is different
from the original game mechanism. In this article, the game
is played in the external archive, and the particles to be
updated are randomly selected from two individuals in the
external archive. The winner of the game will become the
leader, guiding the failed individuals to search for the op-
timal set, and the successful individuals will maintain the
original speed and direction. The specific update process is
shown in Figure 6.

The game individuals in this game strategy were elected
through nondominated sorting and grid optimal distance.
The success or failure of the game is determined according to
the cosine distance between the game individuals. The
winner of the game acts as the global optimal individual to
guide other individuals in the population to fly. In each pair
of games, the individuals to be updated randomly select two
nondominated solutions a and b from the external archive.
The two nondominated solutions a and b are played through
the cosine distance, and the game with a small cosine

hi

° The cosine distance was
used to delete 40% of the
o particles

0 h

Ficure 2: Example diagram of nondominated archive deletion
outside.
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FIGURE 3: Schematic diagram of comparison between random
strategy and cosine distance strategy.

distance is successful. As shown in the pseudocode algo-
rithm, the cosine distance between the nondominated so-
lution a and individual k to be updated is small, so the
nondominated solution a guides individual k to be updated
to update the speed and position. The update formula is as
follows:

V= oy, + ey (X = X)),

, ) (10)
X;=X;+v;

In the above formula, c; and ¢, are randomly generated
vectors between [0, 1], X is the position of the winner of the
game, X is the current position of the particle, and v; is the
current velocity of the particle.

The whole process from selecting an external archive to
comparing cosine distances is called game. Because the
selected nondominated solution is random, the individual to
be updated is not sure which guide will be selected in the
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FiGure 4: Illustration for detecting the evolutionary state by the cosine distance strategy. (a) The convergence trajectory of MOPSOs on
ZDTI. (b) The convergence trajectory of MOEAs comparison on ZDTI.

end. The attributes of the leader will determine the effect of
individual renewal, and the leader with better attributes will
lead the update better. The effect of individual update de-
pends on the leader entirely, so it is called game.

3.4. Steps of the GCDMOPSO. For MOPs, the objectives are
mutually restricted. In MOPSOs, blindness is inevitable
when controlling external archives and selecting the global
optimum. This article proposes a novel strategy for external
archive updates and global optimization. The main flow
chart is shown in Figure 7 and the main steps of
GCDMOPSO are as follows:

Step 1. The population was initialized, and acceleration
constants ¢; and ¢, were set to guide other parameters.

Step 2. The fitness value of each individual was cal-
culated, and nondominated sorting was performed by
comparing its fitness value during the current iteration
with the best historical fitness value.

Step 3. Whether the terminal conditions were met was
determined. If met, output the results and terminate the
algorithm. Otherwise, continue to the next step.

Step 4. A candidate set was created. By calculating the
Euclidean distance from the origin of the coordinates to
each individual, individuals with a shorter Euclidean
distance were selected into the external archive.

Step 5. An external archive was created and the worst
solution part of the external archive was deleted using
the cosine distance measurement mechanism. At the
same time, the candidate set was added as a storage
mechanism for screened advantageous individuals’
mechanism.

Step 6. The global optimal sample was selected. Using
roulette and combining the game update mechanism,
design a game strategy that incorporates the cosine
distance measurement mechanism to select the global
optimal sample.

Step 7. According to formulas (6) and (7), update the
position and velocity.

Step 8. The fitness value of the current individuals was
evaluated and ranked.

Step 9. gencount = gencount + 1 was set; then move to
step 3.

4. Experimental Study

4.1. Test Problems. Comprehensive and diverse test prob-
lems were employed in order to assess the performance of
GCDMOPSO. First, the ZDT test problems were adopted. If
there are only the ZDT series of test functions, they are
impossible to show the superior performance of
GCDMOPSO. Therefore, other more difficult MOPs, the UF
test problems, are used based on complex characteristics. In
order to further test the performance of GCDMOPSO in
processing MOPs with three objectives, DTLZ1-DTLZ5 and
UF8-UF10 test problems are used in this article. These test
problems cover most of the challenges in this area, such as
many local Pareto fronts, convergence deviations, concav-
ities, and discontinuities. The relevant settings of these test
problems are given in Table 2.

Among them, N represents size of the population; M
represents the number of objectives; D represents dimension
of the decision variable; FEs represents the maximum
number of evaluations. For fair comparison, all relevant
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Algorithm: Game update strategy

Input: X, Vel, E, gencount, Maxgen

Output: NP

1: Let NP=0Q

2: for X; e X do

3: Randomly select two particles X, X, from E

4: Calculate the cosine distance CD, and CD), between particle a, b and k
5. if CD,<CD,

6: X =X,;

7: else

8: X=Xy

9: end if

10: According to equation (6) and equation (7) to update the position and velocity of
the particles

11: while gencount < 0.4* Maxgen

12: carried out Mutation

13: Add the updated particle position and velocity to the NP

14: end while
15: end for

16: Mutation

17: Return NP

FIGURE 6: Game update strategy.

parameters of the comparison algorithm are set according to
the suggestions in the original reference. The population size
N of two objectives and three objectives of each algorithm is
set to 200, and the maximum number of fitness evaluations is
fixed to 10000. For ZDT1-ZDT3 and all UF test problems, 30
decision variables are used, ZDT4 and ZDT6 used 10 de-
cision variables, DTLZ1 used 7 decision variables, and
DTLZ2-DTLZ5 wused 12 decision variables. For
ZDT1-ZDT3 and all UF test problems, 30 decision variables
are used, ZDT4 and ZDT6 used 10 decision variables,
DTLZ1 used 7 decision variables, and DTLZ2-DTLZ5 used
12 decision variables. In order to draw statistical conclu-
sions, the number of independent runs of each test exper-
iment is set to 30. For detailed information about ZDT, UF,
and DTLZ test problems, the reader is referred to [31-33],
respectively.

