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�e combination and integration of multimodal imaging and clinical markers have introduced numerous classi�ers to improve
diagnostic accuracy in detecting and predicting AD; however, many studies cannot ensure the homogeneity of data sets and
consistency of results. In our study, the XGBoost algorithm was used to classify mild cognitive impairment (MCI) and normal
control (NC) populations through �ve rs-fMRI analysis datasets. Shapley Additive exPlanations (SHAP) is used to analyze the
interpretability of themodel.�e highest accuracy for diagnosingMCI was 65.14% (using the mPerAF dataset).�e characteristics
of the left insula, right middle frontal gyrus, and right cuneus correlated positively with the output value using DC datasets. �e
characteristics of left cerebellum 6, right inferior frontal gyrus, opercular part, and vermis 6 correlated positively with the output
value using fALFF datasets. �e characteristics of the right middle temporal gyrus, left middle temporal gyrus, left temporal pole,
and middle temporal gyrus correlated positively with the output value using mPerAF datasets. �e characteristics of the right
middle temporal gyrus, left middle temporal gyrus, and left hippocampus correlated positively with the output value using PerAF
datasets. �e characteristics of left cerebellum 9, vermis 9, and right precentral gyrus, right amygdala, and left middle occipital
gyrus correlated positively with the output value usingWavelet-ALFF datasets. We found that the XGBoost algorithm constructed
from rs-fMRI data is e�ective for the diagnosis and classi�cation of MCI. �e accuracy rates obtained by di�erent rs-fMRI data
analysis methods are similar, but the important features are di�erent and involve multiple brain regions, which suggests that MCI
may have a negative impact on brain function.

1. Introduction

Mild cognitive impairment (MCI) is a heterogeneous syn-
drome that causes little or no impairment of daily living
activities and thus does not meet the criteria for dementia
[1, 2]. Among the aging population (60 years of age and
above) in China, the prevalence of MCI is 14.71%; besides,
females of older age or living in rural areas of western China
have a higher prevalence of MCI [3]. �e currently available
diagnoses of MCI are based on subjective indicators, in-
cluding observation, clinical history, and neuro-
psychological assessment; moreover, its reliable diagnosis is

challenging [4]. Approximately 30% of MCI patients
progress to AD [5]. Early diagnosis and intervention delay
the transformation of MCI to AD and improve its prognosis
[6].

Machine learning is extensively used in the clinical and
early diagnosis of diseases. Dichotomous and tripartite di-
agnosis is the most basic application in Alzheimer’s Disease
(AD), i.e., diagnosis of AD and normal control (NC), as well
as that of AD, MCI, and NC. Notably, classi�cation diag-
nosis based on these two types is still in use today [7].

Several types of data commonly used in machine
learning include structure magnetic resonance imaging
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(sMRI), positron emission tomography (PET), and resting-
state functional magnetic resonance imaging (rs-fMRI). Rs-
fMRI shows characteristic focal changes of AD, including
reduced hippocampal volume and medial temporal lobe
atrophy [8]; it excludes other diseases that may cause de-
mentia, including cerebrovascular diseases and other
structural diseases (such as brain tumors and normal
pressure hydrocephalus). FDG-PET shows decreased
metabolism in different areas of AD, including the hippo-
campus, medial parietal lobe, and lateral parietal cortex
[9, 10]. Rs-fMRI is highly sensitive to AD and is used to
analyze changes in brain networks in AD patients. Addi-
tionally, accumulating studies indicate that internal con-
nection in the resting state provides a communication
channel for task information [11].

Rs-fMRI is a noninvasive imaging method with a high
spatial and temporal resolution, continually adopted in
scientific research and clinical work. Rs-fMRI primarily
reflects neuronal activity by observing the blood oxygen
level–dependent (BOLD) signal changes. ,e spontaneous
activity of neurons may trigger low-frequency fluctuation
(LFF). Studies integrating neuron electrophysiology and rs-
fMRI reveal that many cognitive and behavioral processes
are related to LFF [12–14]. Biswal et al. [15] discovered a
highly synchronous spontaneous LFF between motor cor-
tices, and the LFF of a BOLD signal is closely related to
neuronal spontaneous activity and is used to reflect changes
in brain functional activities. Changes in the amount of LFF
in different brain regions may be related to the interruption
of automatic regulation of the cerebral microvascular system
[16]. Numerous studies on LFF, including low-frequency
fluctuation (ALFF) [17], fractional ALFF (fALFF) [13],
percent amplitude of fluctuation (PerAF) [18], Wavelet-
ALFF [19], have been documented.

At present, studies on machine learning- (ML-) based
diagnosis studies with rs-fMRI have reached maturity (Ta-
ble 1). Most of the studies focuses on the interpretability of
models and the improvement of feature extraction methods
and classification algorithm.,e accuracy of some predictive
models has reachedmore than 90%. Nevertheless, because of
the small sample size, the credibility of these studies is at
stake.

NC: normal controls; eMCI: early MCI; lMCI: late MCI;
aMCI: amnestic MCI; MCI-C :MCI converter, MCI-NC :
MCI nonconverter; SCD: subjective cognitive decline; VD:
vascular dementia; MXD: “mixed VD-AD dementia”; CNN:
convolutional neural network; SVM: support vector ma-
chine; LDA: linear discriminant analysis; RF: random forest;
ANFIS: adaptive neurofuzzy inference system; ELM: ex-
treme learning machine; DAG: directed acyclic graph; AE:
autoencoder.

Herein, we established a database of rs-fMRI studies
involving MCI and NC based on the local population; this
increased the applicability of the findings. Besides, the
combination and integration of multimodal imaging and
clinical markers have elicited numerous classifiers that
improve diagnostic accuracy in detecting and predicting AD
or MCI. Although the accuracy obtained is significantly
attractive, numerous studies cannot guarantee data

homogeneity and consistent results [45]. We used the
XGBoost algorithm to classify MCI and NC populations,
and the results were explained.

