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Ship radiated noise is an important information source of underwater acoustic targets, and it is of great significance to the
identification and classification of ship targets. However, there are a lot of interference noises in the water, which leads to the
reduction of the model recognition rate. 'erefore, the recognition results of radiated noise targets are severely affected. 'is
paper proposes a machine learning Dempster–Shafer (ML-DS) decision fusion method. 'e algorithm combines the
recognition results of machine learning and deep learning. It uses evidence-based decision-making theory to realize feature
fusion under different neural network classifiers and improve the accuracy of judgment. First, deep learning algorithms are
used to classify two-dimensional spectrogram features and one-dimensional amplitude features extracted from CNN and
LSTM networks. 'e machine learning algorithm SVM is used to classify the chromaticity characteristics of radiated noise.
'en, according to the classification results of different classifiers, a basic probability assignment model (BPA) was designed
to fuse the recognition results of the classifiers. Finally, according to the classification characteristics of machine learning
and deep learning, combined with the decision-making of D-S evidence theory of different times, the decision-making
fusion of radiated noise is realized. 'e results of the experiment show that the two fusions of deep learning combined with
one fusion of machine learning can significantly improve the recognition results of low signal-to-noise ratio (SNR) datasets.
'e lowest fusion recognition result can reach 76.01%, and the average fusion recognition rate can reach 94.92%. Compared
with the traditional single feature recognition algorithm, the recognition accuracy is greatly improved. Compared with the
traditional one-step fusion algorithm, it can effectively integrate the recognition results of heterogeneous data and het-
erogeneous networks. 'e identification method based on ML-DS proposed in this paper can be applied in the field of ship
radiated noise identification.

1. Introduction

Radiated noise is an important source of information for
underwater acoustic target recognition. In recent years,
research on radiated noise has been a hot topic. Many
countries have launched research on this, which has im-
portant guiding significance for national security, shipping,
and traffic management and marine ecological protection
[1, 2]. Radiated noise usually consists of mechanical noise,
propeller propulsion noise, engine noise, and so on. It has
the characteristics of low frequency, strong interference, and
high noise. 'ese features can characterize the invariable

physical characteristics and space orientation information of
ships [3–6]. 'erefore, improving the recognition accuracy
and efficiency has attracted widespread attention in ship
target recognition [7].

Currently, target recognition of radiated noise includes
two modules: feature extraction and classification recogni-
tion. Feature extraction is the process of extracting various
features from radiated noise signals. MFCC [8–10], wavelet
feature [11–13], and Hilbert Huang feature [14–16] are often
used in traditional radiated noise feature extraction. How to
extract features and what features to extract suitable for the
recognition and classification of radiated noise has always
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been a topic of research by researchers. 'e system needs to
store and process data under limited resource conditions.
Reducing computing costs and communication costs are
also issues that often need to be considered in the identi-
fication process [17–19]. However, different environments
are suitable for extracting different features; the background
of this paper is to use traditional features with a relatively low
recognition rate and deep learning to extract features to
improve the recognition effect of radiated noise under
different environmental backgrounds.

Mel cepstrum coefficient MFCC and energy are the
traditional way to extract the audio features of radiated
noise. Information is extracted from the Mel filter bank and
becomes the basis of most speech recognition technologies.
It is currently widely used in the field of radiated noise
recognition. In [7], Zhen first proved that the MFCC feature
indicates that the underwater acoustic signal is effective. In
[20], Cheng et al. used machine learning algorithms to find
that the DBNmethod has the best MFCC feature recognition
performance for passive sonar targets. Because of its ex-
cellent stability and high recognition rate, this paper con-
siders using traditional Chroma_STFT features with a
relatively low recognition rate as research to improve the
recognition accuracy after fusion. Chromaticity feature is the
collective name of chroma vector and chromagram. 'e
chroma vector is a vector containing 12 elements. Each of
these elements represents the energy at 12 pitch levels over
time, such as a frame.'e energy of the same pitch level with
different octaves will accumulate, and the chromaticity map
is a sequence of chromaticity vectors [21].

Recognition is the process of cognition of unknown
signals, which requires a certain degree of training to achieve
the effect. 'erefore, traditional feature extraction methods
are usually combined with traditional classifiers for classi-
fication and recognition. 'e extracted signal features are
recognized in decision trees, clustering, and SVM models,
which have good results. In [22], Jiang et al. proposed that
multiscale spectral feature extraction features can effectively
improve the accuracy of dynamic target recognition. In [23],
Xie et al. proposed a novel method that uses improved
variational mode decomposition (IVMD), normalized
maximum information coefficient, and permutation entropy
(PE) based on particle swarm optimization. 'e classifica-
tion is implemented in the support vector machine
multiclassifier.

With the development of deep learning in the field of
underwater acoustics, deep learning algorithms are often
used for the recognition and exploration of underwater
acoustic targets. In [24], Jiang et al. used the CNNnetwork to
detect and classify the whistle of killer whales and albacore
pilot whales and achieved good recognition results. In [25],
Jin et al. used the GAN network to extract features of
LOFAR, which effectively improved the recognition effect of
underwater acoustic targets. In [26], Ibrahim et al. used
DNN to extract features in the sound to identify grouper
species, and their results were significantly better than earlier
methods. Compared with the machine learning model, the
deep learning algorithm can greatly improve the recognition
accuracy of the model. At the same time, due to the strong

robustness of DNN, it can recognize underwater acoustic
signals under noisy conditions.