4.2. Performance Measures. The goal of MOPs is to find a
uniformly distributed set that is as close to the true Pareto
fronts as possible. In order to compare with other algo-
rithms, this article uses inverted generation distance (IGD)
[22] to evaluate the performance of GCDMOPSO. It is
believed that this performance index can not only explain
the convergence effects of the algorithm but also explain the
distribution of the final solution. The true Pareto front for
computing IGD was downloaded from http://jmetal.
sourceforge.net/problems.html.

4.3. Experimental Settings. In the experiment, in order to
verify the performance of GCDMOPSO in a convincing way,
it was compared with seven state-of-the-art MOPSOs (i.e.,

dMOPSO [19], MOPSO [9], NMPSO [23], SMPSO [13],
MOPSOCD [24], MPSO/D [18], and MMOPSO [14]) and
seven classic MOEAs (i.e., NSGA-II [10], NSGA-III [25],
MOEA/D [15], MOEAIGDNS [26], SPEAR [27], SPEA2
[28], and IBEA [29]), respectively. For fair comparison, all
relevant parameters in the comparison algorithm are set
according to their original references, as shown in Table 3. p,
and p,, are crossover probability and mutation probability
in Table 3, respectively; 7. and #,, are the distribution in-
dexes of SBX and PM, respectively; F and CR are parameters
set by the authors in differential evolution; T'is the number of
divisions in genetic algorithm; div is the division network
number of cells; w, ¢;, and ¢, are the parameters of the
velocity update equation used in the MOPSOs. The pop-
ulation size N of two objectives and three objectives of each
algorithm is set to 200, and the maximum number of fitness
evaluations is fixed to 10000; the size of the external file is set
to be the same as N. In order to draw a statistical conclusion,
the number of independent runs of each test experiment is
set to 30. The average and standard deviation (std) on IGD
are collected in corresponding Tables 4 and 5 for perfor-
mance comparison. In addition, in order to determine the
statistical significance, a Wilcoxon rank-sum test was further
carried out to test the statistical significance of the difference
between the results obtained by GCDMOPSO and the re-
sults obtained by other algorithms at a=0.05. All experi-
mental results are obtained on PC with 2.3 GHz CPU and
8 GB memory. All source codes of these competing algo-
rithms are provided in the platform PlatEMO [34].

4.4. Comparisons of GCDMOPSO with Seven State-of-the-Art
MOPSOs. In GCDMOPSO, seven MOPSOs and seven
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FIGURE 7: Main flow chart of the GCDMOPSO.

TaBLE 2: Population size, number of objectives, dimensions, and
the maximum number of evaluations of the chosen test problems.

Problems N M D FEs

ZDT1-ZDT3 200 2 30 10000
ZDT4 and ZDT6 200 2 10 10000
DTLZ1 200 3 7 10000
DTLZ2-DTLZ5 200 3 12 10000
UF1-UF7 200 2 30 10000
UF8-UF10 200 3 30 10000

MOEAs are selected, and the program runs the average and
standard deviation of the IGD values on ZDT1-ZDT4 and
ZDT6, DTLZ1-DTLZ5, and UF1-UF10 in Table 4. More-
over, the Wilcoxon rank-sum test is adopted at a significance
level of 0.05, where the symbols “+,” “~,” and “=” in the last
row of the tables indicate that the result is significantly better
than, significantly worse than, and statistically similar to that
obtained by GCDMOPSO, respectively. The best average for
each test instance is shown in bold.

It can be directly observed that the performance of the
proposed GCDMOPSO is significantly better than the
existing seven compared MOPSOs in terms of benchmark
testing, that is, dMOPSO, MOPSO, NMPSO, SMPSO,
MOPSOCD, MPSO/D, and MMOPSO. Of all 20 test in-
stances, GCDMOPSO achieved statistically significantly
better IGD values on 12 test instances which were far greater
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than those of the competing MOPSOs. For example, the
numbers of optimal IGD values for dMOPSO, MOPSO, and
MOPSOCD are zero, the number of optimal IGD values for
MPSO/D is one, the numbers of optimal IGD values for
NMPSO and SMPSO are two, and MMOPSO has five op-
timal IGD values.

For two-objective ZDT2, ZDT4, and ZDT6, the pro-
posed GCDMOPSO can obtain a set of nondominant so-
lutions, which can approximate the entire Pareto front well
and maintain a good distribution. For the three-objective
DTLZ1, the proposed GCDMOPSO can still achieve com-
petitive  performance, but, on the three-objective
DTLZ2-DTLZ5, the performance of GCDMOPSO does not
seem to be so ideal. It is worth noting that MMOPSO
performed best on the two-objective ZDT1 and ZDT3, due
to the fact that it has adopted the crossover and mutation
operators in MOEAs in addition to the updating strategies of
PSO. In UF1-UF10, the performance is far better than those
of other comparison algorithms. Generally speaking, com-
pared with the existing MOPSOs, the proposed
GCDMOPSO proves the overall best performance. At the
same time, when different algorithms are run independently
30 times, the partial statistical block diagram of the evalu-
ation index IGD of GCDMOPSO algorithm and the com-
parison algorithm is shown in Figure 8 (1, 2, 3, 4, 5, 6, 7, and
8 represent dMOPSO, MOPSO, NMPSO, SMPSO, MOP-
SOCD, MPSO/D, MMOPSO, and GCDMOPSO, respec-
tively). As shown in Figure 8, GCDMOPSO recorded the
minimum values on ZDT2, ZDT4, ZDT6, DTLZI,
UF1-UF3, UF5-UF7, and UF9-UF10. It can be clearly seen
from Figure 8 that GCDMOPSO can obtain better non-
dominated solutions compared with other MOPSOs. The
results are consistent with the qualitative analysis in Table 4.