2. Materials and Methods

2.1. Participants. Between January 2017 and December
2020, patients were recruited from the Memory Clinic of the
First Affiliated Hospital, Zhejiang University School of
Medicine. Eligible participants were aged 55 years or older,
with primary school education or above. Peterson’s criteria
were used to select the MCI patients [46]. Individuals were
excluded if they had evidence of other diseases potentially
causing dementia other than AD; a history of stroke and
focal signs of nervous system; other neurological diseases
that potentially cause brain dysfunction (including schizo-
phrenia, severe anxiety, depression, frontotemporal de-
mentia, Huntington’s disease, brain tumors, Parkinson’s
disease, metabolic encephalopathy, encephalitis, multiple
sclerosis, epilepsy, and brain trauma); other systemic dis-
eases that potentially cause cognitive impairment including
hypothyroidism, folic acid and vitamin B12 deficiency,
specific infections (e.g., syphilis and HIV), and alcohol and
drug abuse; severe liver, kidney and lung insufficiency; se-
vere anemia, gastrointestinal disease and arrhythmia, and
myocardial infarction within 6 months; contraindications
including metal implantation in vivo; aphasia, consciousness
disorders, and other diseases that potentially hinder the
completion of cognitive examination; did not sign informed
consent. ,is study was authorized and approved by the
Ethics Committee of First Affiliated Hospital, Zhejiang
University School of Medicine, and conducted based on the
principles of the Helsinki Declaration. After obtaining in-
formed consent, participants were subjected to initial tests,
including clinical evaluation, neuropsychological tests,
laboratory examination, and MRI scanning.

2.2. Data Acquisition. All rs-fMRI data were collected from
the Second Affiliated Hospital of Hangzhou Normal Uni-
versity from a Discovery MR750 3.0 T scanner of General
Electric Company. Rs-fMRI scans were acquired based on
the following parameters: 43 slices, TR� 2000ms,
TE� 30ms, FA� 90, FOV� 64mm× 64mm,
matrix� 200× 200, scanning time� 8min.

2.3. Rs-fMRI Data Preprocessing. Data preprocessing was
performed using the RESTplus V1.2 tool [47] (http://www.
restfmri.net/forum/RESTplusV1.2) in the SPM12 (Statistical
Parametric Mapping 12) (http://www.fil.ion.ucl.ac.uk/spm).
,e rs-fMRI data preprocessing steps included the following:
(1) removing volumes, i.e., the first ten volumes of each
subject were removed to ensure a steady condition; (2) slice
timing, i.e., data scanning was performed in intervals, with
odd-numbered layers having priority; (3) realignment, i.e.,
subjects with a maximum translation of more than 3.0mm
or maximum rotation of more than 3.0° were excluded; (4)
normalization, i.e., the rs-fMRI scans were registered to
correspond sMRI and split using the Diffeomorphic
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Anatomical Registration ,rough Exponentiated Lie Alge-
bra (DARTEL) and new segment, which were spatially
normalized to the Montreal Neurological Institute (MNI)
space; (5) detrend, i.e., the offset generated during data
acquisition may have an impact on the later calculation
process. Detrend eliminates such an impact when the data is
acquired; (6) Nuisance Covariates Regression, i.e., factors
affecting the results were removed, including Friston24
rotation parameter, white matter, cerebrospinal fluid, and
global mean signal [48, 49].

2.4. Rs-fMRI Features Extraction. Further, features ex-
traction of rs-fMRI was performed using RESTplus V1.2;
consequently, 116 features based on Anatomical Auto-
matic Labeling (AAL) were extracted in each type of
calculation method. ,e features included fractional

amplitude of low-frequency fluctuations (fALFF). ,e
preprocessed data results were registered into the MNI
space; then, each voxel was resampled using a sampling
template of 3mm × 3mm × 3mm. In RESTplus, BOLD
was transformed from a time domain to a frequency
domain by the fast Fourier transform formula (FFT), and
the power spectrum of the BOLD signal in the frequency
domain was obtained. ,e power spectrum obtained was
calculated via square root, and the result obtained by
calculating the mean value of the effective frequency band
divided by a mean value of the amplitude of the whole
frequency band was fALFF. Subsequently, the spatial
fALFF maps were divided by the mean value of the whole
brain (mfALFF). ,is study calculated fALFF in three
frequency bands, i.e., Norm-1 (0.01–0.08 Hz), Slow-4
(0.027–0.073 Hz), and Slow-5 (0.01–0.027 Hz) frequency
bands. A Gaussian smoothing kernel of 4 mm full width-

Table 1: Partial ML-based studies with rs-fMRI.

Year ML method Subjects Performance
2022 [20] CNN NC: 167, eMCI: 102, lMCI: 129, AD: 114 Average accuracy 89%
2022 [21] AdaBoost eMCI: 34, lMCI: 32 Accuracy 70%

2022 [22] SVM NC: 20, AD: 27 Accuracy (fMRI) 78.72%
Accuracy (sMRI + rs-fMRI) 91.49%

2022 [23] SVM NC: 41, aMCI: 30, AD: 36 Accuracy (NC vs. aMCI) 68%
Accuracy (NC vs. AD) 71%

2022 [24] LDA NC: 30, AD: 28 Accuracy 76.7%

2021 [25] SVM MCI-C: 14, MCI-NC: 41 Accuracy (fMRI) 83.5%
Accuracy (sMRI + rs-fMRI) 83.5%

2021 [26] SVM MCI-C: 30, MCI-NC: 55, AD: 19 Accuracy (MCI-C vs. MCI-NC) 84.71%
Accuracy (MCI-C vs. AD) 89.80%