'is paper proposes an improved feature fusion ML-DS
algorithm based on the fusion of different features in the
same feature extraction method proposed by Zhang et al.
[27]. It combines the features of multidimensional and
multiclassifier fusion to identify radiated noise targets, solves
the limitation of single feature recognition accuracy, and
combines the results of deep learning and machine learning.

'e rest of the paper is organized as follows: Section 2
introduces the network for feature extraction and rec-
ognition, Section 3 discusses the multifeature ML-DS
decision fusion algorithm, and Section 4 introduces the
experimental results and analysis. Finally, Section 5
summarizes this work.

2. Feature Extraction

'is method uses the chromaticity features of short-time
Fourier transform (STFT) in the traditional method to
obtain the classification result on the machine learning
classifier. In the deep learning method, the CNN network is
used to extract the two-dimensional LOFAR image features
and classify them to obtain the recognition results. 'e
LSTM network is used to extract the continuous amplitude
feature of the signal and classify it to obtain the recognition
result. 'e recognition and classification results of machine
learning methods and deep learning methods are designed
into the BPA of the fusion model. 'e fusion of different
classifiers is realized through two D-S evidence theories at
the decision level. Finally, the fusion of multidimensional
features and multiclassifiers is realized, which effectively
improves the recognition accuracy. At the same time, it can
effectively reduce the time of complex feature fusion feature
extraction and improve the recognition performance. Add
−20 dB, −10 dB, 0 dB, and 10 dB to the dataset containing the
radiation noise of four types of 9 ships of merchant ships,
cargo ships, fishing vessels, and oil tankers to construct a
dataset containing noise. 'e recognition results show that
the method has a good recognition effect and has important
theoretical and practical value.

2.1. CNN Extracts Image Features. 'e LOFAR spectrum is
the continuous time domain sampling of the underwater
acoustic target signal and the time-varying information
obtained by STFT. It is projected onto the time and fre-
quency plane to form a three-dimensional map. It is usually
used in the field of underwater acoustic target recognition
[25, 28–30]. 'e task of tracking the target is accomplished
by identifying the line features of the LOFAR spectrum
image. Figure 1 shows an example of a LOFAR spectrum
image sample of ship radiated noise.

First of all, this article preprocesses the original radiated
noise signals and estimates these signals to get a better
spectrum. Secondly, when using the LOFAR spectrum, the
original audio file is converted into a spectrum file through
the STFT operation. 'e analysis window function of STFT
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makes it stable in different finite time intervals, so as to
calculate different power spectra in a time [28]:

S(ω, τ) � 
R
f(t)g(ω − τ)e

− jwtdt, (1)

where f(t) is the signal entering the analysis, e− jwt is the
frequency limit effect, and τ is the time limit effect.

Finally, according to the intensity of the color, the energy
in the frequency band is judged, and the attributes of the key
feature energy lines of LOFAR are emphasized. 'e con-
volutional neural network is used to classify the frequency
energy line features.

'e CNN model is usually used to classify image
features. It is one of the most popular and widely used
models in deep learning in recent years. It is possible to
obtain effective representations directly from the original
data through the alternate use of the convolutional layer
and the pooling layer, automatically extract the local
features of the image, and establish a dense and complete
feature vector [31]. 'is paper studies the use of fusion
technology to fuse different types of feature extraction,
and the fusion of different classifiers uses CNN to extract
the LOFAR image features of radiation noise, classifies and
recognizes the LOFAR image features, and then deter-
mines the fusion of the recognition results. Figure 2 shows
a schematic diagram of the convolutional neural network
structure.

'e convolutional layer is composed of multiple feature
maps. 'e convolutional layer performs convolution op-
eration with a certain size and the original input image
through the convolution kernel. It obtains the feature map of
the next layer after the activation function. Each neuron in
the featuremap of the convolutional layer is connected to the
local area of the feature map of the previous layer through a
set of weights, and the pixel weighted summation is per-
formed. 'e locally weighted sum is passed to a nonlinear
activation function to obtain the value of each neuron in the
stack. 'e calculation formula of the feature is as follows:

S
l
j � f 

i∈Mj

S
l−1
j ∗Q

l
ij + b

l
j

⎛⎜⎝ ⎞⎟⎠, (2)

where Sl
j represents j feature map of the l layer, f(·) rep-

resents the activation function, Sl−1
j represents j feature map

of l − 1 layer, ∗ represents the convolution operation, Ql
ij is

the convolution kernel, and bl
j represents the bias.

Since the convolution operation has a linear relationship
between the input matrix and the convolution kernel matrix,
the activation layer must perform nonlinear mapping on
them.'e activation layer can solve problems that cannot be
solved by the linear model. A nonlinear activation function
is nested based on the output result of the convolution layer
to activate the features extracted by the convolution layer.
'e network structure of this paper adopts the ReLU acti-
vation function. Compared with the Sigmoid and Tanh
functions, it has faster convergence speed and alleviation of
the gradient disappearance problem.

'e pooling layer is used to extract the most repre-
sentative features in the region, which can effectively reduce
the size of the output feature map, reduce the calculation
amount of the network model, and improve the accuracy of
the network’s feature extraction of the input image. 'e
common pooling method usually extracts the maximum or
average pixel value of the area as the value of the neuron in
the pooling layer. All networks in this article use the
maximum pooling method.

'e fully connected layer is located after the convolu-
tional layer and the pooling layer and summarizes the
extracted features. It connects neurons with all neurons in
the previous layer and integrates the features extracted from
the convolutional layer or the pooling layer. Finally, it is
connected with the output layer to return the classification
result.

