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Recently, the electroencephalogram (EEG) signal presents an excellent potential for a new person identification technique. Several studies
defined the EEGwith unique features, universality, and natural robustness to be used as a new track to prevent spoofing attacks.-e EEG
signals are a visual recording of the brain’s electrical activities, measured by placing electrodes (channels) in various scalp positions.
However, traditional EEG-based systems lead to high complexitywithmany channels, and some channels have critical information for the
identification system while others do not. Several studies have proposed a single objective to address the EEG channel for person
identification. Unfortunately, these studies only focused on increasing the accuracy rate without balancing the accuracy and the total
number of selected EEG channels. -e novelty of this paper is to propose a multiobjective binary version of the cuckoo search algorithm
(MOBCS-KNN) to find optimal EEG channel selections for person identification.-eproposedmethod (MOBCS-KNN) used aweighted
sum technique to implement a multiobjective approach. In addition, a KNN classifier for EEG-based biometric person identification is
used. It is worthmentioning that this is the initial investigation of using amultiobjective techniquewith EEG channel selection problem. A
standard EEGmotor imagery dataset is used to evaluate the performance of theMOBCS-KNN.-e experiments show that theMOBCS-
KNNobtained accuracy of 93.86% using only 24 sensors withAR20 autoregressive coefficients. Another critical point is that theMOBCS-
KNN finds channels not too close to each other to capture relevant information from all over the head. In conclusion, the MOBCS-KNN
algorithm achieves the best results compared with metaheuristic algorithms. Finally, the recommended approach can draw future
directions to be applied to different research areas.
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1. Introduction

Over many years, our universe has transferred to a digital
community in which each person is living with a particular
digital identifier. Indeed, there are several kinds of identi-
fiers, such as identification cards and passwords. Meanwhile,
they can be easily circumvented, stolen, and forgotten [1].
-erefore, personal behavior or characteristics can be used
to strengthen identification systems. Such techniques, the
so-called biometrics, make use of several pieces of in-person
information to allow more robust identification systems,
such as face and voice recognition, fingerprint information,
and iris data [2]. -e motivation of using EEG and body
sensors in healthcare systems has been an interesting area for
many researchers [3–5].

On the other hand, the widespread and influential de-
ployment of biometric systems leads to a new challenge,
which is called “spoofing” [1, 6–8]. Such type of attack is
classified as the most dangerous in security systems since it is
designed to break the biometric systems’ security, thus
allowing unwarranted persons to get admission to the
system [2].

In real life, there have already been several spoofing
attacks on the biometrics systems, such as face spoofing
(printed photos and 3D mask attack [9–12]), fake finger-
prints (gummy fingers), finger-vein systems fooled through
a piece of paper [13], iris recognition systems fooled by an
eyeball opposite to the scanner of iris, and voice recognition
fooled through replaying a voice recording opposite to the
recognition system speaker [14]. -erefore, people are
looking for biometric authentication systems that can grant
access to a person based on invisible characteristics, thus
becoming harder to be attacked by an external threat. In this
context, one shall refer to user authentication based on brain
signals, which can be captured by the well-known electro-
encephalogram (EEG) exam [15].

-e EEG signals appear as a great alternative for de-
signing new biometric systems since several studies showed
that such information presents uniqueness features, uni-
versality, and natural robustness to spoofing attacks [1, 16].
-ese signals represent the graphical recording of the brain
electrical activity, which can be measured by placing elec-
trodes (sensors) in different positions of the scalp [1, 17–20].
EEG channel selection is totally dependent on the charac-
teristics of the EEG signal, where the most informative
features that provide the highest accuracy rate from the
channel selection shall be determined.