2020 [27] SVM NC: 51, MCI: 66 Accuracy 85.5%
2020 [28] SVM NC: 20, SCD: 22 Accuracy 83.3%
2020 [29] RF NC: 83, MCI: 82 Accuracy 91.4%
2020 [30] SVM NC: 136, SMC: 46, eMCI: 83, MCI: 37, lMCI: 46, AD: 35 AUC (AD vs. NC) 0.87
2020 [31] ANFIS AD: 33, VD: 27, MXD: 15 Average accuracy 77.33%
2020 [32] SVM eMCI: 77, lMCI: 64 Accuracy 87.94%
2020 [33] SVM NC: 60, MCI: 39 AUC 0.9728
2019 [34] ResNet-18 NC: 25, SMC: 25, eMCI: 25, lMCI: 25, MCI: 13, AD: 25 Average accuracy 97.88%

2019 [11] SVM NC: 49, MCI-NC: 69, MCI-C: 25, AD: 34
Accuracy (AD vs. MCI-C vs. MCI-NC) 67.6%
Accuracy (NC vs. MCI-C vs. MCI-NC) 66%

Accuracy (AD vs. NC vs. MCI-C vs. MCI-NC) 56.1%
2019 [35] SVM NC: 45, AD: 45 Accuracy 81.11%
2019 [36] CNN NC: 172, eMCI: 179 Accuracy 73.85%
2020 [37] CNN NC: 198, AD: 133 Accuracy 85.27%

2019 [38] SVM NC: 45, SCD: 39, aMCI: 45, AD: 38
Accuracy (AD vs. NC) 98.58%
Accuracy (aMCI vs. NC) 97.76%
Accuracy (SCD vs. NC) 80.24%

2019 [39] SVM NC: 24, eMCI: 24, lMCI: 24, AD: 24

Accuracy (eMCI vs. NC) 93.8%
Accuracy (lMCI vs. NC) 95.8%
Accuracy (AD vs. NC) 95.8%

Accuracy (eMCI vs. lMCI) 87.5%
Accuracy (lMCI vs. AD) 91.7%

2019 [40] ELM NC: 31 + 152, MCI: 31 + 132, AD: 33 + 81

In ANDI-2 cohort: Accuracy (AD vs. NC) 94.07%
Accuracy (MCI vs. NC) 87.54%

In the in-house cohort: Accuracy (AD vs. NC) 95.5%
Accuracy (MCI vs. NC) 86.52%

2018 [41] DAG network NC: 34, AD: 34 Accuracy 95.59%
2018 [42] SVM MCI-C: 18, MCI-NC: 62 Accuracy 97%
2019 [43] AE NC: 79, MCI: 91 Accuracy 86.47%
2018 [44] SVM NC: 35, AD: 25 Accuracy 94.44%
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half maximum (FWHM) was selected to improve the
signal-to-noise ratio of the data.

2.4.1. PerAF and mPerAF. Based on the formula, PerAF was
calculated by subtracting the BOLD signal intensity of each
voxel from the mean-time series value of the voxel and then
dividing by the mean-time series value. ,en the sum of
absolute values of each voxel in the time series was divided
by the number of time points to obtain the percentage of the
fluctuation relative to the mean BOLD signal intensity,
namely, the PerAF value of each time series. Unlike ALFF,
fALFF, and PerAF, the results are directly used for com-
parison or can be compared after averaging (mPerAF). ,is
study calculated mPerAF and PerAF in three frequency
bands, i.e., Norm-1, Slow-4, and Slow-5 frequency bands. A
Gaussian smoothing kernel of 4mm FWHM was selected to
improve the signal-to-noise ratio of data.

2.4.2. Wavelet-ALFF. ,e continuous wavelet transform
was performed on data, and the convolution of scaling and
translation form of the mother wavelet function was cal-
culated. ,en, the coefficients of each frequency point at all-
time points were added for calculation, then the average
coefficient of a given frequency band was obtained. ,is
study calculated Wavelet-ALFF in three frequency bands,
i.e., Norm-1, Slow-4, and Slow-5. A Gaussian smoothing
kernel of 4mm FWHM was selected to improve the signal-
to-noise ratio of data.

2.4.3. Degree Centrality (DC). Other nodes with significant
functional connection (r> 0.25) with each node in each
brain functional connection group were calculated to obtain
the sum DC value of the significant correlation weight of
each node, then divided by the average DC value of the
whole brain to obtain the standardized DC value. ,is study
calculated DC in three frequency bands, including Norm-1
(0.01–0.08Hz), Slow-4 (0.027–0.073Hz), and Slow-5
(0.01–0.027Hz) frequency bands. A Gaussian smoothing
core of 4mm full width-half maximum (FWHM) was se-
lected to improve the signal-to-noise ratio of data.

2.5. Statistical Analysis. SPSS 23.0 software was used for
statistical analysis in the demographic statistics part of this
study. Categorical variables, including gender, were marked
with the number of each group for direct description. Age,
education level, scale score, and other continuous variables
were described as mean± standard deviation (SD) for the
MCI group and NC group. An independent sample t-test or
Chi-square test was used for comparison between the two
groups.

2.6. Extreme Gradient Boosting (XGBoost) Classifier.
XGBoost is a type of composite tree model comprising a
series of regression and classification trees. As an open
source package, XGBoost is widely recognized in many
machine learning and data mining challenges, for example,

17 out of 29 challenge solutions posted on the Kaggle blog in
2015 used XGBoost, and the top 10 winning teams in the
2015 KDD Cup used XGBoost [50]. PyCaret 2.1 in Jupyter
Notebook was used to train and validate the XGBoost
classifier.

3. Results

3.1. Demographics Differences among NC and MCI Groups.
,e demographic characteristics of study participants are
shown in Table 2.,eMMSE score (NC: 28.53± 1.248, MCI:
25.47± 2.506, p< 0.001) and MoCA score (NC:
26.23± 1.820, MCI: 19.60± 2.768, p< 0.001) were signifi-
cantly different among groups, while no significant differ-
ences were noted in age, gender ratio, and education level.

Independent-samples t-test was used to examine the
differences in the characteristics of NC and MCI groups and
categorical data were compared using X2 tests. ∗Statistically
significant differences (p< 0.05).

