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One of the important tasks in the operating room is monitoring the depth of anesthesia (DoA) during surgery, and noninvasive
techniques are very popular. Hence, we propose a new scheme for DoA monitoring considering the time-frequency analysis of
electroencephalography (EEG) signals and GLCM features extracted from them. To this end, at first, the time-frequency map
(TFM) of each channel of each EEG is computed by smoothed pseudo-Wigner–Ville distribution (SPWVD), where the EEG signal
used in this paper is recorded in 15 channels. After that, we consider the gray-level co-occurrence matrix (GLCM) to obtain the
content of TFM, and after that, four features such as homogeneity, correlation, energy, and contrast are obtained for each GLCM.
Finally, after the selection of efficient features using the minimum redundancy maximum relevance (MRMR) method, the
K-nearest neighbor (KNN) classifier is utilized to determine the DoA. Here, we consider the three states, namely, deep hypnotic,
surgical anesthesia, and sedation and awake states according to bispectral index (BIS), and each EEG epoch is classified to these
states. We also employ data augmentation to enhance the training phase and increase accuracy. We obtain the accuracy and
confusion matrix of the proposed method. We also analyze the effects of a number of gray levels of GLCM, distance measure in
KNN classifier, and parameters of data augmentation on the performance of the proposed method. Results indicate the efficiency
of the proposed method to determine the DoA during surgery.

1. Introduction

General anesthesia (GA) is a necessary state for many
surgical procedures. )ere are several essential features of
anesthesia which are displayed by patients. Some of these
features are the lack of movement, awareness, and recall of
the surgical intervention as well as unresponsiveness to
painful stimuli [1, 2]. As overly light anesthesia is the most
common cause of awareness, anesthesiologists use several
indicators to measure the depth of anesthesia (DoA). A
continuum of progressive central nervous system (CNS)
depression and decreased responsiveness to stimulation is
referred to as DoA or depth of hypnosis [3, 4].

One of the most forlorn and fearsome senses is
awareness during anesthesia. It is a complication with

potential long-term psychological consequences like post-
traumatic irritability, stress, and anxiety [5]. Monitoring
DoA is a solution to this issue. )e most important task in
the operational room is preventing excessive DoA or
awareness and improving patients’ outcomes which can be
performed by precise drug delivery to the patients. An ac-
curate evaluation of DoA can help us to this end [6].

Numerous approaches and devices were designed and
produced to assess DoA. )ese devices work based on
clinical/conventional monitoring and/or brain electrical
activity monitoring, and each of them has its special
drawbacks. Previous studies demonstrate that since CNS is
the final target for GA drugs, the electroencephalogram
(EEG) signal can be more informative for the determination
of DoA compared to those works just based on simple vital

Hindawi
Computational Intelligence and Neuroscience
Volume 2021, Article ID 8430565, 14 pages
https://doi.org/10.1155/2021/8430565

mailto:mousavi.m@umsu.ac.ir
https://orcid.org/0000-0002-2492-4772
https://orcid.org/0000-0001-6928-090X
https://orcid.org/0000-0001-7065-9060
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/8430565


signs. BIS [7], auditory evoked potential (AEP) monitors [8],
entropy [9], and narcotrend [10] are some of EEG-based
commercially DoAmonitors. It turned out that these devices
are not exactly accurate and suffer from several drawbacks.

Recently, several works aimed at introducing new
methods to measure the DoA. Bayesian techniques were
employed in [11] to the assessment of DoA, where the
limiting large-sample normal distribution was considered,
and it was shown that the maximum a posteriori (MAP)
values increase gradually as the anesthesia states change
from awake to light, moderate, and deep anesthesia. Dis-
tinguishing awake states from GA using EEG signals was the
aim of authors in [12]. )ey extracted 11 features from EEG
signals such as entropy, fractal, and spectral, and then, ef-
ficient ones were selected. It was found that entropies in-
cluding permutation and sample, Beta-index, and detrended
fluctuation analysis yield the highest accuracy with a clas-
sifier based on the adaptive neuro-fuzzy inference with
linguistic hedges. Quasi-periodicities in EEG were used for
analyzing the variations of DoA in [13]. To this end, phase-
rectified signal averaging was employed. )e results indi-
cated that this method achieves better results than the
sample and permutation entropies.