Multiobjective optimization algorithms have been ap-
plied in different methodological phases and criteria [21, 22].
In a multiobjective formulation of the feature selection
problem, the possible features define the vector of decision
variables. -e space of features in many classification
problems is usually very large [23]. In [24, 25], the authors
proposed new methods for feature selection, based on a

multiobjective evolutionary algorithm, which managed to
select a small subset of features, trying to avoid the over-
fitting problems and reduce classification problems in high-
dimensional feature space. In the same direction, the feature
selection problem has been also solved by an embedded
multiobjective genetic optimization procedure, subject to
the simultaneous minimization of the misclassification ratio
and number of selected attributes [26, 27]. Multiobjective
optimization algorithms have been also used in the deion-
izing stage of EEG signal. In [28], an approach has been
adopted in the signal deionizing stage to model decompo-
sition and present two metrics to quantify the amount of
EEG information lost during the cleaning process. Fur-
thermore, in [7], the authors proposed a novel method for
extracting unique features from the original EEG signals
using the multiobjective flower pollination algorithm and
the wavelet transform.

One of the significant challenges concerning EEG-based
user identification technique is signal acquisition, which is
performed by placing several electrodes (sensors) on a
person’s head. As a drawback, such a process is usually
uncomfortable since it requires good knowledge to place the
sensors in their correct positions. Additionally, some
questions must be considered such as the following: “Is it
really necessary to put all these electrodes on a persons’
head? If not, can we identify the most relevant ones for user
identification and then use a smaller number of sensors?”
-e above questions motivated our attempts to model the
EEG channel selection as an optimization problem. In this
work, we aim at learning the most important EEG channels
by proposing a hybrid approach composed of the cuckoo
search algorithm (CSA) [29], hereinafter called “MOCS-
EEG.”-e classification step is performed by KNN classifier.
-e main contributions of this paper are threefold:

(1) To evaluate binary cuckoo search algorithm (BCSA)
for EEG-based person identification

(2) Tomodel the problem of EEG channel selection as an
evolutionary-based optimization task

(3) To propose a multiobjective technique combined
with the KNN classifier for EEG-based biometric
person identification

We use evolutionary optimization algorithms for the
EEG channel selection due to their efficiency when solving
challenging real-world problems and their simplicity. -e
performance of the proposed method (MOCS-KNN) is
compared with other seven multiobjective metaheuristic
algorithms (binary PSO (MOPSO-KNN), binary GWO
(MOGWO-KNN), binary FFA (MOFFA-KNN), binary BAT
(MOBAT-KNN), binary MVO (MOMVO-KNN), binary
WOA (MOWOA-KNN), and binary MFO (MOMFO-
KNN)). -e comparison includes five measures, which are
accuracy ratio (EEGACC), channels selected (EEGLen),
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Specificity (EEGPrecision), F-score (EEGFscore), and Recall
(EEGRecall). -e results show that the proposed technique
(MOCS-KNN) is able to outperform other metaheuristic
algorithms in almost all results produced.

-e remainder of this paper is organized as follows: the
related works about a number of EEG-based identification
techniques are reviewed in Section 2. A discussion about
cuckoo search algorithm is presented in Section 3. -e
proposed method is provided in Section 4. Results are
discussed in Section 5, and Section 6 provides conclusions
and future work.

2. Related Works

-is section presents an overview of previous studies related
to using optimization algorithms in the BCI applications.
Several works have been proposed based on optimization
algorithms for tackling issues relevant to person identifi-
cation case study. According to [1, 30], the number of se-
lected channels can effect positively the accuracy of
classification task. -e authors especially addressed the
problem of reducing the number of required sensors while
maintaining a comparable performance. -ey have achieved
significant results by obtaining very good person identifi-
cation rates using much fewer channels. In [1], the authors
proposed a binary version of the flower pollination algo-
rithm under different transfer functions to select the best
subset of channels that maximizes the accuracy. In [31], the
authors proposed a genetic algorithm to reduce the number
of necessary electrodes for measurements by EEG devices.
-e results were encouraging, and it was possible to accu-
rately identify a subject using about 10 out of 64 electrodes.
-e Authors in [16] proposed hybrid optimization tech-
niques based on binary flower pollination algorithm (FPA)
and β-hill climbing (called FPA β-hc) for selecting the most
relative EEG channels (i.e., features) that come up with
efficient accuracy rate of personal identification. -e pro-
posed method is able to identify persons with high Acc, Sen,
F s, and Spe and less number of channels selected. However,
these studies have concentrated only on the number of
channels as baseline for optimization process.