From the above empirical results, we can conclude that,
compared with the existing MOPSOs, GCDMOPSO has
application prospects in solving PSO.

4.5. Comparisons of GCDMOPSO with Seven Competitive
MOEAs. Table 5 presents the mean and standard deviation
of IGD wvalues of NSGA-II, NSGA-III, MOEA/D,
MOEAIGDNS, SPEAR, SPEA2, and IBEA on ZDTI1 to
ZDT4 and ZDT6, DTLZ1 to DTLZ5, and UF1 to UF10,
where the Wilcoxon rank-sum test is also adopted and the
best mean for each test instance is shown in bold. It can be
observed that the performance of the proposed
GCDMOPSO is significantly better than those of the seven
compared MOEAs (i.e., NSGA-II, NSGA-III, MOEA/D,
MOEAIGDNS, SPEAR, SPEA2, and IBEA) in terms of
benchmark testing. According to the results, there are 12 test
cases with statistically significant best performance among
20 test examples.

For two-objective ZDTI1-ZDT2, ZDT4, and ZDTS6,
UF1-UF4, and UF7, GCDMOPSO performs best compared
to the seven algorithms. For example, the numbers of op-
timal IGD values for NSGA-III and MOEAIGDNS are zero,
the numbers of optimal IGD values for MOEA/D, SPEAR,
and SPEA2 are one, the number of optimal IGD values for
NSGA-II is three, and IBEA has four best IGD values. For
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TaBLE 3: Parameters settings of GCDMOPSO and all the compared algorithms.

Algorithms Parameters setting
1 dMOPSO [19] w € [0.1,0.5],¢,c, € [1.5,2.5]
2 MOPSO [9] w € [0.1,0.5],¢,c, € [1.5,2.5],div = 10
3 SMPSO [13] w € [0.1,0.5],¢,¢, € [1.5,2.5], p,, = (1/n), 7, = 20
4 MOPSOCD [24] w € [0.1,0.5],¢,c, € [1.5,2.5]
5 MPSO/D [18] w € [0.1,0.5],¢,c, € [1.5,2.5], p, = 0.9,F = 0.5,CR = 0.5, p,,, = (1/n), 7, = 20
6 MMOPSO [14] w € [0.1,0.5],¢,c, € [1.5,2.5], p, = 0.9, p,, = (1/n), 5, = 1,, = 20
7 NMPSO [23] w € [0.1,0.5],¢,¢5¢5 € [1.5,2.5], p,, = (1/n), 1. = 1,,, = 20
8 NSGA-II [10] pe = 1.0, p,, = (1/n), 5, =1, = 20
9 NSGA-III [25] pe=1.0,p, = (1/n), 7, = n,, = 20
10 MOEA/D [15] pe=1.0,p, = (1/n),n, =1, =20,T =20
11 MOEAIGDNS [26] p.=10,p,, = (1/n),n. =1, =20
12 SPEAR [27] pe=1.0,p, = (1/n), 7, = n,, = 20
13 SPEA2 [28] p.=1.0,p,, = (1/n), 4. = 14,, =20
14 IBEA [29] pe=1.0,p, = (1/n),7, = 1, = 20
15 GCDMOPSO w = 04,c¢,¢c, =2,div =150

TaBLE 4: IGD values of the proposed GCDMOPSO and seven MOPSOs on ZDT1-ZDT4 and ZDT6, DTLZ1-DTLZ5, and UF1-UF10 test
problems.

Problems dMOPSO MOPSO NMPSO SMPSO MOPSOCD  MPSO/D MMOPSO  GCDMOPSO
53199e-2  12818e+0  35090e-2  7.8490e-2  12410e-2  1.0097¢~1  2.4320e-3 ..o .
ZDTI1 (1.84¢-2) (1.6le-1) (2.49¢-2) (8.12¢-2) (34le-2)  (3.75e-2)  (9.90e-5) (5470 4)
— — — — — — + N
40278¢-2  1.9587¢+0  3.2220e-2  8.8623¢-2  13199%-1  13635e-1  1883le~1 go0n o
ZDT2 (1.65¢-2) (3.14e-1) (5.23e-2) (1.40e 1) (220e-1)  (9.22e-2)  (2.43e-1) (‘3 860 5)
7.9559¢—1  9.3162¢—2 52211e-2  1910le—1  5.4929e-3
3.6856e —2 1.9286e — 1 2.0214¢ -1
ZDT3 (10%-.2) + (1.88:3 -1 (1.80:— 2 (521e.2) - (6.74f -2) (5.42_e -2) (1.51:.— 2) (4100 3)
1.0959¢+1  1.5558¢+1 1.932le+1  3.6610e+1  6.4024e+0
5.6682¢ +0 9.6916¢ + 0 5.1106e - 3
ZDT4 (6.02040) - (4.09_e+0) (6.00_e+ 0) (5.27¢4.0) - (9.00_e+0) (6.82_e+0) (3.87_e+0) (5.31c- 4)
47132¢-3  2.6553¢e—1  2.2710e-3 56155e—3  1.7602¢—2  2.0980¢—3
1.9179¢ -3 1.9036e - 3
ZDT6 (5.34_e—3) (7.51_e— 1) (1.83_6—4) (62705 = (8.77_e— 3) (1.00_e—2) (9.98_e—5) (2.19E - 4)
1.1068¢+1  5.3123e+0 1.9868e+1  1.020de+1  2.6475e+0
1.0110e + 1 3.7308¢+0 3.1893e -2
DTLZL  (Cocov0) - (3.98_e+0) (3.22_e+0) (3.5604.0) - (3.43_e+0) (2.84_e+0) (2’13f+0) (1600 3)
1.0357e—1  9.9168¢—2  5.5695¢—2 9.6187e—2  4.5104e—2  5.1981le—2
6.2961e -2 1.3156e — 1
DTLZ2 (4.89_e—3) (1.835—2) (1.66:3— D (a670-3) + (1.07:—3— 2) (1.27:— 3) (1.22;3— 3) (1240 -2)