)e six features including beta ratio, spectral edge fre-
quency, and four bands of spectral energy were extracted
from the EEG signal, and then, the decision tree classifier
was used to determine the DoA in [14]. )e authors con-
sidered the four classes for DoA as deep, moderate, and light
versus awake state. In [15], at first, the noise removal from
EEG signals was performed by Hurst’s method, and the
maximum of Hurst’s ranges was considered as EEG re-
sponse. )en, it was shown that maximum PSD can be used
to distinct transitions of DoA states. Atomic decomposition
was considered in [16] to decompose the EEG signals. )en,
several features were extracted from decomposed subbands,
and the SVM classifier discriminates between awake and
sedated states.

)e near-infrared spectroscopy (NIRS) signals were
considered for recording the cerebral hemodynamic vari-
ables in [17] to monitor the DoA. )e authors proposed to
measure the sample entropy to describe the complexity
information of cerebral hemodynamic variables. )e mul-
timodal system, which simultaneously uses the EEG and
NIRS signals, was considered in [18] to monitor the DoA. It
was shown that, with the EEG+NIRS signals, the clinically
important transition from the awake to deep state can be
detected, while transition in a clinical trial cannot be de-
tected by BIS.

Ordinal power spectral density (O-PSD) was introduced
in [19] for measuring the DoA. A deep neural network
(DNN) named AnesNet was introduced in [20] to quantify
the DoA. )e raw EEG signals were given to a convolutional
neural network (CNN) with convolution, pooling, and fully
connected layers to determine the DoA. In [21], short-time
Fourier transform (STFT) was employed for obtaining PSD,
and CNN determines the DoA according to the given PSD.
)e wavelet transform was employed in [22] for analyzing
the DoA from EEG signals. For this purpose, extracted
features were clustered using a classifier based on the

wavelet. Also, the specifications of eigenvectors were con-
sidered for extracting the specs of the midlatency auditory
evoked EEG under anesthesia.

Since EEG signals present nonlinear characteristics in
anesthesia conditions [23], we present a method for DoA
monitoring considering the time-frequency analysis of EEG
signals. We employ the smoothed pseudo-Wigner–Ville
distribution (SPWVD) [24] to obtain a time-frequency map
(TFM) of EEG epochs. In order to obtain the characteristics
of TFM, we employ the gray-level co-occurrence matrix
(GLCM) and, then, extract four features from it. Since all
extracted features are not informative, we employ minimum
redundancy maximum relevance (MRMR) to select the
efficient ones from the feature vector. Finally, the K-nearest
neighbor classifier (KNN) determines the depth of anes-
thesia.We also utilize the data augmentation by adding zero-
mean white Gaussian noise to training samples in order to
enhance the generality of the trained classifier. Hence, the
contributions of this research can be summarized as follows:

(i) Employing SPWVD for obtaining the TFM of EEG
signals

(ii) Employing GLCM features in order to describe the
time-frequency content

(iii) Feature selection by MRMR algorithm to reduce the
complexity of classification

(iv) Employing data augmentation to increase the
generality of KNN classifier

(v) Obtaining the accuracy and confusion matrix of the
proposed scheme

(vi) Analyzing the accuracy for different distance
measures as well as different number of gray levels
and augmentation parameters

Following this introduction, Section 2 describes the
recorded EEG signals which are used in this research.
Section 3 explains the proposed for monitoring DoA in
detail. Section 4 contains the results and eventually. Section 5
presents the concluding remarks and the directions of future
works.

2. Data

Six female participants aging in the range 26–72 years old,
with a mean of 45.5 years old, were contributed in order to
record the required data. )ese participants were scheduled
for elective gynecological surgeries. It should be mentioned
that this research was approved by the Institutional Research
Ethics Committee. According to the American Association
of Anesthesiology physical status classification, all patients
were in ASA I and ASA II. All patients confirmed informed
consent before initiation of data recording [6].

In order to avoid unnecessary delays in the surgical
program, the preoperation (Pre-Op) period started about an
hour before surgery, and then, spontaneous EEGs were
recorded for 5 minutes. After that, the patients were
transferred to the operation room and electrodes of the BIS
device were attached before starting the operational (OP)
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period. Spontaneous EEG signals were recorded during
maintenance and emergence periods of anesthesia. A long
recording was made ten minutes before the anesthesia was
stopped and waking up. Table 1 contains the duration of
spontaneous EEG and BIS data recording during surgery for
different patients [6].