In [7], the authors have proposed novel method for EEG
signal denoising based on the multiobjective flower polli-
nation algorithm. -ey designed a multiobjective function
that considers a balance between reducing the EEG noise
and keeping its signal energy. In [32], the authors proposed
multiobjective optimization method for optimal electroen-
cephalographic (EEG) channel selection to provide access to
subjects with permission in a system by detecting intruders
and identifying the subject. -e optimization process was
performed by the nondominated sorting genetic algorithm
(NSGA). -e optimization process consists of finding the
best nu and gamma for the SVM with the RBF kernel to
increase the TAR, TRR, and accuracy of subject identifi-
cation or maintain them as high as possible for previous
configurations, while using the smallest number of possible
EEG channels. However, the optimization process is re-
stricted within SVM hyperparameters, and it is hard to
generalize for another study, especially when using different

classifiers where each classifier has its own characteristics
and hyperparameters.

To summarize, for person identification within opti-
mization algorithms, two schemes have been observed: first,
optimization scheme based on single objective criteria,
mainly channel selection; second, optimization scheme
based multiobjective criteria such as channel selection, EEG
noise, and classifiers hyperparameters. Bioinformatics ap-
plications frequently involve classification problems that
require improving the learning accuracy [33]. According to
[32], certain aspects need to be analyzed and improved
before reaching an industrial level application of new bio-
metric systems. One is person identification, which is an
essential security layer in any secure system. -is is also
important for the development of portable low-density EEG
devices that retain similar accuracy to high-density EEG.
-us, the accuracy of person identification is very important
aspect. To the best of our knowledge, on the one hand, this is
the first study to present multiobjective optimization based
on the number of channels and the classification accuracy
weights as baseline for optimization process. On the other
hand, this is the first study to implement and test eight
optimization algorithms in order to generalize the best al-
gorithm that can be adopted for the person identification
task.

3. Cuckoo Search Algorithm

Cuckoo search (CS) algorithm is a natural-based swarm-
intelligence metaheuristic proposed by Yang and Deb [34] to
imitate the behavior of cuckoo birds in the reproduction
process. It simulates the way of cuckoo bird when laying its
fertilized eggs in other bird’s nest where its children are
looked after by proxy parents. Cuckoo bird may also remove
the original nest eggs to improve the hatching chance of their
eggs. When the proxy parents discover that their foreign
eggs do not belong to them, they either throw them out of
the nest or abandon the nest. -e process of the cuckoo egg
reproductions is modeled as an optimization algorithm to
formulate CS. -ree assumptions are adopted to formulate
CS algorithm in optimization context.

(i) Each cuckoo chooses only one nest to lay one egg in
that nest.

(ii) -e high quality egg in the best nest is marked to be
used in the next generations.

(iii) Since the number of hosting nests is predetermined
in advance, the host cuckoo can discover that the
eggs in the nest are not its own eggs with a prob-
ability of pa where pa ∈ (0, 1). In this case, the host
birds either throw the foreign eggs or abandon the
nest and rebuild another one in different place.

In CS algorithm, the eggs in each nest represent the set of
solutions while the cuckoo eggs represent the new solution
(see Figure 1). -e quality of eggs in the nest is the fitness
function of that solution. -e ultimate aim is to replace the
eggs in a nest with potentially better cuckoo eggs. -e
cuckoo frequently changes its position using Levy flights
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after leaving nest.-e host bird can throw the cuckoo eggs or
leave the nest when cuckoo eggs are discovered. -e flow-
chart of the CS algorithm is given in Figure 1. -e pseu-
docode of CS algorithm is given in Algorithm 1. Table 1
shows the local and global search parameters of CS algo-
rithm.-e discussion below provides procedural steps of the
CS algorithm.