With the rapid development of CNN, it has a good effect
and fast speed in extracting target features. It is gradually
replacing the target detection method based on manual
features and becoming the mainstream in the current target
recognition and detection field.

2.2. LSTMExtracts Signal Features. 'e STM model is often
used in the field of audio recognition. It has a better rec-
ognition and processing effect on time series signals. It can
store long-term information, which can prevent the training

(a) (b) (c) (d)

Figure 1: LOFAR spectrum image sample of ship radiated noise. (a) 'e LOFAR spectrum of a cargo ship. (b) 'e LOFAR spectrum of a
cruise ship. (c) 'e LOFAR spectrum of a merchant ship. (d) 'e LOFAR spectrum of a fishing boat.
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process from being disturbed by the outside world. 'e
LSTM model is composed of a series of timing modules,
generally, including input gates, forget gates, and output
gates.'e gate control mechanism is used to control the flow
of information in the memory block so that it has long-term
and short-termmemory capabilities [32–34]. Figure 3 shows
the structure diagram of the operating principle of LSTM.

Assuming that x is the input data of the timing signal, the
forward propagation formula can be expressed as [35]

It � σ WI · xt, ht−1, ct−1  + bI( ,

Ft � σ WF · xt, ht−1, ct−1  + bF( ,

Ct � Ftht−i + ittanh WC ht−1, Ct−1  + bC( ,

Ot � σ WO · xt, ht−1, ct−1  + bO( ,

ht � Ottanh Ct,

(3)

where It is the input gate, Ft is the forget gate, Ct is the state
of the cell unit after passing the input gate and the forget gate
at all times, Ot is the cell state of the output gate, ht is the

output state of all LSTM units, and σ(·) is the activation
function of sigmoid, WI,WF,WC, andWO are the LSTM
implicit state weight matrices, and bI, bF, bC, and bO are the
offset.

LSTM training can be divided into four steps: Step 1:
forward propagation, calculating the network output value;
Step 2: backward propagation, calculating the time and
network error; Step 3: calculating the gradient value; and
Step 4: updating the weight coefficient.

2.3. SVM Classifier Design. SVM is based on the traditional
learning theory and the principle of structural risk mini-
mization. It maps the nonlinear transformation to the high-
dimensional space and linearly separates the samples in the
high-dimensional feature space [36].

Assuming a hyperplane wTx + b � 0 in a two-dimen-
sional space, P(x1, x2, . . . , xn) is a point in the sample, and
xi is the i feature variable, then the distance from the point to
the hyperplane is

Input LOFAR picture Convolutional layer Pooling layer Fully connected layer Output layer

Figure 2: Schematic diagram of convolutional neural network structure.
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d �
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(4)

Among them, ‖W‖ is the norm of the hyperplane. If the
hyperplane is determined, all the support vectors are found,
and then the interval margin is calculated. Finally, the hy-
perplane corresponding to the largest value among all the
margins is found.

It is necessary to determine W and b to maximize the
margin, so the objective function of the optimization
problem can be written as
argmaxw,b(min(y(wT · x + b))(1/‖w‖)). Since w and b are
enlarged in proportion, the result of d remains unchanged,
so it can be simplified to

argmax
1

‖w‖
 ,

s.t. y w
T

· x + b  − 1≥ 0.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(5)

Replace min(1/2)‖w‖2 with the objective function
equivalent. It is transformed into a constrained optimization
problem and solved by the Lagrangian multiplier method.

L(w, b, α) �
1
2

· ‖w‖ − 
n

i�1
ai yi(w · x + b) − 1( . (6)

Find the partial derivative of L to get

zL(w, b, α)

zw
� 0⇒w � 

n

i�1
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zb
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(7)

and simplify to get
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(8)

'erefore, it is finally reduced to the objective function:

max L(a) � 
n

i�1
ai −

1
2



n

i,j�1
aiajyiyjx

T
i xj,

s.t.


n

i�1
aiyi � 0,

ai > 0, i � 1, 2, . . . , n,

⎧⎪⎪⎨

⎪⎪⎩

(9)

'is paper adopts a linear kernel κ(x, y) � xTy and finds
all support vectors a to determine w, b. 'en, by calculating

the distance from the data point to the hyperplane, the
category of the characteristic data point is determined.

2.4. Classifier Recognition Result

2.4.1. 2e Recognition Rate of LOFAR Spectrogram in CNN.
We add −20 dB, −10 dB, 0 dB, and 10 dB noise to the original
radiated noise and then use the STFTalgorithm to extract the
characteristics of the LOFAR spectrum of the radiation noise
and save the image. Due to the limited computer hardware
requirements, it is necessary to zoom and crop the image size
of the LOFAR spectrogram, save it as a 32 ∗ 32 size image,
and use the CNN network to extract the features and rec-
ognize and classify the LOFAR spectrogram. 'e CNN
network is designed as a two-layer convolutional layer,
including 64 convolution kernels with a size of 3 ∗ 3, a
pooling layer and a fully connected layer of 512 elements,
and outputs the judgment results of four types of ships. Set
the learning rate to 0.0001, the loss function uses the cross-
entropy loss function, and the optimizer selects Adam. After
100 iterations, the results of four sets of training models are
finally obtained. 'e recognition accuracy of the model with
10 dB radiated noise can reach 97.27%. Table 1 shows the
final recognition results.