)e EEG electrodes were montaged according to the 10/
20 standard to include 15 channels, namely, Fp1, Fp2, F7, F3,
Fz, F4, F8, T7, C3, Cz, C4, T8, P3, Pz, and P4 [6]. Simul-
taneously, BIS was recorded in a parallel manner using the
available anesthesia monitor (Aspect Medical Systems) and
was considered as a reference. BIS index is in the range [0,
100], where 0 denotes full cortical silence and 100 is the fully
awake state. )e appropriate state for adequate surgical
anesthesia is the BIS level between 40 and 60 [2].

)e EEG signals were segmented into the epochs of 30
seconds, which have 50% overlap with each other. )e
average of BIS during each epoch was computed, and each
was labeled as deep hypnotic (D), surgical anesthesia (A),
and sedation and awake (S) considering the average BIS of
an epoch. )e epochs with the average BIS smaller than the
40 are labeled as D.)e average BIS between 40 and 60 labels
the epoch as A. )e epochs with average BIS greater than 60
are called S. In Table 2, the numbers of epochs from each
label for different subjects are reported.

3. Proposed DoA Monitoring

Figure 1 presents the procedure of the proposed scheme for
DoA classification. As shown, the proposed scheme gen-
erally determines the DoA in three steps including pre-
processing, feature extraction and selection, and
classification, which are explained in detail in the following.

3.1. Preprocessing. At first, artifacts and corrupted BIS data
were identified and removed manually from raw recorded
signals. )e frequency content of the cleaned data is in the
range [0, 300] Hz and has a maximum amplitude of about
100 μV. At first, a high-pass filter with a cutoff frequency of
0.5Hz was employed to remove the disturbances at very low
frequencies. Also, to remove the high-frequency noise, a
low-pass filter with a cutoff frequency of 70Hz was used.
Furthermore, a notch filter with a null frequency of 50Hz
was employed to remove power supply noise. Since the
maximum informative frequencies of EEG signals are less
than 60Hz, we consider the decimation to reduce the
sampling frequency from 1000Hz to 100Hz, which reduces
the computational complexity [21]. One epoch from states of
overdeep, surgical anesthesia, and sedation and awake in
different channels is shown in Figures 2–4 , respectively.

3.2. Feature Extraction. )e proposed feature extraction in
this paper employs the three steps as follows:

(i) Time-frequency analysis
(ii) GLCM features

(iii) Feature selection

In the following, we present each step in more detail.

3.2.1. Time-Frequency Analysis. It was mentioned that EEG
signals are not stationary and should be analyzed as pseu-
dostationary signals. )erefore, traditional frequency-do-
main analysis tools such as Fourier transform cannot help to
characterize it in the frequency domain. Hence, we should
consider time-frequency transforms in order to obtain the
frequency-domain content.

)e first step for computing the WVD of a signal x(t) is
obtaining its analytical signal as

y(t) � x(t) + j􏽢x(t), (1)

where the Hilbert transform of x(t), i.e., 􏽢x(t), is defined as

􏽢x(t) � H[x(t)] �
1
π

􏽚
∞

−∞
x(t)

1
t − τ

dτ. (2)

Accordingly, the Winger distribution is defined as

Wx(t, f) � 􏽚
∞

−∞
y
∗

t −
τ
2

􏼒 􏼓y t +
τ
2

􏼒 􏼓e
− j2πfτdτ, (3)

where (·)∗ denotes the conjugate operation and j �
���
−1

√
.

)e Wigner–Ville distribution provides the energy density
in the time-frequency domain. )is distribution is one of the
Cohen class distributions. Distribution smoothing should be
applied to diminish the cross-term, which is the zero-density
energy components ofWinger distribution. Reducing the cross-
term enhances the accuracy of distribution. In order to improve
WVD, a smoothing function, either frequency or time
smoothing function, can be added [25, 26].

Considering the frequency smoothing function h(τ), the
pseudo-WVD (PWVD) is defined as

PWVD(t, f) � 􏽚
∞

−∞
h(τ)y t +

τ
2

􏼒 􏼓y
∗

t −
τ
2

􏼒 􏼓e
− j2πfτdτ.