Step 1: initialize CS algorithm parameters. Initially, the
optimization problem is conventionally modeled in
terms of objective function as follows:

min
x∈[LB,UB]

f(x) , (1)

where f(x) is the objective function to evaluate the
quality of the solution x � (x1, x2, . . . , xd) of d decision
variables. Each decision variable xi ∈ [LBi,UBi] in
which LBi is the lower bound and UBi is the upper
bound of variable xi, respectively. -e parameters of
the optimization problem are normally extracted from
the datasets. -e objective function is used to evaluate
the solutions of the problem.
-e CS parameters can be divided into two types: (i)
algorithmic parameters such as maximum number of
iterations and number of nests or population size; (ii)
control parameter pa which is the discovery rate of
alien eggs/solutions.
Step 2: initialize the host nest population (HNP). -e
host nest population is formulated as a matrix HNP of
size N × d, where the N is the total number of eggs in
the nests and d is the solution dimension. Each row in
the HNP represents a solution as shown in the fol-
lowing equation:

HNP �

x
1
1 x

1
2 · · · x

1
d

x
2
1 x

2
2 · · · x

2
d

⋮ ⋮ · · · ⋮

x
N
1 x

N
2 · · · x

N
d

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2)

-e objective function value f(xi) of each solution xi is
also calculated.

Step 3: this step is also called global random walk. For
each solution, xi(t) in the HNP is updated (i.e.,
xi(t + 1)) using Levy flights step as formulated in the
following equation:

xi
(t + 1) � xi

(t) + α⊕ L(s, λ), (3)

where

L(s, λ) �
λΓ(λ)sin(πλ/2)

π
1

s
1+λ, s≥ s0 > 0, (4)

where α> 0 is the step size scale factor while s is the step
size. Note that the step size is calculated based on the
scale size of the optimization problem on hand [35–37].
-e mathematical notation ⊕ refers to pairwise product
operation. Le

�
vy(λ) is the Le

�
vy flights and is calculated

based on heavy-tailed probability distribution formu-
lated in (3). -e random walk is represented in the
stochastic equation (4). Γ is the gamma function.
Step 4: update the host nest population. In order to
update the HNP, each solution
xi(t + 1), i ∈ (1, ldots, N) updated by Le

�
vy flights step

is compared with another randomly selected solution
xj, xj(t) ∈ NHP. -ereafter, the solution xj(t) is
replaced by solution xi(t + 1), if the latter is better.
Step 5: local random probability of Pa, each solution
xi(t + 1), i ∈ (1, ldots, N) in the HTP(t + 1) is check
for weather or not abandoned as follows:

xi
(t + 1) � xi

(t) + αs⊗H pa − ε( 􏼁⊗ x
j
(t) − x

k
(t)􏼐 􏼑,

(5)

where xj(t) and xk(t) are two different randomly
selected solutions and H(u) is the Heaviside function. ε
is a function that generates a random number extracted
from a uniform distribution, and s is the step size. For
more clarifications about the CS algorithm convergence
behavior, interesting papers can be referred to
[34, 35, 38].
Step 6: stop criterion. Steps 3, 4, and 5 are repeated until
the termination criterion; for example, the maximum
number of iterations is met.

Host eggs

Nest 1 Nest 2 Nest N

...

Cuckoo eggs

Figure 1: -e nests with cuckoo eggs.

4 Computational Intelligence and Neuroscience



CS algorithm is successfully applied to solve several
optimization problems like traveling salesman problem [39],
economic load dispatch [40], face recognition [41], loading
pattern optimization [42], data clustering [43], feature se-
lection [44], short-term load forecasting [45], modeling
proton exchange membrane fuel cells [46], electric distri-
bution network reconfiguration [47], optimal reactive power
scheduling [48], contrast enhancement of gray scale images
[49], estimating peak particle velocity in mine blasting [50],
systems of nonlinear equations [51], maximizing area cov-
erage in wireless sensor networks [52], job scheduling [53],
and others reported in [35, 54, 55].

However, the framework of the CS algorithm is
modified and integrated with other components in order
to improve its performance. -ese modifications include
CS algorithm with adaptive parameters [56, 57], multi-
objective CSA [45, 58], chaotic CSA [43, 59], binary CS
algorithm [60, 61], CS algorithm with other metaheuristic
algorithms [52, 62, 63], CS algorithm with other com-
ponents [52, 64], and other improvements of CS algo-
rithm [44, 51, 59, 65].