DTLz3 ~ 954%%+1  18585¢+2  11797e+2  4.2214e+1 tfégj‘:)z 1('14gé’ii+1)2 9.6313¢ + 1 1.2848¢ +2
(727e+1) + (440e+1) = (245e+1) = (4.28e+1) + e =0 (2.83e+1) +  (416e+1)

3.3629¢ -1 3.5379¢~1 5.7723e -2 4.006le-1 3.2468e -1 1.3759¢ -1 8.0754e -2

DTLZ4  (232-2)  (L02-1)  (d8e-3)  (1L22e-1)  (423e-2)  (72e-2)  (L6de-1) 5!
- - + - - = + ’
7.3854¢ -3 7.1965e -3 3.5753¢-2 5.5742e-2 3.6474e -3
2.7069¢ -2 3.5139¢-3 3.0289%¢ -2
DTLZS (s 3)— (1.46+e—3) (1'09f_3) e gy r (2872 (6.20_6—3) (3.25f—4) (5980..3)
6.6464¢ -1 5.2791e-1 1.3296e -1 3.9727e-1 6.5297¢ -1 2.6644e -1 1.256le—1 L1136e— 1
UF1 (78le-2)  (L1%-1)  (534e-2)  (895¢-2)  (48e-1)  (460e-2)  (635-2) |00
9.1522¢ -2 1.0596e -1 8.2356e -2 1.0320e -1 1.4038¢e -1 1.1472e-1 7.0445e -2 5.7949¢ — 2
UF2 (636e—3)  (130e-2)  (697e—3)  (1.2le—2)  (1.37e-2)  (645¢—3)  (6.8le—3) y
N ~ N _ N ~ ~ (6.63e-3)
575280-1  53232e-1  61950c-1 539181  66073e-1 6766%-1 56721 oo

UF3 (2.11e-2) (1.45¢-2) (4.55¢—2) (1.35¢-2) (4.87e-2)  (246e-2)  (1.45¢-2)

(3.46e -2)
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TaBLE 4: Continued.
Problems  dMOPSO MOPSO NMPSO SMPSO MOPSOCD MPSO/D MMOPSO  GCDMOPSO
1.3762e~1 1.1569¢ -1 6.2625¢—2 1.1333e~1 7.8445¢ -2 9.7497e -2 5.6336e -2 6.9376¢—2
UF4 (5.27¢-3) (1.17e-2) (9.38¢-3) (7.72¢-3) (7.46e-3)  (5.79¢-3)  (3.49e-3) (L27002)
— — — — — — + :
3.3212¢+0 3.3737e+0 1.6778e+0 2.8624e+0 3.7922e+0 2.7759%+0 1.5025e+0 1.3195¢ + 0
UF5 (249 -1)  (2.78¢-1)  (5.00e—1) (5.32¢-1) (39le—1)  (2.63e—1)  (3.04e—1) :
N N N N _ N N (2.50e—-1)
2.1692e+0 2.4512e+0 6.9450e -1 1.3552e+0 2.8954e +0 1.4377e+0 5.7258e -1 5.7057¢ — 1
UF6 (525e—-1)  (497e—1) (1.55¢— 1) (3.86e—1)  (538e—1)  (2.33e—1)  (1.09¢—1) 1330 1)
3.787le—-1 6.2837e—1 1.888le—1 3.5724e-1 6.0699¢ -1 2.5060e -1 1.1800e -1 6.6068¢ — 2
UF7 (6.98¢ -2) (9.78e - 2) (1.44e-1) (1.15e—-1) (1.35e-1) (7.27e-2) (8.76e - 2) .
N ~ ~ B ~ N N (9.87e-3)
e sl L AL g AL S el
(4.67¢-2) = oo e (4.44¢-2) = e e e (7.12¢-2)
5.8445¢—1 5.5568¢ -1 4.7656e— 1 5.7107e—-1 8.6673e—1 6.5999¢ - 1 4.3376e—1 1.5833e 1
UF9 (3.75¢-2)  (436e—-2)  (6.25¢—2) (3.58¢—2) (1.19e-1)  (3.74e-2)  (5.09¢—2) (43%.2)
9.3743e—1 2.2931e+0 1.5264e+0 2.7945e+0 4.8780e+0 4.1813e+0 1.2502e +0 3.7067e — 1
UF10 (43le-2)  (326e—1)  (3.37e—1) (445¢-1)  (7.67e-1)  (32le—1)  (3.77e—1) :
_ B _ _ _ _ _ (7.55e-2)
+/=1= 2/16/2 1/18/1 3/14/3 3/14/3 3/16/1 1/16/3 6/8/6 —
Best/all 0/20 0/20 1/20 2/20 0/20 1/20 4/20 12/20

the three-objective DTLZ series, compared MOEAs are
obviously better than GCDMOPSO, and this is because
genetic factors are more suitable for solving MOPs with local
frontiers. Therefore, in the existing MOPs, more researchers
suggest the main reason for using genetic factors.