3.2. Classification Performance. ,e XGBoost classifier was
trained and validated using 10-fold cross-validation to es-
timate out-of-sample performance. AUC, recall rate, pre-
cision, F1-score, Kappa value, and accuracy were reported.
Table 3 shows binary classification performances of the
XGBoost classifier in feature datasets. ,e results revealed
that lower levels of accuracy were achieved in all compar-
isons. ,e highest accuracy (65.14%) was observed in the
mPerAF datasets. Highest AUC (0.6608), recall rate
(53.33%), and F1-score (0.5285) were obtained in the fALFF
datasets. ,e highest precision (60.00%) was obtained in the
DC datasets. ,e highest Kappa value (0.2191) was obtained
in Wavelet-ALFF datasets.

,e receiver operating characteristic (ROC) curves of
the XGBoost classifier trained on 90% of datasets and tested
on the remaining 10% of datasets are shown in Figure 1.
,e AUC of the micro-average ROC curve and macro-
average ROC for prediction using DC datasets were 0.61
and 0.63 (Figure 1(a)). ,e AUC of the micro-average ROC
curve and macro-average ROC for prediction using fALFF
datasets were 0.61 and 0.64 (Figure 1(b)). ,e AUC of the
micro-average ROC curve and macro-average ROC for
prediction using mPerAF datasets were 0.58 and 0.62
(Figure 1(c)). ,e AUC of the micro-average ROC curve
and macro-average ROC for prediction using PerAF
datasets were 0.58 and 0.61 (Figure 1(d)). ,e AUC of the
micro-average ROC curve and macro-average ROC for
prediction usingWavelet-ALFF datasets were 0.66 and 0.65
(Figure 1(e)).

3.3. Model Interpretation: Shapley Additive exPlanations
(SHAP). Anatomical Automatic Labeling (AAL) is provided
by Montreal Neurological Institute (MNI), with a total of
116 regions. A total of 90 regions belong to the brain, while
the remaining 26 regions belong to the cerebellum. Each
region has the MRIcro number from 1 to 116. Based on the
SHAP algorithm, the feature ranking interpretation of the
XGBoost classifier shows the top 20 great characteristics in
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Table 2: Demographics of datasets.

NC (n� 47) MCI (n� 70) p value
Age (years) 64.91± 9.029 66.47± 8.007 0.72
Gender (M/F) 17/30 36/34 0.131
Education (years) 12.53± 2.896 9.10± 3.046 0.582
MMSE 28.53± 1.248 25.47± 2.506 <0.001∗
MoCA 26.23± 1.820 19.60± 2.768 <0.001∗

Table 3: Classi�cation performance of XGBoost classi�er.

Accuracy (%) AUC Recall (%) Precision (%) F1-score Kappa
DC 62.78 0.6558 40.00 60.00 0.4538 0.1803
fALFF 61.94 0.6608 53.33 58.33 0.5285 0.2086
mPerAF 65.14 0.6333 40.00 54.00 0.4243 0.2077
PerAF 57.78 0.5867 34.17 46.67 0.3802 0.0742
Wavelet-ALFF 63.33 0.6142 48.33 55.83 0.4833 0.2191
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Figure 1: Continued.
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predicting outcomes with di�erent datasets (Figure 2).
Generally, the characteristics of the superior parietal gyrus
(59), parahippocampal gyrus (40), right cerebellum 7b (102),
inferior temporal gyrus (90), and right superior frontal
gyrus, orbital part (6) positively correlated with the out-
comes using DC datasets. �e characteristics of left cere-
bellum 6 (99), left postcentral gyrus (57), right inferior
frontal gyrus, opercular part (12), right cerebellum 6 (100),
and vermis 6 (112) positively correlated with outcomes using
fALFF datasets. �e characteristics of the right middle
temporal gyrus (86), left middle temporal gyrus (85), left
temporal pole: middle temporal gyrus (87), right cerebellum
7b (102), and right olfactory cortex (22) positively correlated
with outcomes using mPerAF datasets. �e features of the
left cerebellum 10 (107), right middle temporal gyrus (86),
right inferior frontal gyrus, opercular part (12), vermis 6
(112), and right amygdala (42) positively correlated with
outcomes using PerAF datasets. �e characteristics of left
cerebellum 9 (105), right amygdala (42), left supramarginal
gyrus (63), left posterior cingulate gyrus (35), and right
precentral gyrus (2) positively correlated with outcomes
using Wavelet-ALFF datasets.

SHAP force plot (Figure 3) shows the interpretability of a
single model prediction used for error analysis to identify an
interpretation for a particular instance prediction.�e output
value of the XGBoost classi�er using DC datasets was −0.10,
and the characteristics of the left insula (29), right middle
frontal gyrus (8), and right cuneus (46) positively correlated
with the output value, whereas the characteristics of the right
cerebellum 7b (102), left superior parietal gyrus (59), right
superior frontal gyrus, and orbital part (6) negatively cor-
related with the output value. �e output value of the
XGBoost classi�er using fALFF datasets was 3.85 and features
of left cerebellum 6 (99), right inferior frontal gyrus, opercular
part (12), and vermis 6 (112) positively correlated with the
output value, whereas the characteristics of vermis 7 (113), left

middle frontal gyrus, orbital part (9), and left postcentral
gyrus (57) negatively correlated with the output value. �e
output value of the XGBoost classi�er using mPerAF datasets
was −0.43; the characteristics of the right middle temporal
gyrus (86), left middle temporal gyrus (85), left temporal pole,
and middle temporal gyrus (87) positively correlated with the
output value, while the characteristics of right thalamus (78),
right cerebellum 7b (102), and left hippocampus (37) nega-
tively correlated with the output value.�e output value of the
XGBoost classi�er using PerAF datasets was −2.04; the
characteristics of the right middle temporal gyrus (86), left
middle temporal gyrus (85), and left hippocampus (37)
positively correlated with the output value, whereas the
characteristics of vermis 6 (112), left cerebellum 10 (107), and
right amygdala (42) negatively correlated with the output
value. �e output value of the XGBoost classi�er using
Wavelet-ALFF datasets was −0.02 and the characteristics of
left cerebellum 9 (105), vermis 9 (115), and right precentral
gyrus (2) correlated positively with the output value, whereas
the characteristics of the left supramarginal gyrus (63), right
amygdala (42), and left middle occipital gyrus (51) negatively
correlated with the output value.