4. Methodology

-is section provides a full explanation of the methodology
of the proposed MOCS with KNN classifier (MOCS-KNN)
to solve EEG channel selection problem. Overall, the
methodology has five phases. Figure 2 shows the flowchart of
these phases. Phase I involved EEG signal acquisition task
which has been done using 64 electrodes. Section 5.2 will
provide more details about this phase. In Phase II, two

conventional filters (band-pass and notch filter) were used to
remove unwanted artifacts from the original EEG signal
such as those used in [16], and then wavelet was applied to
denoise the EEG signal as suggested in [17]. In Phase III,
three autoregressive coefficients have been extracted from
the denoised EEG signal as feature extraction data, that is,
AR5, AR10, and AR20, which are suggested by Rodrigues
et al. [1].

Phase IV is the main contribution of this work where a
multiobjective cuckoo search algorithm for EEG channel
selection is proposed. -e following subsections explain in
detail the proposed method.

4.1. Formulation of Multiobjective Approach. In this work,
we used a weight sum approach for implementing multi-
objective optimization as suggested by [66]. In the weighted
sum approach, the weighting coefficients consider the
preferences of the multiple objectives. Basically, the multi-
objective optimization for EEG channel selection can be
defined as follows:

Maximize Fit � 􏽘
N

k�1
Wkfk, (6)

with

􏽘

N

k�1
Wk � 1, Wk > 0, (7)

where N is the number of objective functions and Wk refers
to the nonnegative weights.

Table 1: Local and global search parameters of CS algorithm.

Parameter Description
xt+1

i -e next position
xt

k -e current position selected randomly at the position k

xt
j -e current position selected randomly at the position j

α Positive step size scaling factor
s Step size
⊗ Entrywise product of two vectors
H Heaviside function
pa Used to switch between local and global random walks
ε Random number from uniform distribution
L(s, λ) Le

�
vy distribution, used to define the step size of random walk

(1) Initialize the parameters of CS algorithm.
(2) Construct the initial host nest population HNP.
(3) Calculate the fitness of each host nest in the population (xi), where 0≤ i≤N.
(4) t � 1
(5) while termination criterion is not met do
(6) Global random walk using (3)
(7) Update the host nest population
(8) Local random walk using (5)
(9) end while
(10) Return the best solution.

ALGORITHM 1: -e CS algorithm pseudocode.
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Maximize Fit � f1 × W1 + f2 × W2, (8)

where f 1 and f 2 refer to accuracy measure (12) and
number of electrodes selected, respectively. W1 � 0.8 and
W2 � 0.2 refer to the weights of f 1 and f 2.

4.2. Transfer Function. Since the proposed approach was
initially designed to handle continuous-valued optimi-
zation problems, we need to map each possible solution
onto a binary-valued position (i.e., the EEG channel
selection problem requires encoding each possible so-
lution as a binary vector, where “0” means the channel
will not be used and “1” the opposite situation) [1, 67]. In
order to restrict binary solutions only, we need to use the
so-called “transfer function” V, which is defined as
follows:

V st
i􏼐 􏼑 �

1, ϕ> σ st
i􏼐 􏼑,

0, otherwise,

⎧⎨

⎩ (9)

where

σ st
i􏼐 􏼑 �

1
1 + e

−st
i

, (10)

and ϕ ∼ U(0, 1). Figure 3 illustrates how to build a binary
vector and to select the optimal EEG subset channels using
MOCS-KNN.

-ere are three steps that must be considered to select
the optimal subset of channels. First, random initialization
of the binary vector (representing the EEG channels) is
conducted, where “1” means that a given channel will be
selected and “0” indicates that the channel will not be se-
lected. Later, the MOCS-KNN will start searching for the

space to find the optimal subset of channels, i.e., the one that
can provide the highest accuracy rate. Finally, we discard all
channels with “0” values and keep the remaining ones.