(4)

As the smoothing function g(t) is added in the time
domain, the smoothed PWVD (SPWVD) is obtained as

Table 1: EEG recording duration for different patients.

Patient number 1 2 3 4 5 6
Duration (minutes) 90 140 140 52 175 105

Table 2: )e number of epochs from each label for different
patients.

Label
Patient

1 2 3 4 5 6
D 65 125 101 31 242 303
A 336 304 333 158 275 169
S 36 207 227 73 165 74
Total 437 636 661 262 682 546
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SPWVD(t, f) � 􏽚
∞

−∞
h(τ) 􏽚

∞

−∞
g(t)y t +

τ
2

􏼒 􏼓y
∗

t +
τ
2

􏼒 􏼓dt􏼒 􏼓e
− j2πfτdτ. (5)

It should be mentioned that both h(τ) and g(t) are
rectangular windows.

EEG signals are recorded in 15 channels; hence, SPWVD
should be calculated for each channel separately. )e
SPWVDs for different channels of one epoch from each class
of subject 1 are shown in Figures 5–7 for deep hypnotic (D),

surgical anesthesia (A), and sedation and awake (S) classes,
respectively. )e results show that the values of SPWVD are
negligible for frequencies higher than 8Hz. In other words,
EEG signals have meaningful content in the delta and theta
bands. )erefore, the SPWVD is given for the frequency
range [0 8] Hz for better representation of EEG variations in

Decimation

Time-frequency
analysis GLCM featuresFeature SelectionClassification

EEG signal

Preprocessing

Feature extraction

Bandpass filter Notch filter

Figure 1: )e procedure of the presented method in this paper for DoA classification.
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Figure 2: Signals of different channels in overdeep (D) class.
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the time-frequency plane. It is observed that the deep
hypnotic epoch demonstrates the minimum activity com-
pared to the surgical anesthesia and sedation and awake
epochs. Because in this case person has the lowest activity
and as observed EEG rhythms with frequencies lower than
two Hz are dominant. Comparing Figure 6 with Figures 5
and 7 depicts that the EEG epoch from the surgical anes-
thesia class has higher activity in the frequency range in the
band [0 8] Hz compared to surgical anesthesia and sedation
and awake states. )e activity in higher frequencies reduces
in sedation and awake compared to the surgical anesthesia
state, but it is higher than the deep hypnotic state.

Ek � 􏽘
L

i�1
􏽘

L

i�1
G2

k(i, j),

hk � 􏽘
L

i�1
􏽘

L

i�1

Gk(i, j)

1 +|i − j|
,

(7)

3.2.2. GLCM Features. As shown, the EEG epochs have
different time-frequency contents during different levels of
GA. Hence, we can use texture analysis methods to describe
the time-frequency content. Several texture-based methods

were introduced to obtain the content of images such as local
binary pattern (LBP) [27–30], autocorrelation function
(ACF) [31], binary Gabor pattern (BGP) [32], gray-level co-
occurrence matrix (GLCM) [28, 33], and local spiking
pattern (LSP) [34].

Different combinations of gray levels within the image
can be described by GLCM which can be useful in the
identification of the different regions of interest in the
images. GLCM extracts the texture features considering the
second-order relationship between reference and neigh-
boring pixels [35, 36]. GLCM develops the co-occurrence
matrix by comparing the pixel values of neighboring pixels,
where the number of rows and columns of the matrix is
equal to a number of gray levels. After computing GLCM for
k th channel of EEG signal, i.e., Gk, with L levels, four
features are extracted from it including contrast (ck), cor-
relation (rk), energy (ek), and homogeneity (hk) which are
computed as follows [37]:

ck � 􏽘

L

i�1
􏽘

L

i�1
(i − j)

2Gk(i − j),

rk � 􏽘
L

i�1
􏽘

L

i�1
Gk(i − j)

i − μi( 􏼁 j − μj􏼐 􏼑
����
σ2i σ

2
j

􏽱⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠.