4. Discussion

A total of 15 machine learning models were used in each of
the �ve datasets (see Tables S1–S5 in the Supplementary
Materials for classi�cation performance on the �ve datasets),
and eventually, XGBoost algorithm was selected for the
classi�cation diagnosis of MCI and NC based on the overall
performance and interpretability of the model. Besides, we
used 116 features from rs-fMRI analysis in model classi�-
cation diagnosis. Based on the analysis of model perfor-
mance, it was di¨cult to classify MCI and NC using rs-fMRI
features alone, and the highest accuracy was only 65.14%
(using the mPerAF dataset).
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Figure 1: ROC curves of XGBoost classi�er trained on 90% of datasets and tested on the remaining 10% of datasets. ROC curves of XGBoost
classi�er on (a) DC datasets, (b) fALFF datasets, (c) mPerAF datasets, (d) PerAF datasets, and (e) Wavelet-ALFF datasets.
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In contrast with the classi�cation of AD and NC, the
classi�cation of MCI and NC is more di¨cult but appears
meaningful because although AD cannot be cured, interven-
tion in MCI patients e�ectively delays recognition and de-
creases cognitive capacity [51]. In previous studies, unlike the
classi�cation diagnosis of AD and NC, the diagnostic accuracy
of MCI and NC is lower. For instance, Lama and Kwon [52]
used functional magnetic resonance image features based on
graph theory for classi�cation. In the classi�cation diagnosis of
MCI and NC, although the accuracy rate of 97.80% is obtained
using Lasso regression, only 80%–86% accuracy rate is ob-
tained when other algorithms, including support vector ma-
chine based on feature elimination, adaptive structure learning,
feature learning based on pairwise correlation are used. Ber-
geron et al. [53] used the MemTrax test combined with the
MoCA score to make model predictions and obtained a
prediction accuracy of approximately 90%. Unlike the accuracy
rates reported in other studies, our accuracy rate is lower; this is
potentially attributed to the over�tting of the XGBoost algo-
rithm model because of the small sample size.

Based on our XGBoost algorithm model, the results are
quite di�erent when applied to di�erent datasets. �e im-
portant features correspond to the following AAL regions, i.e.,
superior parietal gyrus (59), parahippocampal gyrus (40),
right cerebellum 7b (102), left cerebellum 6 (99), left post-
central gyrus (57), right inferior frontal gyrus, opercular part
(12), right middle temporal gyrus (86), left middle temporal
gyrus (85), left temporal pole: middle temporal gyrus (87), left
cerebellum 10 (107), vermis 6 (112), left cerebellum 9 (105),
right amygdala (42), and left supramarginal gyrus (63). We
counted the top 20 features in �ve SHAP algorithm graphs.
Among the 116 features, 66 features appeared in the graph,
most of which only appeared in SHAP of a certain dataset,
among which right cerebellum 7b (102), right superior frontal
gyrus, orbital part (6), right middle temporal gyrus (86), right
amygdala (42), and vermis 6 (112) appeared with high fre-
quency (≥3). �is suggests that the e�ect of disease state on
brain function is extensive, and comprehensive analysis
combined with multiple indicators may be bene�cial to
further analyze the mechanism of cognitive impairment.
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Figure 2: �e XGBoost classi�er using (a) DC datasets, (b) fALFF datasets, (c) mPerAF datasets, (d) PerAF datasets, and (e) Wavelet-ALFF
datasets based on the SHAP algorithm.
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Previous studies on MCI indicate that patients with MCI
have posterior cingulate gyrus, cuneus, superior marginal
gyrus, hippocampus (belonging to the default network),
insula (belonging to the prominence network), the lingual
gyrus, middle occipital gyrus, and inferior temporal gyrus
(belonging to the visual network), which are di�erent from
NC [54, 55]. Lenka [56] et al. applied psychophysiological
interaction (PPI) analysis to detect speci�c alterations in
PCC connectivity associated with visual processing while
controlling brain atrophy. �is approach separated the MCI
from NC with 77% sensitivity and 89% speci�city. Suh et al.
[57] developed a 2-step algorithm using a convolutional
neural network to perform brain parcellation followed by 3
classi�er techniques, including XGBoost for disease pre-
diction. Compared with SVM and logistic regression,
XGBoost had a sensitivity of 68% and a speci�city of 70% in
terms of di�erentiating AD from the MCI group. In terms of
MCI from the NC group, XGBoost had a sensitivity of 79%
and a speci�city of 80%. Shmulev et al. [58] used brain MRI
and clinical data to predict MCI conversion to the AD. �e
resulting accuracy by the XGBoost algorithm is 0.76± 0.01,
and the AUC is 0.86± 0.01. Jo et al. [59] proposed a novel
three-step approach (SWAT-CNN) for the identi�cation of
genetic variants using deep learning to identify phenotype-
related single nucleotide polymorphisms (SNPs) that can be

applied to develop accurate disease classi�cation models,
and the AUC of this model is 0.82. A machine learning
framework proposed in this paper for MCI detection
achieved an accuracy of 65.14% when using the mPerAF
dataset. �ese �ndings provide novel insights into the un-
derstanding of pathological changes in the brain functional
network organization of MCI and show the potential of the
PerAF analysis-related features for MCI detection.