4.3. Cuckoo Search Algorithm for EEG Channel Selection.
MOCS-KKN is a powerful metaheuristic swarm-based
optimization algorithm. MOCS-KKN has a high ability to
explore and exploit a particular problem search space
using its two control parameters, A and C. In addition, it
can explore the search space optimally using its best three
solutions. -erefore, MOCS-KKN is adapted for the EEG
channel selection problem (MOCS-KKN) in an attempt to
find the optimal/near-optimal EEG channel set and
achieve the highest accuracy rate. Each solution provided
by MOCS-KKN is evaluated based on the objective
function (12). -e main MOCS-KKN adaptation steps for
the EEG channel selection problem are thoroughly dis-
cussed below.

Step 1: initialize MOCS parameters. -e first step of
adapting MOCS is initializing the EEG channel se-
lection problem and MOCS parameters. -e EEG
channel selection problem parameters are CHn.
MOCS parameters are the minimum (LB) and
maximum (UB) ranges for the search agent, which
are initialized to be 1 and 64, respectively, due to the
total number of EEG channels, the number of search
agents in the pack (N), and the maximum number of
iterations (I).
Step 2: initialize MOCS population. In this step, all
MOCS’s solutions are initialized and generated ran-
domly to configure the population. Each solution
represents a cuckoo in MOCS and contains the AR

1 0 0 1 1 1 0 1 0 0 1 0 1 0 0 0 1 1 1 1 1 0 0 1 1

1 0 0 1 1 1 0 1 0 0 1 0 1 0 0 0 1 1 0 1 1 0 0 1 1

1 0 0 1 1 1 0 1 0 1 1 0 1 0 0 0 1 1 0 1 1 0 0 1 1

1 0 0 1 1 1 0 1 0 0 1 0 1 0 0 0 1 1 0 1 1 0 0 1 1

1 0 0 1 1 1 0 1 0 0 1 0 1 0 0 0 1 1 0 1 1 0 0 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 0 0 1 1 1 1 1 0 0 1 0 1 0 0 0 1 1 1 1 1 0 0 1

1 1 0 0 1 1 1 1 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1 1

sCh1, sCh2, sCh3,..., sChd-1, sChd

Subject 1

....

....

.... .... .... .... ....

.... .... ....

........ .... ....
....

.... ....

Subject 1

Subject S

Subject 1

Subject S

Training Task

Brain Stimulation

Phase I : EEG
Acquisition

EEG Channel 1 EEG Channel N

Phase II : Pre-processing

Phase III : EEG Feature Extraction

Phase I : EEG Acquisition

Testing Task

Phase II : Pre-processing

Phase III : Features and
channel selection

Phase IV : EEG Channel Selection using
Binary Multi-objective Metaheuristic

algorithms with KNN

KNN Classifier

Phase V: Results evaluation

Yes No
Matching

Verification successful Verification failed

EEG Database

Subject S

Random Initialization: binary vector of channels ,1 refers to channel selected and 0 refers to non selected

Where k < dChannel Selected 1,2,3,.....k

Binary Metaheuristic algorithms with KNNStep 3: Optimal EEG channels selected using Multi-objective

Step 2:

Step 1:

Omit all EEG channels with 0 value

Figure 2: Flowchart of the proposed method (MOCS-KNN).
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feature’s coefficient. Figure 4 presents a solution in
MOCS-CS population (P). P contains 30 solutions as
shown in the following equation:

P �

CHn
1
1 CHn

1
2 · · · CHn

1
m

CHn
2
1 CHn

2
2 · · · CHn

2
m

⋮ ⋮ · · · ⋮

CHn
y
1 CHn

y
2 · · · CHn

y
m

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (11)

Step 3: objective function evaluation. As men-
tioned previously, each solution is evaluated based
on the objective function in (8). After this evalu-
ation, the best three solutions will be assigned to
best cuckoo.
Step 4: update MOCS-KNN population. -e pop-
ulation of BMOCS-KNN method will be updated in
this step in an attempt to find better solutions and
achieve the optimal EEG channel set. -is updating can
be done using (4). -e updating mechanism starts by
generating new solutions.
Step 5: check the stop criterion.

Steps 3 and 4 of MOCS-KNN are repeated until the stop
criterion is met.