2.4.2. Recognition Rate of Radiated Noise Signal in LSTM.
We add −20 dB, −10 dB, 0 dB, and 10 dB noise to the original
radiated noise. LSTM has good characteristics in recognizing
time series signals by extracting the original data amplitude
characteristic data and identifying classification. In the ex-
periment, the structure of the input feature data is changed
to 49 dimensions; 45 steps are set and finally put into the
classifier model for training and testing.'emodel chooses a
1-layer 64 LSTM unit and a 2-layer 32-unit LSTM network
structure to achieve the optimal situation. After 60 itera-
tions, the final loss of the experimental results tends to be
flat, and the results of four sets of training models under
different SNRs are obtained. 'e recognition accuracy of the
model with 10 dB radiated noise can reach 95.68%. 'e final
recognition results are shown in Table 2.

2.4.3. Chroma_STFT Feature Recognition Rate in SVM.
We add −20 dB, −10 dB, 0 dB, and 10 dB noise to the original
radiated noise. 'en, we use the Librosa toolbox to extract
the chromaticity features (Chroma_STFT) of the original
signal and reshape the feature array structure to match the
input structure of SVM. Finally, the extracted features are
put into the SVM classifier to classify the features because the
experiment considers the fusion of the recognition results of
classifiers with relatively low recognition rate to improve the
overall recognition effect. 'erefore, SVM selects a linear
kernel function with a relatively low recognition rate to
recognize and classify features. 'e recognition accuracy of
the model with 10 dB radiated noise can reach 88.64%.
Table 3 shows the final recognition results. Figure 4 shows
the classification and recognition accuracy of different
models under different SNR conditions.
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3. Multifeature ML-DS Decision
Fusion Algorithm

Decision fusion is a process of making secondary judgments
on the recognition results of the classifier. Researchers often
use the D-S evidence theory in the multisensor fusion theory
to fuse the recognition results. It is a mathematical algorithm
with uncertain reasoning and has weaker conditions than

other methods to directly express the ability of information
conflicts [37]. Figure 5 shows a flowchart of decision fusion
of different types of data.

3.1. Design of Fitness Function and BPA. According to the
research background of this article, the abstract recognition
framework is θ � A, B, C, D{ }. In practice, there is no need to
fully consider all combinations of θ, so this article only
considers the classification of four probability models.

'e basic probability distribution function is
m A{ }, m B{ }, m C{ }, m D{ }. According to the D-S theory, the
mass function under the current recognition framework can
be expressed as m(∅) � 0 and A⊆θ m(A) � 1.

According to the above formula, to obtain the synthesis
rule m1234, we first obtain the value of the normalization
coefficient 1 − K. Based on the research background of this
article, there is only one target to be identified, so the in-
tersections of A, B, C, and D are all empty:

'e first step is to calculate the conflict factor K:

1 − K � 
A∩B∩C∩D≠∅

m1 · m2 · m3 · m4

� 
A∩B∩C∩D≠∅

m1(A) · m2(B) · m3(C) · m4(D).

(10)

'e second step is to calculate the combined BPA of the
four types of ship identification results according to the
evidence rules.

'e mass function value of A combination is given by

m1⊕m2⊕m3⊕m4( A{ }) �
1

1 − K


A∩B∩C∩D� A{ }

m1 · m2 · m3 · m4

�
1

1 − K
· m1( A{ }) · m2( A{ }) · m3( A{ }) · m4( A{ }).

(11)

Table 1: 'e recognition results of LOFAR features in the CNN network model test.

SNR −20 dB −10 dB 0 dB 10 dB
ACC 0.3333 0.7538 0.8485 0.9727

Table 2: Recognition results of signal amplitude characteristics in LSTM network model test.

SNR −20 dB −10 dB 0 dB 10 dB
ACC 0.547 0.8394 0.9568 0.9568

Table 3: Recognition results of STFT chromaticity features in SVM classifier.

SNR −20 dB −10 dB 0 dB 10 dB
ACC 0.3455 0.6538 0.8629 0.8864
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Figure 4: Classification and recognition accuracy of different
models under different SNR conditions.
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'e mass function value of B combination is given by

m1⊕m2⊕m3⊕m4( B{ }) �
1

1 − K


A∩B∩C∩D� B{ }

m1 · m2 · m3 · m4

�
1

1 − K
· m1( B{ }) · m2( B{ }) · m3( B{ }) · m4( B{ }).

(12)

'e mass function value of C combination is given by

m1⊕m2⊕m3⊕m4( C{ }) �
1

1 − K


A∩B∩C∩D� C{ }

m1 · m2 · m3 · m4

�
1

1 − K
· m1( C{ }) · m2( C{ }) · m3( C{ }) · m4( C{ }).

(13)

'e mass function value of D combination is given by

m1⊕m2⊕m3⊕m4( D{ }) �
1

1 − K


A∩B∩C∩D� D{ }

m1 · m2 · m3 · m4

�
1

1 − K
· m1( D{ }) · m2( D{ }) · m3( D{ }) · m4( D{ }).

(14)

'us, the combined function m1234 is obtained. According
to the mass function synthesized by Dempster, the reliability
function and likelihood function of the combinedmass function
for each type of ship classification can also be calculated.A, B,C,
and D, respectively, represent the current identification situa-
tion of four types of target ships under the tank.

In the third step, the model uses a combination of
probability distribution functions to find the trust function
and finds the likelihood function according to the degree of
trust that the proposition is not false. Finally, it can find the
probability of accurate decision fusion Table 4 shows ab-
breviations and notations of the symbols.