At the same time, when different algorithms are run in-
dependently 30 times, the partial statistical block diagram of the
evaluation index IGD of the GCDMOPSO and the comparison
algorithm is shown in Figure 9 (1, 2, 3, 4, 5, 6, 7, and 8 represent
NSGA-II, NSGA-IIIl, MOEA/D, MOEAIGDNS, SPEAR,
SPEA2, IBEA, and GCDMOPSO, respectively). As shown in
Figure 9, GCDMOPSO recorded the minimum values on
ZDTI, ZDT2, ZDT4, ZDT6, DTLZ1, UF1 to UF4, UF7, UF9,
and UF10. It can be clearly seen from Figure 9 that
GCDMOPSO can obtain best nondominated solutions com-
pared with other MOEAs. The results are consistent with the
qualitative analysis in Table 5.

From the above empirical results, we can conclude that,
compared with the existing MOEAs, GCDMOPSO has
application prospects in solving PSO.

T(n):(N—1)+[(N—2)—

4.6. Complexity of the GCDMOPSO. The complexity of the
proposed GCDMOPSO depends on the complexity of its
components, that is, the complexity of game strategy and
cosine distance. The following is the complexity analysis of
GCDMOPSO.

Suppose that the population size is N, where there are m
nondominated individuals. In general, it is assumed that
k(m <k < N) games have been played. According to the game
strategy, an individual will be eliminated after each game.
Therefore, a total of k individuals were eliminated, including
q(0<g<m) dominated individuals and p(0<p<N —m)
nondominated individuals. After k times of games, (N — k)
individuals become winners among the N individuals. For the
convenience of analysis, assuming that, in each game, (N — k)
dominated individuals have the same probability of being se-
lected, after k games, there are

k

(Nk‘k)] +[(N—3)—72(Nk_k)] +~-+[(N—k)—7(k_1)(N_k)

k
=[<(N—1)+<N—k)>2—( .

=(N - 1)§+(N—k)%sN2.

The time complexity of the game strategy is T (n) = O (N?).
At the same time, in the process of updating the external archive

(N—k)+k(N—k)>l;] F(N-K)

k

(11)

of the game strategy, the calculation complexity of the cosine
distance is O(M x (2N)log, (2N)). Then the total
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TaBLE 5: IGD values of the proposed GCDMOPSO and seven MOEAs on ZDT1-ZDT4 and ZDT6, DTLZ1-DTLZ5, and UF1-UF10 test
problems.

Problems = NSGA-II NSGA-III MOEA/D  MOEAIGDNS SPEAR SPEA2 IBEA GCDMOPSO
1.335le—-2 1.0794e -1 1.4869e -1 8.0204e -2 1.8544e—1 4.5791e—-2 3.0575e -2 5.5096e — 3
ZDT1 (2.24e-3) (1.64e-2) (7.18e-2) (1.34e-2) (4.17e-2) (1.02e-2) (6.09¢ - 3) :
- _ ~ ~ - - - (5.47e-4)
3.7065e -2 2.0316e-1 5.1303e-1 1.5661e—1 4.0898¢e—1 7.5782e -2 4.5806e -1 5.9683¢ — 3
ZDT2 (5.67e-2) (4.74e-2) (1.03e—-1) (2.61e—-2) (1.29¢e-1) (1.76e—-2) (2.25e-1) ('l 00e - 3)
1.4048e—-2  9.3239¢-2 1.5966e — 1 6.5803e -2 1.5273e-1 3.8329¢-2 2.4122e-2 2 0214e— 1
ZDT3 (9.19¢ - 3) (1.33e-2) (4.04e-2) (1.32e-2) (1.70e -2) (9.18¢-3) (5.68¢—3) (;1 10e - 3)
+ + = + = + + ’
9.1119e-1 2.7254e+0  4.790le-1 1.9498e +0 1.9591e+0 8.7718e—1 1.6959¢ +0 5.1106e -3
ZDT4 (3.95e-1) (9.71e-1) (1.92e-1) (8.48¢-1) (6.21e—1) (4.89¢-1) (5.78¢e—-1) (;5 3le-—4)
5.7138e—-1 1.5068¢+0  8.9624e—2 1.2194e+0 1.1220e+0 5.8304e—1 4.0693e—1 1.9036e — 3
ZDT6 (1.55e—-1) (3.09¢—-1) (3.52e-2) (2.58e—-1) (2.14e-1) (1.80e—-1) (1.37e-1) ;
- _ - N - B - (2.19E-4)
1.9064e -1 8.7852e—~1  4.0238e-1 7.5255e -1 8.5648e -1 3.7942e~-1 2.5592¢ -1 3.1893¢ — 2
DTLZ1 (2.17e-1) (3.52e-1) (5.09¢-1) (2.57e-1) (3.23e-1) (2.38¢-1) (2.18¢e-1) (i 60e - 3)
5.0991e -2 4.0110e-2  3.9672e-2 4.3567e—-2 4.2995e-2  3.9796e-2 6.0008e -2 131566 — 1
DTLZ2 (1.25e-3) (6.49¢—4) (8.95¢ —4) (1.45e-3) (1.69¢ - 3) (5.62e—4) (1.88¢-3) ('1 2e-2)
+ + + + + + + ’
3.3597e+1 1.9932e+1 3.0896¢ + 1 3.5538e+ 1 1.416le+1
1.5011e+1 1.1652e +1 1.2848e+2
DTLZ3 (5.61¢+0) + (7.77e+0) (1.05e+1) (8.95¢+0) (8.93¢+0) (4.45¢+0) (4.42¢+0) + (4.16¢+1)