In the present study, we found abnormal cerebellar
activation in all �ve datasets. In the past, the cerebellum was
primarily associated with voluntary movement and postural
balance. However, clinical and anatomical work suggests
that the cerebellum may also play a role in cognition [60]. A
signi�cant number of fMRI research reports further provide
supporting evidence that the cerebellum is activated to
varying degrees in cognitive tasks (including language,
working memory, and spatial processing) [61, 62]. Studies
have proposed a connection system between the cerebellum
and thalamus; the cerebellum is connected with the thala-
mus through the brain stem and participates in related
functions of the frontal lobe cognitive circuit [63].

�is work has compelling shortcomings. First, as a single-
center study, only 117 subjects were included; this is a rel-
atively small sample size; thus, a larger sample is required in
subsequent studies to further verify the stability of the results.
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Figure 3: Force plot based on the SHAP algorithm. �e XGBoost classi�er using (a) DC datasets, (b) fALFF datasets, (c) mPerAF datasets,
(d) PerAF datasets, and (e) Wavelet-ALFF datasets.
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Secondly, the study lacks long-term follow-up, whichmakes it
impossible to track the conversion of MCI. In contrast with
the classification diagnosis of MCI and NC, predicting the
conversion ofMCI in practical application is necessary. Lastly,
this study lacks PET-CT/MR radionuclide (such as AV-45)
labeling results of subjects, thus limiting its credibility and
conviction. ,erefore, it is necessary to cooperate with
multiple hospitals to performmulticenter researches. Besides,
reliable pathological diagnosis, including the improvement of
Aβ protein examination of cerebrospinal fluid or AV-45 PET,
improves the value of the results in clinical application.

5. Conclusion

In conclusion, our findings demonstrate that the XGBoost
algorithm constructed from rs-fMRI data is effective in
classifying and diagnosing MCI. Using mPerAF dataset, we
obtained the highest accuracy for diagnosing MCI. ,is
suggests that the outcomes of rs-fMRI analysis may be useful
as imaging markers for MCI diagnosis. ,e accuracy rates
obtained by different rs-fMRI data analysis methods are
similar, but the important features are different and involve
multiple brain regions, which suggests that MCI may have a
negative impact on brain function.
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“Machine learning for predicting cognitive diseases: methods,
data sources and risk factors,” Journal of Medical Systems,
vol. 42, no. 12, p. 243, 2018.

[8] J. L. Whitwell, D. W. Dickson, M. E. Murray et al., “Neu-
roimaging correlates of pathologically defined subtypes of
Alzheimer’s disease: a case-control study,” =e Lancet Neu-
rology, vol. 11, no. 10, pp. 868–877, 2012.

[9] J. L. O”Brien, K. M. O”Keefe, and P. S. LaViolette, “Longi-
tudinal fMRI in elderly reveals loss of hippocampal activation
with clinical decline,” Neurology, vol. 74, no. 24, pp. 1969–
1976, 2010.

[10] W. T. Hu, Z. Wang, V. M.-Y. Lee, J. Q. Trojanowski,
J. A. Detre, and M. Grossman, “Distinct cerebral perfusion
patterns in FTLD and AD,” Neurology, vol. 75, no. 10,
pp. 881–888, 2010.

[11] S. H. Hojjati, A. Ebrahimzadeh, and A. Babajani-Feremi,
“Identification of the early stage of Alzheimer’s disease using
structural MRI and resting-state fMRI,” Frontiers in Neu-
rology, vol. 10, p. 904, 2019 Aug 30.

[12] Y. Gao, C. Huang, K. Zhao et al., “Retracted: depression as a
risk factor for dementia and mild cognitive impairment: a
meta-analysis of longitudinal studies,” International Journal
of Geriatric Psychiatry, vol. 28, no. 5, pp. 441–449, 2013.

[13] Z. Ismail, H. Elbayoumi, C. E. Fischer et al., “Prevalence of
depression in patients with mild cognitive impairment: a
systematic review and meta-analysis,” JAMA Psychiatry,
vol. 74, no. 1, pp. 58–67, 2017.

[14] S. Penna, “Cognitive and emotional dysfunction in mild
cognitive impairment,” Clinics in Geriatric Medicine, vol. 29,
no. 4, pp. 773–789, 2013.

[15] D. Chisholm, K. Sanderson, J. L. Ayuso-Mateos, and
S. Saxena, “Reducing the global burden of depression:

Computational Intelligence and Neuroscience 9

https://downloads.hindawi.com/journals/cin/2022/2535954.f1.docx


population-level analysis of intervention cost-effectiveness in
14 world regions,” British Journal of Psychiatry, vol. 184, no. 5,
pp. 393–403, 2004.

[16] B. W. Penninx, A. T. Beekman, D. J. Deeg, and
W. van Tilburg, “Effects of depression on physical health and
mortality in the elderly. Longitudinal results of the LASA
research,” Tijdschrift voor Gerontologie en Geriatrie, vol. 31,
no. 5, pp. 211–218, 2000.

[17] K. J. Anstey, C. von Sanden, K. Sargent-Cox, and
M. A. Luszcz, “Prevalence and risk factors for depression in a
longitudinal, population-based study including individuals in
the community and residential care,” American Journal of
Geriatric Psychiatry, vol. 15, no. 6, pp. 497–505, 2007.

[18] W. E. Ottowitz, L. Tondo, D. D. Dougherty, and C. R. Savage,
“,e neural network basis for abnormalities of attention and
executive function in major depressive disorder: implications
for application of the medical disease model to psychiatric
disorders,” Harvard Review of Psychiatry, vol. 10, no. 2,
pp. 86–99, 2002.

[19] F. Clement, S. Belleville, S. Belanger, and V. Chasse, “Per-
sonality and psychological health in persons with mild cog-
nitive impairment,” Canadian Journal on Aging, vol. 28, no. 2,
pp. 147–156, 2009.

[20] T. O. Frizzell, M. Glashutter, C. C. Liu et al., “Artificial in-
telligence in brain MRI analysis of Alzheimer’s disease over
the past 12 years: a systematic review,” Ageing Research Re-
views, vol. 77, Article ID 101614, 2022 May.