(6)
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Figure 3: Signals of different channels in surgical anesthesia (A) class.
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where

μi � 􏽘
L

j�1
􏽘

L

i�1
iGk(i, j),

μj � 􏽘
L

j�1
􏽘

L

i�1
jGk(i, j),

σ2i � 􏽘
L

j�1
􏽘

L

i�1
i − μi( 􏼁

2Gk(i, j),

σ2j � 􏽘
L

j�1
􏽘

L

i�1
j − μj􏼐 􏼑

2
Gk(i, j).

(8)

Let the 4 × 1 vector ]k � [ck, rk, ek, hk]T denote the
feature vector for each channel; hence, the feature vector of
each epoch considering all channels with 60 features is
obtained as follows:

f60×1 � νT
1 , . . . , νT

15􏽨 􏽩
T
. (9)

3.2.3. Feature Selection. Selecting the best features among all
obtained features plays a key role in the signal and image
processing tasks [30, 38, 39]. In the previous part, we presented

each EEG epoch with 60 features, but all computed features are
not meaningful. Hence, significant features should be selected
from the vector f . In this paper, we adopt the MRMR method
[40]. Its goal is to find the set of features such that selected
features are mutually and maximally dissimilar which is
achieved by minimizing the redundancy and maximization of
the relevance of the selected features to the actual classes.
MRMR considers the pairwise mutual information of features
and mutual information of a feature and actual classes to
quantify the redundancy and relevance.

Let rh and eh denote the relevance of h with respect to a
response y and the redundancy of h, respectively, which are
defined as follows:

rh �
1

|h|
􏽘
x∈h

I(x, y), eh �
1

|h|
2 􏽘

x,z∈h
I(x, z), (10)

where |h| is the cardinality of set h and I(A, B) is the mutual
information of two sets A and B which is computed as follows:

I(A, B) � 􏽘
i,j

P A � ai, B � bj􏼐 􏼑log
P A � ai, B � bj􏼐 􏼑

P A � ai( 􏼁P B � bj􏼐 􏼑
.

(11)

)e selected feature set h should maximize the rh and
minimize the eh. )ere are 2|f|combinations and finding the
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Figure 4: Signals of different channels in sedation and awake (S) class.
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optimal set h requires them all. But, MRMR employs the for-
ward addition scheme by using themutual information quotient
(MIQ) value to rank the features. MIQ value is defined as

q(f) �
rf

ef

, (12)

where rf and ef denote the relevance and redundancy of
feature f, respectively, and defined as

rf � I(f, y),

ef �
1

|h|
􏽘
z∈h

I(f, z).
(13)

)e steps by which MRMR selects the features in the
steps are as follows.

(1) Initialize the set of selected features as h �.
(2) Select the feature with the largest relevance, h1 �

argmax|f|rf and update h as h � h1􏼈 􏼉.
(3) Find the features with nonzero relevance and zero

redundancy in the complement of h, i.e., hc.

If hc does not include a feature with nonzero rel-
evance and zero redundancy, go to step 5.
Otherwise, select the feature with the largest rele-
vance, h � argmax|hc|,rh�0rf and update h as
h � h, h{ }
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Figure 5: )e SPWVD of different channels in overdeep (D) class.
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(4) Step 3 is repeated until the redundancy is greater
than zero for all features in hc.

(5) Select the feature that has the largest MIQ value with
nonzero relevance and nonzero redundancy in hc

and update h as h � h, h{ }

h � argmax
hc

qh � argmax
hc

I(h, y)

(1/|h|)􏽐z∈hI(x, z)
. (14)

(6) Repeat step 5 until the relevance is zero for all
features in hc.

(7) Add the features with zero relevance to h in random
order.

3.3. Classification. )e nonlinear and commonly used
KNN classifier is considered in this paper to classify the
features obtained from the feature selection step. KNN
classifies the samples based on the distance between the
unknown features and the features of training samples. It
considers the labels of K as the most similar neighbors to
predict the class of the training samples and considers the
label of the class with the greatest number of samples
among them [41–44]. In this study, we consider several
distance measures to compute the similarity between the
test and training samples.

Consider two feature vectors with N features as
v � v1, . . . , vN􏼈 􏼉

Tand w � w1, . . . , wN􏼈 􏼉
T. )e different

distance metrics are calculated as follows:
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Figure 6: )e SPWVD of different channels in surgical anesthesia (A) class.
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(i) Euclidean distance:

dE �

�������������

(v − w)
T
(v − w)

􏽱

. (15)

(ii) Standardized Euclidean distance:

dSE �

�����������������

(v − w)
TV− 1

(v − w)

􏽱

, (16)

where V denotes the diagonal N × N matrix. )e
ith diagonal element of V is S2(i), where S is a
vector of scaling factors for each dimension.