3.2. Specific Implementation Steps. 'is paper focuses on the
recognition and fusion of different types of ships under
different dimensional feature conditions. 'e CNN network
is used to extract the LOFAR spectrogram features of the

two-dimensional image. 'e LSTM network is used to ex-
tract the features of the one-dimensional time domain signal
amplitude, and the SVM classifier is used to extract STFT
chromaticity features. 'e predicted results are fused for
decision-making to fuse features of different dimensions and
the recognition results of different classifiers. It can enrich
the types of recognition, expand the range of fusion feature
types, and provide new ideas for feature selection in un-
derwater acoustic radiation noise recognition research. At
the same time, the classification results of the low recog-
nition rate model and the high recognition rate model can be
merged to improve the recognition effect of the model and
help the model improve the range of decision-making ca-
pabilities. Figure 6 shows a dual decision-level fusion rec-
ognition framework based on evidence theory.

'e specific steps to identify and classify radiated noise
based on a decision-level fusion of different features under
different classifier conditions are as follows.

One-
dimensional data

Two-
dimensional data

Classifier 
model

Classifier 
model

softmax 
result

Design BPA 
distribution

D-S evidence 
theory model

Decision fusion 
result

Figure 5: Flowchart of decision fusion of different types of data.
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'e first step is to extract easily obtainable signal am-
plitude, LOFAR spectrum, Chroma_STFT, and other three
characteristics to construct a dataset for the four types of
ship targets A, B, C, and D.

In the second step, the CNN network is used to extract
the LOFAR spectrogram features of the radiation noise for
classification.'e LSTM network is used to extract the signal
amplitude features for classification, and the STFT chro-
maticity features are extracted from the original signal for
classification in the SVM classifier.

'e third step is to predict the probability of the category
of the target noise from the four results of the classification
and recognition of the three classification models. At the
same time, a BPA model was constructed based on the
predicted results.

'e fourth step is to use D-S evidence theory to perform
decision-level fusion on the prediction results of different
feature categories to obtain decision fusion results under
different classifier conditions. Among them, the machine
learning method alone does not have a good fusion effect
under the condition of a low SNR. 'erefore, the average
classification recognition probability is used to construct the
BPA model, and it is no longer integrated separately.

'e fifth step is to perform another decision fusion on the
results of the decision fusion of different classifiers and fuse the
learning results of the machine learning classifier to obtain the
final decision fusion result. Finally, the fusion results of deep
learning and machine learning are combined to improve the
overall recognition effect of the recognition system.

Due to the fusion method of different classifiers, the
conditions for feature selection and the BPA distribution are
different. According to formulas (10)–(14), it can be seen
that the results of different classifiers cannot be mixed and
fused directly. 'erefore, every five classification results are
separately fused to make a decision and judgment. First, the
results of one of the classifiers are mixed, and then, the
recognition results of three different neural networks and
classifiers are fused. Finally, the recognition accuracy rate
after deep learning fusion is fused with the average recog-
nition probability determined by the machine learning al-
gorithm classifier to make the second decision fusion
method. 'e experiment has realized the decision fusion

result of the hybrid multiclassifier, which can better realize
the effect of feature fusion.

4. Experiment Results and Analysis

'is section shows the first decision fusion classification
and recognition results of the CNN and LSTM models and
the second decision fusion classification results of combing
the three models. In order to verify the effectiveness of the
proposed deep learning and machine learning decision
fusion algorithm for radiated noise target recognition, the
dataset is divided into four types of radiated noise from
fishing vessels, merchant ships, oil tankers, and cargo ships.
Each type of vessel contains 1800, 1200, 1800, and 1800
radiated noise audio files, corresponding to the radiated
noise data of 9 ships. At the same time, −20 dB, −10 dB,
0 dB, and 10 dB noise are added to simulate a complex
background noise environment to form a dataset under
different SNR conditions. 'e training set is four times the
test set.

Different dimensional features adopt different feature
extraction methods, 'erefore, the number of feature
training times and prediction dimensions are also very
different. In the experiment, the one-dimensional and two-
dimensional features extracted from the 600, 900, and 1200
audio segments under the deep learning network are divided
into five groups. 'e first decision fusion judgment is made.
During the training, 480,720,960 radiated noise audio clips
were fused with the LSTM and CNN networks. 'en, the
length of each type of ship timing sequence signal is retained
in the LSTM and CNN network test set with 24, 36, and 48
fused judgment results, respectively. Finally, it is fused with
the recognition effect discriminated by the SVM classifier,
and the new BPAmodel is combined for the second fusion to
achieve the best feature fusion effect.

In order to demonstrate the feature extraction method
suitable for radiated noise, Table 5 shows the radiated noise
audio information of the dataset, and Figure 7 shows part of
the radiated noise data characteristics.

4.1. Convergence Comparison of CNN Network. 'e CNN
network is used to identify and classify the two-dimensional
features of the LOFAR image extracted from the radiation
noise. According to the fusion method of five parts, 24, 36,
and 48 groups of fusion results are obtained from the test set
which accounts for 20% of the dataset. We calculate the
average recognition rate according to the fusion result. Fi-
nally, we get the recognition accuracy before fusion shown in
Table 6 and the recognition accuracy after fusion shown in
Table 7, and Figure 8 shows the comparison of the accuracy
before and after fusion of the CNN network under different
SNRs.

It can be seen from the table that the recognition rate of
radiation noise with high SNR before fusion is higher. 'e
recognition rate of low SNR radiated noise is generally low,
with the lowest being only 40.03%. After the decision fusion
of the CNN recognition results, the high SNR is close to
100%. 'e recognition rate of low SNR is nearly doubled.