[21] T. Jitsuishi and A. Yamaguchi, “Searching for optimal ma-
chine learning model to classify mild cognitive impairment
(MCI) subtypes using multimodal MRI data,” Scientific Re-
ports, vol. 12, no. 1, p. 4284, 2022 Mar 11.

[22] Y. Hu, C. Wen, G. Cao, J. Wang, and Y. Feng, “Brain network
connectivity feature extraction using deep learning for Alz-
heimer’s disease classification,” Neuroscience Letters, vol. 782,
Article ID 136673, 2022 May 2.

[23] P. Wang, X. Zhang, C. Zhao et al., “Abnormal character-
ization of dynamic functional connectivity in Alzheimer’s
disease,” Neural Regen Res, vol. 17, no. 9, pp. 2014–2021, 2022
Sep.

[24] H. Han, X. Li, J. Q. Gan, H. Yu, H. Wang, and Alzheimer’s
Disease Neuroimaging Initiative, “Biomarkers derived from
alterations in overlapping community structure of resting-
state brain functional networks for detecting Alzheimer’s
disease,” Neuroscience, vol. 484, pp. 38–52, 2022 Feb 21.

[25] J. M. Gullett, A. Albizu, R. Fang et al., “Baseline neuroimaging
predicts decline to dementia from amnestic mild cognitive
impairment,” Frontiers in Aging Neuroscience, vol. 13, Article
ID 758298, 2021.

[26] T. Zhang, Q. Liao, D. Zhang et al., “Predicting MCI to AD
conversation using integrated sMRI and rs-fMRI: machine
learning and graph theory approach,” Frontiers in Aging
Neuroscience, vol. 13, Article ID 688926, 2021.

[27] Y. Zhang, H. Zhang, E. Adeli, X. Chen, M. Liu, and D. Shen,
“Multiview feature learning with multiatlas-based functional
connectivity networks for MCI diagnosis,” IEEE Transactions
on Cybernetics, vol. 52, no. 7, pp. 6822–6833, 2022.

[28] X. Xu,W. Li, M. Tao et al., “Effective and accurate diagnosis of
subjective cognitive decline based on functional connection
and graph theory view,” Frontiers in Neuroscience, vol. 14,
Article ID 577887, 2020.

[29] L. Zhang, H. Ni, Z. Yu et al., “Investigation on the alteration of
brain functional network and its role in the identification of
mild cognitive impairment,” Frontiers in Neuroscience, vol. 14,
Article ID 558434, 2020.

[30] Y. Gao, A. Sengupta, M. Li et al., “Functional connectivity of
white matter as a biomarker of cognitive decline in Alz-
heimer’s disease,” PLoS One, vol. 15, no. 10, Article ID
e0240513, 2020.

[31] G. Castellazzi, M. G. Cuzzoni, M. Cotta Ramusino et al., “A
machine learning approach for the differential diagnosis of
alzheimer and vascular dementia fed by MRI selected fea-
tures,” Frontiers in Neuroinformatics, vol. 14, p. 25, 2020.

[32] J. Shi and B. Liu, “Stage detection of mild cognitive im-
pairment via fMRI using Hilbert Huang transform based
classification framework,” Medical Physics, vol. 47, no. 7,
pp. 2902–2915, 2020.

[33] X. Xu, W. Li, J. Mei et al., “Feature selection and combination
of information in the functional brain connectome for dis-
crimination of mild cognitive impairment and analyses of
altered brain patterns,” Frontiers in Aging Neuroscience,
vol. 12, p. 28, 2020.

[34] F. Ramzan, M. U. G. Khan, A. Rehmat et al., “A deep learning
approach for automated diagnosis and multi-class classifi-
cation of Alzheimer’s disease stages using resting-state fMRI
and residual neural networks,” Journal of Medical Systems,
vol. 44, no. 2, p. 37, 2019.

[35] J. Zhao, X. Ding, Y. Du, X. Wang, and G. Men, “Functional
connectivity between white matter and gray matter based on
fMRI for Alzheimer’s disease classification,” Brain Behav,
vol. 9, no. 10, p. e01407, 2019.

[36] T. E. Kam, H. Zhang, Z. Jiao, and D. Shen, “Deep learning of
static and dynamic brain functional networks for early MCI
detection,” IEEE Transactions on Medical Imaging, vol. 39,
no. 2, pp. 478–487, 2020.

[37] N. T. Duc, S. Ryu, M. N. I. Qureshi, M. Choi, K. H. Lee, and
B. Lee, “3D-Deep learning based automatic diagnosis of
Alzheimer’s disease with joint MMSE prediction using rest-
ing-state fMRI,” Neuroinformatics, vol. 18, no. 1, pp. 71–86,
2020.

[38] T. Yan, Y. Wang, Z. Weng et al., “Early-Stage identification
and pathological development of Alzheimer’s disease using
multimodal MRI,” Journal of Alzheimer’s Disease, vol. 68,
no. 3, pp. 1013–1027, 2019.

[39] J. Sheng, B. Wang, Q. Zhang et al., “A novel joint HCPMMP
method for automatically classifying Alzheimer’s and dif-
ferent stage MCI patients,” Behavioural Brain Research,
vol. 365, pp. 210–221, 2019.

[40] D. T. Nguyen, S. Ryu, M. N. I. Qureshi, M. Choi, K. H. Lee,
and B. Lee, “Hybrid multivariate pattern analysis combined
with extreme learning machine for Alzheimer’s dementia
diagnosis using multi-measure rs-fMRI spatial patterns,”
PLoS One, vol. 14, no. 2, p. e0212582, 2019.

[41] J. Qiao, Y. Lv, C. Cao, Z. Wang, and A. Li, “Multivariate deep
learning classification of Alzheimer’s disease based on hier-
archical partner matching independent component analysis,”
Frontiers in Aging Neuroscience, vol. 10, p. 417, 2018.