(iii) Minkowski distance:

dmi �

����������

􏽘

N

i�1
vi − wi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p

p

􏽶
􏽴

. (17)

(iv) Chebyshev distance:

dch � max
i

vi − wj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼚 􏼛. (18)

(v) City block distance:

dcb � 􏽘
N

i�1
vi − wi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌. (19)
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Figure 7: )e SPWVDs of different channels in sedation and awake (S) class.
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(vi) Cosine distance:

dcs � 1 −
vTw

������������

vTv􏼐 􏼑 wTw􏼐 􏼑􏼐 􏼑

􏽱 . (20)

(vii) Correlation distance:

dcr � 1 −
(v − v)

T
(w − w)

�������������

(v − v)
T
(v − v)

􏽱 ���������������

(w − w)
T
(w − w)

􏽱 , (21)

where v and w are the mean of vectors v and w,
which are computed as follows:

v �
1
N

􏽘

N

i�1
vi,

w �
1
N

􏽘

N

i�1
wi.

(22)

(viii) Mahalanobis distance:

dma �

�����������������

(v − w)
TC− 1

(v − w)

􏽱

, (23)

where C denotes covariance matrix.

It should be noted that, for p � 1, p � 2, and p �∞,
Minkowski and the city block distances are the same, Eu-
clidean distance, and Chebyshev distances, respectively.

4. Results

Here, we provide the obtained results to demonstrate the
robustness of the proposed DoA classification, where a 10-
fold cross-validation method is used to obtain the accuracy.
In this way, the available data is randomly partitioned into
10 nonoverlapping parts with an equal number of samples,
and training and testing procedure is repeated 10 times. At
each time, nine parts are considered as training samples and
one part is used for testing. Also, training and test are
performed for each subject separately, and the results are
reported for each subject.

In order to increase the number of training samples and
enhancing the generality of the trained classifier, the data
augmentation scheme is presented in [45]. )is method
increases the number of training samples by adding zero-
mean Gaussian noise with standard deviation σ to them. It
should be noted that data augmentation is only performed
on training samples, and test samples are those selected from
original samples. )e classification accuracy is evaluated for
several augmented multiples and noise variances.

4.1. Classification Accuracy. )e classification accuracy of
the proposed DoA classification is presented in Table 3
considering the features extracted from each channel of
recorded EEG signals as well as considering whole features
extracted from all channels. It is observed that the selection
of the channel has considerable effect accuracy. )ese results
are obtained considering augmented multiple and noise

variance equal to 35 and 0.1, respectively. It should be noted
that the performance of the proposed method is presented
for different values of the augmented multiple and noise
variances in the following subsections. Also, the number of
gray levels is set to 16, and Mahalanobis distance is con-
sidered for measuring the distance between training and test
samples.

It is observed that channel T7 provides the highest
average accuracy which is equal to 75.54%. Also, subjects 4
and 6 have the highest accuracy as 67.93% and 82.41%,
respectively. On the other side, channel Fz yields the lowest
average accuracy at 65.63%, where subjects 4 and 2 have the
lowest and highest accuracy equal to 52.29% and 77.98%,
respectively.

According to reported results, considering whole
extracted features from all channels enhances the classifi-
cation accuracy considerably. In this case, the lowest and
highest accuracy results belong to subjects 3 and 5 with
93.34% and 96.92%, respectively, and an average result of
95.32% is obtained. )ese results indicate the efficiency of
the proposed method for the classification of EEG signals in
order to determine DoA.

Table 4, in the revised version, compares the perfor-
mances of several TFMs and classifiers. We considered the
PWVD, WVD, and STFT as well as KNN, SVM, random
forest, and decision tree classifiers. It is observed that the pair
(SPWVD, KNN) outperforms the other pairs of TFMs and
classifiers. For all TFMs, KNN provides the best accuracy,
and then SVM yields good performance. Among TFMs,
SPWVD and WVD have the highest and lowest accuracy,
respectively.