Table 4: Abbreviations and notations.

Notations Annotations
Sl

j j feature map of the l layer
f(.) 'e activation function
Ql

ij 'e convolution kernel
bl

j 'e bias
Ot 'e cell state of the output gate
ht 'e output state of all LSTM units
σ(g) 'e activation function of sigmoid
xi 'e i feature variable
‖W‖ 'e norm of the hyperplane
L(w, b, α) Lagrangian multiplier method
θ 'e abstract recognition framework
m1234 Synthesis rule
m A{ } 'e basic probability distribution function
K 'e conflict factor
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'e lowest increase was also 34.79%. It is concluded that in
different SNR datasets, the fusion under a single feature has a
better effect on high SNR recognition.'e recognition of low

SNR has also been significantly improved, but the im-
provement effect is limited, and some fusion results do not
exceed 90%.

It is concluded that the type of radiated noise can be
effectively identified in the high SNR dataset, and the ra-
diated noise can be misjudged in the low SNR dataset.
However, after the decision-making fusion of the recogni-
tion of LOFAR images by the CNN network, the recognition
effect has been significantly improved. In practical appli-
cations, collecting datasets of radiation noise under different
working conditions will have a certain impact on the rec-
ognition results. 'erefore, it is necessary to consider the
design of the dataset in practical applications and fully
consider the impact of the environment as much as possible
and design models according to different datasets.

4.2. Convergence Comparison of LSTM Network. 'e LSTM
network is used to identify and classify the characteristics of
the waveform data extracted from the radiated noise. 'e
fusion results of 24, 36, and 48 groups are obtained from the
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Figure 6: Dual decision-level fusion recognition framework based on evidence theory.

Table 5: Dataset radiated noise audio information.

Type code Ship type Ship code Ship details Number of noise audio segments
A Freighter 010001 Distance 83 chain, freighter 900
A Freighter 010002 Distance 89 chain, freighter 900
B Oil tanker 020001 Distance 29 chain, oil tanker 1200
C Merchant ship 030004 Distance 50 chain, merchant shipping 600
C Merchant ship 030005 Distance 83 chain, merchant shipping 600
C Merchant ship 030006 Distance 30 chain, merchant shipping 600
D Fishing boat 040002 Distance 28 chain, fishing boat 600
D Fishing boat 040003 Distance 20 chain, fishing boat 600
D Fishing boat 040004 Distance 23 chain, fishing boat 600
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Figure 7: Waveform and frequency spectrum of the original audio.

Table 6: CNN unfused recognition results.

Ship code −20 dB −10 dB 0 dB 10 dB
010001 0.4175 0.6211 0.7710 0.8869
010002 0.4589 0.6755 0.7547 0.9335
020001 0.4037 0.7139 0.6506 0.9617
030004 0.4003 0.8496 0.8592 0.9801
030005 0.4040 0.8085 0.8702 0.9420
030006 0.4982 0.8719 0.9984 0.9964
040002 0.4630 0.8223 0.8387 0.9919
040003 0.4240 0.6419 0.8310 0.9649
040004 0.4626 0.9751 0.9985 0.9997

Table 7: Recognition results after CNN fusion.

Ship code −20 dB −10 dB 0 dB 10 dB
010001 0.8123 0.9694 0.9996 1
010002 0.9078 0.9994 0.9993 1
020001 0.7516 0.9795 0.9533 1
030004 0.8098 0.9999 1 1
030005 0.7642 0.9981 1 1
030006 0.8974 1 1 1
040002 0.8770 1 1 1
040003 0.8155 0.9488 0.9965 1
040004 0.8207 1 1 1
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test set which accounts for 20% of the dataset according to
the fusion method of five parts. We calculate the average
recognition rate according to the fusion result. Finally, we
get the recognition accuracy before fusion shown in Table 8
and the recognition accuracy after fusion shown in Table 9,
and Figure 9 shows the comparison of the accuracy before
and after fusion of the LSTM network under different SNRs.

It can be seen that the recognition rate of high SNR
radiation noise is higher before fusion. 'e recognition rate
of low SNR radiation noise is generally low, and the lowest is
only 31.89%. After the decision fusion of the CNN recog-
nition results, the high SNR is close to 100%. Except for the
poor audio fusion result of 010002 radiated noise, the rec-
ognition rate of radiated noise of other ships has improved
greatly. We analyze 36 sets of fusion results of the 010002
radiated noise audio fusion process. It is known that the
recognition results of 010002 radiated noise and 020001
radiated noise in the −20 dB environment are relatively
close, resulting in the misjudgment of the fusion algorithm.
It is concluded that when the recognition rate of a single
target is lower than a certain range, the fusion result is not
ideal. From the analysis of the fusion recognition results of
LSTM and CNN in the −20 dB environment, it can be seen
that the recognition rate of a single network is less than 40%,
and the recognition effect will be misjudged. With the ex-
pansion of ship types and datasets, the recognition effect will
be better and better, and the result of fusion will be better.

4.3. SVM Recognition Results under Different SNRs. 'e
SVM classifier is used to identify and classify the features of
STFT chromaticity data extracted from radiated noise. 'e
average result is identified from the test set that accounts for

20% of the dataset. Machine learning algorithms have lower
recognition results under low SNR conditions. Machine
learning algorithms alone cannot effectively participate in
decision fusion. 'erefore, SVM does not participate in the
first decision fusion and only calculates the average recog-
nition rate of each group of recognition results. 'e final
decision fusion recognition result can be obtained after the

Table 8: Recognition results before LSTM fusion.