+ + + + +
6.7625e -2 5.7588e -2 3.7432e~1 6.0124e -2 4.4537e-2 7.4018e -2 5.8439¢ -2

DTLZ4  (895¢-2)  (9.14e-2)  (348¢—1)  (9.09-2)  (L19%-3) (1.27e-1)  (1.48e—3) 2'(15921§f2‘)1
+ = = + + + + '
3.9962e-3  7.312¢-3  2.0348e-2 5.6171e—3 22074¢-2  4.5566e—3  1.1354e-2 30289 - 2
DTLZ5  (2.48¢—-4)  (9.16e—4)  (6.23¢—4) (7.32¢ - 4) (1.56e-3)  (5.73e—4) (9.22¢-4) ('5 980 3)
+ + + + = + + '
11632¢e—1  1.4092¢e—1  3.3299¢—1 1.1721e-1 1.3790e—1  1.2188¢e—1  1.2150e~1 111366 -1
UF1 (249¢-2)  (421e-2)  (1.0le—1) (2.51e-2) (2.30e-2)  (3.16e-2) (2.75¢-2) ('1 200 2)
6.5645¢—2  8.0437e—2  1.8876e—1 7.5721e -2 7.0807e-2  6.8572e-2  65305e-2 o0 o
UR2 (6.00e-3)  (554e—-3)  (6.80e—2) (4.95¢-3) (8.07¢-3)  (6.20e—-3)  (6.26e—3) (6 63¢3)
43498¢—1  4.7938e—1  3.3698¢—1 4.6226¢— 1 4246de—1  44909¢—1  43557e-1 oo o
UF3 (25le-2)  (113¢e-2)  (2.8le-2) (8.68¢-3) (1.60e-2)  (1.74e-2)  (2.52¢-2) :
_ _ ~ N ~ ~ N (3.46e-2)
8.0553e -2 9.4935¢ -2 1.1790e -1 8.8455¢ -2 8.5693¢ -2 8.0996¢ — 2 8.0710e — 2 6.9376¢ — 2
UF4 (3.46e - 3) (3.23¢-3) (5.10e - 3) (2.99¢ - 3) (2.53¢-3) (2.55¢—3) (2.88¢—3) ('1 27e—2)
7.8265e -1 1.6238e+0 1.3193e+0 1.0254e +0 1.2043e+0  9.3783e-1 7.4200e - 1 1.3195¢ + 0
UF5 (2.68¢—1) (3.91e-1) (2.96e—1) (2.49¢—1) (2.25¢—1) (2.90e—1) (1.62e-1) ('2 500 1)
+ - = = = + + ’
53210e—1  7.8385e—1  59812e—1 6.0366¢ — 1 6.8918¢—1  51892e-1  5.1057e—1 570576 - 1
UF6 (8.4le-2)  (1.85e—1)  (2.4le—1) (1.20e-1) (1.02e—1)  (812e-2)  (9.97e-2) (L33 D
1.7024e—1  1.7604e—1  4.6220e—1 2.1070e - 1 1.8685¢—1  1.5383e—1  1.4710e—1 6.6068¢ — 2
UF7 (9.95¢-2)  (634e-2)  (1.73e-1) (9.19¢-2) (7.08¢-2)  (9.99¢-2)  (7.88e-2) :
N N ~ ~ N _ N (9.87e-3)
31419e—1  3.3684e—1  57398¢—1 3.7209¢ - 1 31745e—1  3.0404e—-1  3.7170e—1 3 8469 — 1
UF8 (3.67¢-2)  (3.82e-2)  (2.50e—1) (4.31e-2) (2.05e-2)  (3.44e-2)  (5.25e-2) ('7 12¢-2)
= = - = + + = ’
43302¢—1  4.9207e-1  5.0362e—1 4.9717¢ -1 4.7406e—1  4.4935e—1  4.0120e-1 158336 - 1
UF9 (511e-2)  (463e-2)  (9.59¢-2) (5.14e-2) (5.61e-2)  (5.18e-2) (6.62¢-2) )

(4.39¢-2)
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TaBLE 5: Continued.
Problems  NSGA-II NSGA-III MOEA/D MOEAIGDNS SPEAR SPEA2 IBEA GCDMOPSO
1.3928e+0 2.4384e+0 7.1987e—-1 1.5321e+0 2.0141e+0 1.4443e+0 1.0332e+0 3.7067¢ — 1
UF10 (4.05e-1)  (4.75e—-1)  (8.22e-2) (3.69¢-1) (427e-1)  (510e-1)  (3.23e-1) ('7 55¢-2)
+/-/= 6/12/2 4/14/2 3/14/3 5/13/2 4/13/3 7/12/1 6/12/2 —
Best/all 2/20 0/20 1/20 0/20 1/20 1/20 3/20 12/20
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FIGURE 8: Statistical boxplot of IGD indicator of different MOPSOs and statistical boxplot of IGD indicator of different MOPSOs on ZDT2,
ZDT4, ZDT6, DTLZ1, UF1-UF3, UF5-UF7, and UF9-UF10 problems, respectively.
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computational complexity is O (M x N?), where M is the
number of objectives.