4.2.ConfusionMatrix. Table 5 presents the confusionmatrix
of the proposed method for the classification of DoA for
different subjects. It is observed that the proposed method
provides efficient accuracy for all subjects in the presence of
biased data. It is noticeable that the proposed method does
not classify the deep hypnotic as sedation and awake epoch
and vice versa, which indicates the efficiency of the proposed
method. )e misclassifications of epochs from classes deep
hypnotic and sedation and awake are classified as class
surgical anesthesia. Also, most misclassifications of epochs
from surgical anesthesia are classified as sedation and awake.
)e sensitivity of different classes is also provided in Table 4
which indicates the classification accuracy of each class in
different subjects.

4.3.2e Effect of the Number of Gray Levels. )e effect of the
number of gray levels in computing GLCM on the per-
formance of the proposed DoA classification is presented in
Table 6 in which the classification accuracy is obtained
considering all channels. It is observed that, for all subjects,
accuracy increases considerably as the number of gray levels
increases from four to 16 while increasing the number of
gray levels from 16 to 64 reduces the accuracy. Hence, 16
gray levels are considered in order to extract texture-based
features from time-frequency images obtained from
SPWVD.
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4.4. Accuracy of Distance Measures. )e accuracy of the
proposed method considering different distance measures
considered in the KNN classifier is given in Table 7. As
mentioned earlier, the Mahalanobis distance provides the
highest accuracy of 95.32%, and after that, the Chebyshev
distance reaches the accuracy of 93.26%. Also, the

standardized Euclidean distance has the lowest accuracy of
90.73%.

4.5. 2e Effect of Augmentation. )e effect of the augmen-
tation multiple and noise variances in data augmentation on

Table 3: Classification accuracy of the proposed DoA classification.

Channel
Subject

Average Min Max
1 2 3 4 5 6

1 (Fp1) 77.80 65.72 68.68 55.72 74.48 83.51 70.98 55.72 83.51
2 (Fp2) 66.36 73.58 64.44 70.99 67.44 75.64 69.74 64.44 75.64
3 (F7) 65.21 74.37 64.75 61.83 77.41 74.35 69.65 61.83 77.41
4 (F3) 67.27 79.08 63.08 57.25 66.42 69.41 67.08 57.25 79.08
5 (Fz) 64.53 77.98 62.02 52.29 70.67 66.30 65.63 52.29 77.98
6 (F4) 69.56 63.36 73.97 50.76 74.34 82.41 69.07 50.76 82.41
7 (F8) 79.40 66.03 63.84 60.67 59.97 73.62 67.25 59.97 79.40
8 (T7) 73.22 79.24 69.74 67.93 79.03 84.06 75.54 67.93 84.06
9 (C3) 64.98 60.84 76.85 70.61 68.47 84.79 71.09 60.84 84.79
10 (Cz) 69.10 79.24 77.91 67.93 57.33 78.20 71.62 57.33 79.24
11 (C4) 67.73 71.06 68.38 53.81 76.39 81.86 69.87 53.81 81.86
12 (T8) 67.96 72.32 56.88 67.93 62.17 69.04 66.05 56.88 69.04
13 (P3) 73.68 64.62 72.31 54.19 62.31 78.75 67.64 54.19 78.75
14 (Pz) 69.56 63.99 66.26 68.32 73.61 74.35 69.35 63.99 74.35
15 (P3) 77.34 76.25 75.34 51.52 67.88 81.68 71.67 51.25 81.68
All 94.5 94.65 93.34 95.8 96.92 96.7 95.32 93.34 96.92

Table 4: Performance comparison between different TFMs and classifiers.

TFM
Classifier

KNN SVM Random forest Decision tree
SPWVD 95.32 94.54 93.49 93.86
PWVD 94.01 93.46 92.34 92.80
WVD 93.24 92.52 91.35 92.00
STFT 93.70 93.11 91.59 92.18

Table 5: Confusion matrix of the proposed DoA classification.