Ship code −20 dB −10 dB 0 dB 10 dB
010001 0.7761 0.8280 0.9184 0.9332
010002 0.3189 0.8827 0.9777 0.9790
020001 0.4489 0.8824 0.9873 0.9717
030004 0.6415 0.8616 0.8491 0.9106
030005 0.8925 0.9752 0.9694 0.9406
030006 0.9895 0.9527 0.9207 0.8859
040002 0.9682 0.9644 0.9337 0.9420
040003 0.4318 0.9839 0.9969 0.9955
040004 0.5831 0.9963 0.9985 0.9986

Table 9: Recognition results after LSTM fusion.

Ship code −20 dB −10 dB 0 dB 10 dB
010001 0.9686 0.9958 1 0.9991
010002 0.3155 1 1 1
020001 0.6720 0.9999 1 1
030004 0.9302 0.9943 1 0.9999
030005 0.9583 1 1 1
030006 1 1 1 1
040002 1 1 1 1
040003 0.7569 1 1 1
040004 0.9336 1 1 1
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fusion of the calculated recognition rate and the deep
learning algorithm. First, we get the recognition of the four
types of target radiated noise of different types of ships
shown in Tables 10–13. A, B, C, and D correspond to their
recognition rates, respectively.

From the recognition result data, it is found that the
recognition results of different types of ships under low SNR
conditions are generally low. Among them, the recognition
effect of Type B ships is the worst, and the chromaticity
characteristics of Type B ships are not significantly different
from other ships, resulting in a high probability of mis-
judgment of Type A ships. 'e recognition rate of Type B
ships under high SNR conditions is higher. However, the
recognition results of most types of ships do not exceed 90%,
which is far lower than the recognition effect of deep
learning algorithms under the same SNR dataset Figure 10
shows comparison of the accuracy of SVM classifiers before
fusion under different SNRs.

4.4. 2e Final Fusion Result under Different Features and
Classifier Conditions. After two fusions of deep learning
algorithms and one fusion of machine learning algorithms,
the final fusion experiment results are obtained. Table 14
shows the recognition results of the final decision fusion
under the −20 dB noise environment, and Table 15 shows the
recognition results of the final decision fusion under the
−10 dB noise environment. 'e results show that, under the
condition of −20 dB, the recognition accuracy of radiated
noise is more than 90% except that the recognition rate of
class B ship radiated noise is lower than 80%, and the fusion
identification data of some types of ship radiated noise are
close to 100%. Compared with the traditional single feature
and single classifier feature fusion, it has a significant im-
provement, which is helpful for multiangle decision-making
of underwater acoustic targets.

In order to explore the situation where the fusion result
of B type ship radiated noise recognition is significantly
lower, from the fusion data of the three sets of classifiers
analyzed in the first three sections, it can be seen that the
recognition rate of SVM for 020001 ships under low SNR
conditions is low, which is lower than the recognition results
of deep learning algorithms. In the fusion process, the
machine learning algorithm adopts the average recognition
rate fusion judgment, which will have a certain influence on
the fusion judgment. In response to this problem, the
proposed solution is to modify the extracted features to
improve the recognition and classification effect of a single
classifier to improve the structure of the BPA, which can
effectively improve the recognition accuracy.

'e recognition rate of −10 dB ship radiated noise
reaches 100%. Compared with the average recognition rate
of CNN, LSTM, and SVM before a fusion, they have, re-
spectively, increased by 22.45%, 7.48%, and 34.35%. Com-
pared with the average recognition rate of CNN and LSTM
after a fusion, they have, respectively, increased by 1.17% and
0.12%. It can effectively fuse the recognition results of dif-
ferent classifiers. Among them, the recognition accuracy of
the STFTchromaticity feature of the 040003 ships under the

SVMmodel is only 19.67%, indicating that this feature has a
poor feature recognition effect on the 040003 ships, and the
traditional machine learning algorithm is not ideal for the
model recognition effect. However, the recognition rates of
the same type of ship after the first fusion of CNN and LSTM
models reached 94.88% and 100%. 'en, it is fused with the
judgment result of the SVM classifier with a lower recog-
nition rate to obtain a nearly 100% recognition accuracy rate
after decision-making. 'erefore, it is proved that this
method can effectively improve the recognition results of
traditional machine learning algorithms under low SNR
conditions, improve the accuracy of radiated noise

Table 10: Recognition results of SVM classifier for four categories
of target radiated noise under the condition of 10 dB noise.

Ship code A B C D
010001 0.8589 0.0467 0.0322 0.0622
010002 0.8933 0.0656 0 0.0411
020001 0.0992 0.8925 0.0033 0.005
030004 0.0117 0 0.88 0.1083
030005 0.0967 0.0133 0.875 0.015
030006 0 0 0.9867 0.0133
040002 0.0883 0.0033 0.0267 0.8817
040003 0.32 0.0517 0.03 0.5983
040004 0 0 0 1
Bold represents the recognition accuracy of a certain numbered ship under
the correct classification category.

Table 11: Recognition results of SVM classifier for four categories
of target radiated noise under the condition of 0 dB noise.