In addition, this article uses MATLAB functions (tic and
toc) to calculate the runtime (unit: second) of each algorithm

ZDT1
T +
i
I
! T
' H
*H i
‘%':é,é
1+ =
== —
1 2 3 4 5 6 7 8
ZDT6
I
E| T
\ —~
i E '
I
tJ' |
o LT
= =
I I B
= o
1 2 3 4 5 6 7 8
UF2
T
I
I
I
H
L -_—
L= FSa4 g
1 2 3 4 5 6 7 8
UF7
—
I
I
E +
1 | b
[
HEE s
QE» TEI
; R
T L J.QJ-J_%
1 2 3 4 5 6 7 8

0.6

0.4}

02}

15 ¢

0.5

0.5t

0.4t

03+t

0.2+

0.6 +

0.5t

0.4

0.3+

0.2t

Computational Intelligence and Neuroscience

01F

ZDT2 ZDT4
T T
- 5 ’
T
;3 . o
1 : :
H 3 '*TT
T i 5
*|¥|** Lo _ 5 Q
+ + I I -
B I 1 1 | [
+ ] - L
N == 1 El é*%l 1
= —— 0 + J—
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
DTLZ1 UF1
. 0.6 :
T T 0.5 -
[ :* I
Lo 0.4
TETQ
+ ! | 0.3
TI:III— - !
':HLE:Q 02p, 1oL e T e,
L 1 + I S
D . — 0.1%;' =02 S 4
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
UF3 UF4
% +
+ T T T
& ¢ e 0.12 )
1 R t‘?'%l 2
+ T o 0.1 I‘;—I *
0 . I - R
H E| 008 {E3 A = BT
=
1
+ 0.06 ]
b 1
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
UF9 UF10
T T -
1
- _ 7 3 ! +
_ . ~ -
'BQEE ! H L
1 |
S LT SRS S
A B ﬁ .
J-t
+ - ll J-I
E' L %l L T
=
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Statistical boxplot of IGD indicator of different MOEAs and statistical boxplot of IGD indicator of different MOEAs on ZDT1-
ZDT2, ZDT4, ZDT6, DTLZ1, UF1-UF4, UF7, and UF9-UF10 problems, respectively.

when the number of evaluations is 10000. It can be seen from
Tables 6 and 7 that even though GCDMOPSO uses the cosine
distance measurement mechanism and the game strategy, the
time complexity of GCDMOPSO and other comparison
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TaBLE 6: Runtime of different MOPSOs and GCDMOPSO on ZDT1-ZDT4 and ZDT6, DTLZ1-DTLZ5, and UF1-UF10 problems,

respectively.

Problems FEs dMOPSO MOPSO NMPSO

SMPSO MOPSOCD MPSOD MMOPSO  GCDMOPSO

ZDT1 10000 7.8676e—1 3.1199¢e—1 1.5439¢+1 3.0488e—1  3.442le-1 1.8922e+0  3.7923e-1 4.2437e+0
ZDT2 10000 6.8131e—1 2.6821e—1 1.1491e+1 2.3180e—1  3.758%e -1 1.5781e+0  3.155le—1 4.7586e +0
ZDT3 10000  7.8204e—1 2.6363e—1 1.1106e+1 2.3377e—1  2.1194e—-1 1.5873e+0 3.2188e—-1 3.2039¢+0
ZDT4 10000 8.7783e—1 2.46lle—1 2.2032¢e+0 2.0048¢—1  1.7586e—1 1.0354e+0  2.4560e—1 4.3560e + 0
ZDT6 10000  6.8091e—1 2.974le—1 1.8178e+1 2.0287e—1  3.3332e-1 1.2271e+0  2.803%e-1 4.3096e + 0

DTLZ1 10000 9.7676e—1  2.5560e—1 3.6316e+0 1.926le—1 1.8182e-1 2.1156e+0  3.3008e—1 2.7750e +0
DTLZ2 10000  8.6479¢—-1 5.5054e—1 1.3995e+1 3.4870e—1  2.3072e—1  2.0819¢+0 4.0736e-1 3.1383e+0
DTLZ3 10000 9.2875e—1 2.4352¢e—-1 2.6860e+0 2.1345e-1 1.8944e—1  2.1073e+0 2.7857e-1 1.5740e+0
DTLZ4 10000 8.7179e—1  3.324le—1 1.3662¢e+1 2.5100e-1 1.8809¢ -1 1.4432e+0  4.068le—1 0.8514e+0
DTLZ5 10000  8.8027e—1 4.6302e—1 1.0695e+1 3.5398e—1  2.0460e—1 1.4525e+0 4.073le-1 1.7879¢+0

UF1 10000 8.3878e—1 2.7608e—1 2.2603e+0 2.3215e—1  2.1324e-1 1.8870e+0  3.2098e—1 1.0027e+0
UF2 10000  9.0479e—-1 2.9694e—1 3.5757e+0 2.516le—1  2.2116e-1 1.9781e+0  3.4488e-1 1.7896e +0
UF3 10000  8.4054e—1 2.9903e—1 54222e+0 2.4683e—1  2.2645e—1 1.8899%¢+0 3.6710e—1 1.3945¢+0
UF4 10000  9.1935¢—-1 2.7600e—1 8.3688e+0 2.4176e—1  2.235le—1  2.0474e+0 3.3159%¢-1 1.7119e+0
UF5 10000  9.3696e—1 2.6467e—1 2.1922e+0 2.3675e—1  2.1536e-1 1.7893e+0  3.3005e-1 7.5826e -1
UFo6 10000 9.1887e—1 2.7415e—1  2.2196e+0 2.428le—1  2.2226e—1 1.7920e+0 3.370le-1 8.5198¢e -1
UF7 10000  7.7783e—1 2.7314e—1 2.2618e+0 2.3713e-1  2.1070e-1 1.8708e+0  3.1525e-1 8.760le -1
UF8 10000  7.6917e—1 3.9688e—1 6.0293e+0 3.2237e—1  2.198le-1 1.5660e+0  3.9585e-1 2.0080e +0
UF9 10000  8.0635e—1 4.1594e—1 4.4678e+0 3.2879e—-1  2.2249e¢—1 1.6600e+0 3.9587e—1 1.8525e+0
UF10 10000  7.1560e—1 3.3209¢—1 2.6416e+0 2.5976e—1  2.2396e—1 1.6415e+0  3.5417e-1 1.1690e +0

TaBLE 7: Runtime of different MOEAs and GCDMOPSO on ZDT1-ZDT4 and ZDT6, DTLZ1-DTLZ5, and UF1-UF10 problems,

respectively.