[42] S. H. Hojjati, A. Ebrahimzadeh, A. Khazaee, A. Babajani-
Feremi, and Alzheimer’s Disease Neuroimaging Initiative,
“Predicting conversion from MCI to AD by integrating rs-
fMRI and structural MRI,” Computers in Biology and Medi-
cine, vol. 102, pp. 30–39, 2018.

[43] R. Ju, C. Hu, P. Zhou, and Q. Li, “Early diagnosis of Alz-
heimer’s disease based on resting-state brain networks and
deep learning,” IEEE/ACM Transactions on Computational
Biology and Bioinformatics, vol. 16, no. 1, pp. 244–257, 2019.

[44] X. A. Bi, Q. Shu, Q. Sun, and Q. Xu, “Random support vector
machine cluster analysis of resting-state fMRI in Alzheimer’s
disease,” PLoS One, vol. 13, no. 3, p. e0194479, 2018.

10 Computational Intelligence and Neuroscience



[45] D. Shi, Y. Li, H. Zhang et al., “Machine learning of schizo-
phrenia detection with structural and functional neuro-
imaging,” Disease Markers, vol. 2021, p. 9963824, 2021.

[46] R. C. Petersen, “Mild cognitive impairment as a diagnostic
entity,” Journal of Internal Medicine, vol. 256, no. 3,
pp. 183–194, 2004.

[47] X.-Z. Jia, J. Wang, H.-Y. Sun et al., “RESTplus: an improved
toolkit for resting-state functional magnetic resonance im-
aging data processing,” Science Bulletin, vol. 64, no. 14,
pp. 953-954, 2019.

[48] C. G. Yan, B. Cheung, C. Kelly et al., “A comprehensive
assessment of regional variation in the impact of head
micromovements on functional connectomics,” NeuroImage,
vol. 76, pp. 183–201, 2013.

[49] K. J. Friston, S. Williams, R. Howard, R. S. J. Frackowiak, and
R. Turner, “Movement-Related effects in fMRI time-series,”
Magnetic Resonance in Medicine, vol. 35, no. 3, pp. 346–355,
1996.

[50] N. Hou, M. Li, L. He et al., “Predicting 30-days mortality for
MIMIC-III patients with sepsis-3: a machine learning ap-
proach using XGboost,” Journal of Translational Medicine,
vol. 18, no. 1, p. 462, 2020.

[51] V. Lissek and B. Suchan, “Preventing dementia? Interven-
tional approaches in mild cognitive impairment,” Neurosci-
ence & Biobehavioral Reviews, vol. 122, pp. 143–164, 2021.

[52] R. K. Lama and G.-R. Kwon, “Diagnosis of Alzheimer’s
disease using brain network,” Frontiers in Neuroscience,
vol. 15, p. 605115, 2021.

[53] M. F. Bergeron, S. Landset, X. Zhou et al., “Utility of MemTrax
and machine learning modeling in classification of mild
cognitive impairment,” Journal of Alzheimer’s Disease, vol. 77,
no. 4, pp. 1545–1558, 2020.

[54] Y. Han, J. Wang, Z. Zhao et al., “Frequency-dependent
changes in the amplitude of low-frequency fluctuations in
amnestic mild cognitive impairment: a resting-state fMRI
study,” NeuroImage, vol. 55, no. 1, pp. 287–295, 2011.

[55] P. Pan, L. Zhu, T. Yu et al., “Aberrant spontaneous low-
frequency brain activity in amnestic mild cognitive impair-
ment: a meta-analysis of resting-state fMRI studies,” Ageing
Research Reviews, vol. 35, no. 12-21, pp. 12–21, 2017.

[56] L. Krajcovicova, M. Barton, N. Elfmarkova-Nemcova,
M. Mikl, R. Marecek, and I. Rektorova, “Changes in con-
nectivity of the posterior default network node during visual
processing in mild cognitive impairment: staged decline be-
tween normal aging and Alzheimer’s disease,” Journal of
Neural Transmission, vol. 124, no. 12, pp. 1607–1619, 2017.

[57] C. H. Suh, W. H. Shim, S. J. Kim et al., “Development and
validation of a deep learning-based automatic brain seg-
mentation and classification algorithm for alzheimer disease
using 3D T1-weighted volumetric images,” AJNR Am J
Neuroradiol, vol. 41, no. 12, pp. 2227–2234, 2020.

[58] Y. Shmulev, M. Belyaev, and Alzheimer’s Disease Neuro-
imaging Initiative, “Predicting conversion of mild cognitive
impairments to Alzheimer’s disease and exploring impact of
neuroimaging,” Graphs in Biomedical Image Analysis and
Integrating Medical Imaging and Non-imaging Modalities,
pp. 83–91, Springer, Cham, 2018.

[59] T. Jo, K. Nho, P. Bice, A. J. Saykin, and Alzheimer’s Disease
Neuroimaging Initiative, “Deep learning-based identification
of genetic variants: application to Alzheimer’s disease clas-
sification,” Briefings in Bioinformatics, vol. 23, no. 2,
p. bbac022, 2022.

[60] J. D. Schmahmann and J. C. Sherman, “,e cerebellar cog-
nitive affective syndrome,” Brain, vol. 121, no. 4, pp. 561–579,
1998.

[61] H. C. Leiner, A. L. Leiner, and R. S. Dow, “Does the cere-
bellum contribute to mental skills? [j],” Behavioral Neuro-
science, vol. 100, no. 4, pp. 443–454, 1986.

[62] C. J. Stoodley, “,e cerebellum and cognition: evidence from
functional imaging studies,” =e Cerebellum, vol. 11, no. 2,
pp. 352–365, 2012.

[63] E. V. Sullivan, “Compromised pontocerebellar and cer-
ebellothalamocortical systems: speculations on their contri-
butions to cognitive and motor impairment in nonamnesic
alcoholism,” Alcoholism: Clinical and Experimental Research,
vol. 27, no. 9, pp. 1409–1419, 2003.

Computational Intelligence and Neuroscience 11