Predicted class
Sensitivity (%)

D A S

Actual class for subject 1
D 60 5 0 92.31
A 4 320 12 95.24
S 0 3 33 91.67

Actual class for subject 2
D 119 6 0 95.2
A 7 285 12 93.75
S 0 9 198 95.65

Actual class for subject 3
D 94 7 0 93.07
A 12 311 10 93.39
S 0 15 212 93.39

Actual class for subject 4
D 30 1 0 96.77
A 2 151 5 95.57
S 0 3 70 95.89

Actual class for subject 5
D 235 7 0 97.11
A 4 264 7 96
S 0 3 162 98.18

Actual class for subject 6
D 293 10 0 96.69
A 2 163 4 96.45
S 0 2 72 97.29

Computational Intelligence and Neuroscience 11



the performance of the proposed DoA classification is shown
in Figure 8, where the average accuracy of all subjects is
reported. As observed from Figure 8(a), increasing the
augmentation multiple from 1 to 35 increases the accuracy,
but after that, accuracy reduces. Hence, the augmentation
multiple is set to 35 in all results reported previously in this
section. When the greater number of augmented data in-
creases, it is possible that there is outlier data which reduces
the accuracy. Also, it is seen from Figure 8(b) that increasing
the noise variance from 0.1 to 0.1 increases the accuracy, but
after that, accuracy reduces; therefore, we choose the vari-
ance of 0.1.

5. Conclusion

In this paper, we presented a noninvasive method for
monitor the DoA based on time-frequency analysis of EEG
signals recorded in 15 channels considering the electrode
placement in 10/20 standard. EEG signals were recorded
from six subjects and were partitioned into epoch with the
length of 30 seconds, where consequent epochs have 50%
overlap with each other. )e TFM of each channel was
calculated using SPWVD. Obtained TFM showed that fre-
quencies higher than 8Hz have near-zero amplitude, and we
can remove them from TFM.)en, GLCM was employed to

Table 6: )e effect of the number of gray levels of GLCM.

Number of gray levels
Subject

Average Min Max
1 2 3 4 5 6

4 87.87 86.16 87.74 85.49 90.89 89.56 87.95 85.49 90.89
8 90.85 92.45 91.22 91.22 93.11 91.75 91.77 90.85 92.45
16 94.5 94.65 93.34 95.8 96.92 96.7 95.32 93.34 96.92
32 93.13 94.03 92.58 94.27 95.61 95.78 94.23 92.58 95.78
64 92.22 93.55 92.13 92.36 93.41 94.87 93.09 92.13 94.87

Table 7: Accuracy of different distance measures.

Distance measure
Subject

Average Min Max
1 2 3 4 5 6

Euclidean 93.59 91.98 93.34 89.69 94.87 92.67 92.69 89.69 94.87
Standardized Euclidean 89.02 91.04 91.38 92.37 89.69 90.84 90.73 89.02 92.37
Mahalanobis 94.50 94.65 93.34 95.80 96.92 96.70 95.32 93.34 96.92
City block 88.79 93.55 91.98 92.37 95.31 93.96 92.66 88.79 95.31
Minkowski 90.85 92.77 93.65 90.84 90.91 93.41 92.07 90.85 93.65
Chebyshev 94.28 92.92 90.47 90.46 94.72 96.70 93.26 90.46 96.7
Cosine 90.62 93.40 89.11 93.51 90.32 93.04 91.67 89.11 93.51
Correlation 92.45 93.87 89.86 91.60 96.92 93.96 93.11 89.86 96.92
Average 91.76 93.02 91.64 92.08 93.71 93.91
Min 89.02 91.04 89.11 89.69 89.69 90.84
Max 94.50 94.65 93.34 95.80 96.92 96.7
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Figure 8: Accuracy of the proposed method for different values of (a) augmentation multiple and (b) noise variance.
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describe the gray content of each TFM. Contrast, correla-
tion, energy, and homogeneity were calculated for each
GLCM; hence, the feature vector of each epoch was con-
structed by 60 features. )e redundant features were re-
moved by the MRMR algorithm and KNN classified the
remaining feature to determine the DoA.)e results showed
that the proposed method achieves the average accuracy of
95.32%with 16 gray levels andMahalanobis distance and the
minimum and maximum accuracy among subjects are
93.34% and 96.92%, respectively. )e accuracy with high
mean and low variation among subjects indicates the effi-
ciency of the proposed method. We also analyzed the effect
of the parameters of data augmentation, which indicates that
augmentation multiple and noise variance equal to 35 and
0.1, respectively, achieve the highest accuracy.

Employing the methods based on deep learning and
transfer learning can be considered as future works. Con-
volutional neural networks (CNNs) to classify the TFM are
obtained from time-frequency analysis. From the viewpoint
of time-series analysis, we can use long short-term memory
(LSTM) networks to determine the DoA.
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