Problems  FEs NSGA-II  NSGA-III  MOEAD  MOEAIGDNS SPEA2 SPEAR IBEA GCDMOPSO
ZDT1 10000 3.4758e—1 5.3468e—1 3.4007¢+0 6.4332e—1 8.0079¢+0 8.6639¢+0 1.0740e+1 4.2437e+0
ZDT2 10000 6.7123e—-1 4.8913e—1 3.3432¢+0 3.6390e -1 7.9921e+0 8.581le+0 1.0624e+1 4.7586e +0
ZDT3 10000 2.4592e—1 4.3497e—-1 3.3789¢+0 6.4406e -1 8.0529¢+0 8.6078¢+0 1.073le+1 3.2039¢+0
ZDT4 10000 3.5868e—1 6.3845e—1 3.2340e+0 3.6940e -1 8.1632e+0 8.5680e+0 1.060le+1 4.3560e +0
ZDT6 10000 2.710le—1 4.3891e—1 3.2598e+0 3.058le—1 8.0220e+0 8.6345¢+0 1.0646e+1 4.3096e +0

DTLZ1 10000 2.9300e—-1 5.3163e—1 3.3872e¢+0 4.5224e—1 8.1141e+0 8.3389¢+0 1.0676e+1 2.7750e+0
DTLZ2 10000 3.2915e—-1 8.2367e—1 3.3891e+0 4.604le+1 1.4410e+1 8.9867¢+0 1.203le+1 3.1383e+0
DTLZ3 10000 3.3083e—1 5.3091e—1 3.6684e+0 4.5267e—-1 8.6110e+0  9.2516e+0 1.2214e+1 1.5740e +0
DTLZ4 10000 3.668%9¢—-1 6.9115e—1 3.7662e+0 4.0429¢ +1 1.4007e+1 8.9418¢+0 1.1746e+1 0.8514e+0
DTLZ5 10000 3.6991e—-1 7.7597e—-1 3.744le+0 1.5471e+1 1.1243e+1 8.939%6e+0 1.1829%+1 1.7879¢+0

UF1 10000 3.1563e—1 4.9168e—1 3.9203¢+0 4.7115e~1 9.1414e+0 9.5004e+0 1.2108e+1 1.0027e+0
UF2 10000 2.8833e—1 4.9032¢e—-1 4.0969¢+0 8.5106e -1 9.1164e+0 9.5507e+0 1.2087e+1 1.7896e + 0
UF3 10000 3.2962e—-1 5.193le—1 4.0620e+0 5.584le-1 9.1166e+0  9.6254e+0 1.2138e+1 1.3945¢+0
UF4 10000 2.9796e—-1 5.5766e—1 4.0546e+0 1.0266e +0 9.0826e+0 9.6639¢+0 1.1300e+ 1 1.7119¢ +0
UF5 10000 3.0116e—-1 5.8167e—1 3.9241e+0 3.7765e -1 8.7468¢+0 9.1719¢e+0 1.2134e+1 7.5826e -1
UF6 10000 3.1538e—1 5.4860e—1 3.8002e¢+0 4.0976e -1 8.7895¢+0 9.3935e+0 1.1596e+ 1 8.5198e—-1
UF7 10000 2.8455e—1 5.3397e—-1 3.7370e+0 4.2447e-1 8.6857e+0 9.3448e¢+0 1.145le+1 8.760le—1
UF8 10000 3.5545e—1 6.8885e—1 3.6264e+0 1.8384e+0 8.6025¢+0 9.2178e+0  1.1520e+1 2.0080e+0
UF9 10000 3.5060e—1 6.9686e—1 4.2788e+0 1.3978e +0 8.6964e+0 9.0618¢+0 1.1917e+1 1.8525e+0
UF10 10000 3.4883e—1 6.7182e—1 4.2034e+0 1.0353e+0 8.7814e+0 9.1103e+0 1.1806e+1 1.1690e +0

algorithms is on the same order of magnitude on functions
ZDT1-ZDT4 and ZDT6, DTLZ1-DTLZ5, and UF1-UF10.

5. Conclusions

This paper has proposed a novel multiobjective particle
swarm optimization based on cosine distance mechanism

and game strategy to solve MOPs. The optimization was
used to update the Pareto set in the external archives
through the update strategy of the cosine distance
measurement mechanism and add a candidate set as a
storage for screened advantageous individuals’ mecha-
nism. The optimization is conducive to Pareto optimal set
close to the true Pareto optimal front and maintains the
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diversity of the swarm. In order to improve the perfor-
mance of optimization, this article combined the game
update strategy to design a global optimal selection
strategy of the game strategy based on the cosine distance
measurement mechanism. These experimental studies
have shown that the proposed GCDMOPSO has better
performance than several state-of-the-art MOPSOs and
competitive MOEAs.
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