Ship code A B C D
010001 0.8533 0.05 0.0344 0.0622
010002 0.8833 0.0833 0.0022 0.0311
020001 0.1208 0.8692 0.0008 0.0092
030004 0.0217 0.0033 0.8567 0.1183
030005 0.15 0.0167 0.8217 0.0117
030006 0.0083 0 0.9617 0.03
040002 0.0867 0.0083 0.0317 0.8733
040003 0.27 0.0767 0.035 0.6183
040004 0.0067 0 0.0017 0.9917
Bold represents the recognition accuracy of a certain numbered ship under
the correct classification category.

Table 12: Recognition results of SVM classifier for four categories
of target radiated noise under the condition of −10 dB noise.

Ship code A B C D
010001 0.5967 0.14 0.1333 0.13
010002 0.6956 0.1833 0.0278 0.0933
020001 0.3333 0.6133 0.0325 0.0208
030004 0.0883 0.035 0.6683 0.2083
030005 0.2917 0.0967 0.55 0.0617
030006 0.055 0.0083 0.8683 0.0683
040002 0.1117 0.0167 0.0733 0.7983
040003 0.5233 0.1517 0.1283 0.1967
040004 0.04 0 0.0383 0.9217
Bold represents the recognition accuracy of a certain numbered ship under
the correct classification category.
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recognition, and provide a new idea for the research of ship
radiated noise recognition in complex environments.

At the same time, this experiment is based on the dif-
ferent characteristics of homologous signals to identify the
characteristics of fusion. 'e two-dimensional image and
one-dimensional signal features are, respectively, fused and
judged. In the future, with the enrichment of underwater

acoustic datasets, the model can also perform fusion ex-
periments on the data of the same ship based on a simul-
taneous engraving of different data sources. For example,
multiple data such as acoustic data, video data, and marine
environmental data of the marine monitoring platform can
identify and judge the collected radiated noise samples. We
increase the fusion of different data sources to improve the
accuracy of model recognition.

4.5. FutureWork. 'is experiment adds noise with different
SNRs based on the original ship noise to simulate the
complex marine environment. Considering the real marine
environment, it is also possible to combine ship radiated
noise with underwater communication channels for further
identification research. In the future, the integration of
different types of data can be achieved through method
improvements. A decision recognition algorithm that
combines ship visual data recognition and radiated noise
audio data recognition can realize the fusion of different data
sources of the same ship to achieve better identification and
judgment effect.

5. Conclusions

In this paper, the method of decision fusion is used to identify
ship radiated noise. A fusion method of DS evidence decision
theory for different dimensional characteristics is designed.
'e recognition results of machine learning and deep learning
are used to extract the credibility of the results of different
deep neural networks and classifiers. It designs a BPA
function structure and adjusts the design of the mass function
based on prior knowledge. Finally, the evidence decision
theory is used to realize the feature fusion under different
neural network classifiers, which effectively improves the
recognition rate of ship radiated noise. (1) Radiated noise
recognition technology is based on decision fusion, consid-
ering the fusion of recognition results from the decision-
making level. It makes the fusion method more diverse and
the recognition effect is better. (2) Compared with the rec-
ognition accuracy of using a single feature classifier, it uses the
features of multiple signals to effectively improve the rec-
ognition accuracy after fusion. (3) Compared with the tra-
ditional one-time fusion algorithm, it uses the fusion
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Figure 10: Comparison of the accuracy of SVM classifiers before
fusion under different SNRs.

Table 14: 'e final recognition results after two final decision-
making fusions of evidence, in the −20 dB noise environment.

Ship code A B C D
010001 0.9981 0 0.0019 0
010002 0.9522 0 0 0.0478
020001 0.1970 0.7601 0 0.0429
030004 0.0200 0 0.9800 0
030005 0.0413 0 0.9583 0.0003
030006 0 0 1 0
040002 0 0 0 1
040003 0.0808 0 0 0.9192
040004 0.0251 0 0 0.9748
Bold represents the recognition accuracy of a certain numbered ship under
the correct classification category.

Table 15: 'e final recognition results after two final decision-
making fusions of evidence, under −10 dB noise environment.

Ship code A B C D
010001 1 0 0 0
010002 1 0 0 0
020001 0 1 0 0
030004 0 0 1 0
030005 0 0 1 0
030006 0 0 1 0
040002 0 0 0 1
040003 0 0 0 0.9924
040004 0 0 0 1
Bold represents the recognition accuracy of a certain numbered ship under
the correct classification category.

Table 13: Recognition results of SVM classifier for four categories
of target radiated noise under the condition of −20 dB noise.

Ship code A B C D
010001 0.4489 0 0.2356 0.3156
010002 0.45 0 0.2211 0.3289
020001 0.685 0.0917 0.0375 0.1858
030004 0.36 0 0.3067 0.3333
030005 0.3967 0 0.285 0.3183
030006 0.1717 0 0.695 0.1333
040002 0.3367 0 0.1483 0.515
040003 0.365 0 0.26 0.375
040004 0.325 0 0.265 0.41
Bold represents the recognition accuracy of a certain numbered ship under
the correct classification category.
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algorithm proposed in this paper to effectively integrate the
recognition results of heterogeneous data and heterogeneous
networks. (4) After the first D-S evidence fusion of the deep
learning model, the model can effectively identify the ship’s
radiation noise. 'e recognition accuracy rate under high
SNR conditions is close to 100%, and the recognition accuracy
rate under low SNR conditions is also greatly improved
compared to traditional methods. 'e recognition result
under the condition of low SNR after the secondary fusion of
machine learning recognition results can be close to 100%,
which improves the accuracy of decision-making fusion
recognition under the condition of low SNR.
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