5. Result and Discussion

In this section, we discuss the details of the experiments used
to assess the robustness of the proposed approach as well as
the dataset employed in this work. Parameter setting and
experimental setup are later discussed in Section 5.3, while
Section 5.4 presents a comparison between the proposed

approach, MOCS-KNN, and other metaheuristic
algorithms.

5.1. He Performance of Traditional EEG Classification
Methods. -e main purpose of this section is to provide a
brief idea about the performance of traditional machine
learning classification approach used for EEG-based
personal identification problem. -e measurements used
to evaluate the performance are the classification accu-
racy and the area under curve (AUC). -e results ob-
tained are summarized in Table 2 using three datasets.
Several traditional EEG classification methods are
experimented with: artificial neural networks (ANN),
linear support vector machines, support vector machine
with radial basis function (RBF-SVM), k-nearest neigh-
bors (k-NN), decision tree (J48), optimum-path forest
(OPF), Naive Bayes, and linear discriminant analysis
(LDA). Based on the results reported, the KNN is able to
achieve better classification accuracy for EEG-based
personal identification problem. -erefore, the KNN is
adopted for MOCS-EEG.

-e area under curve (AUC) measures and confusion
matrix are also visualized for KNN results in Figure 5.

5.2. Dataset. In this work, a standard EEG dataset [68] has
been used for evaluating the proposed method (FPA β-hc).
-e brain signals of this dataset are collected from 109
subjects using brain-computer interface software called
BCI2000 system [69]. -e EEG signals are then acquired
from 64 electrodes (i.e., channels), and each subject per-
forms 12motor/imagery tasks (i.e., 12 records of EEG signals
for each subject). Further, AR features are extracted from
these 12 recordings with three different number of

1 0 0 1 1 1 0 1 0 0 1 0 1 0 0 0 1 1 1 1 1 0 0 1 1

1 0 0 1 1 1 0 1 0 0 1 0 1 0 0 0 1 1 0 1 1 0 0 1 1

1 0 0 1 1 1 0 1 0 1 1 0 1 0 0 0 1 1 0 1 1 0 0 1 1

1 0 0 1 1 1 0 1 0 0 1 0 1 0 0 0 1 1 0 1 1 0 0 1 1

1 0 0 1 1 1 0 1 0 0 1 0 1 0 0 0 1 1 0 1 1 0 0 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 0 0 1 1 1 1 1 0 0 1 0 1 0 0 0 1 1 1 1 1 0 0 1

1 1 0 0 1 1 1 1 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1 1

Ch1, Ch2, Ch3,..., Chd-1, Chd

Subject 1

....

....

.... .... .... .... ....

.... .... ....

........ .... ....
....

.... ....

Subject 1

Subject 1

Subject S

Subject S

Subject S

Step 2: Optimal channels selected

Step 1: Random Initialization: binary vector of channels 1,2,3,.....d

Where k < dChannel Selected 1,2,3,.....k

EEG Channels selected using BGWO method

Where 1 refers to channel selected and 0 refers to channel non selected

Step 3:

Figure 3: EEG channel selection using the proposed approach MOCS-KNN.
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coefficients: AR5, AR10, and AR20. To reduce the dispersion
of the EEG patterns and to quickly process the extracted
features, we compute the mean value of each electrode.
Figure 6 shows the distribution of the electrodes of the EEG
dataset used in the paper.

5.3. Experimental Setup. In this section, the performance of
the proposed channel selection approach and other ap-
proaches was evaluated using three EEG signal datasets

collected by applying autoregressive (AR) models according
to three different coefficients. -e solution representation in
all channel selection approaches is represented by a vector
that consists of a series of 1’s and 0’s, where “1” means that
the channel is selected and “0” means that the channel is
ignored. During classification process, the EEG signal data
dimension will be reduced and formed solely according to
those channels endorsed by channel selection approaches.
On the other hand, the channels that were not endorsed will
be removed from the original dataset. Afterwards, the

-1.119 0.405 0.356 0.244 1.354

Ch1, Ch2, Ch3,..., Chd-1, Chd
d refers to the total numbers of channels =64

-1.116 0.405 -0.356 0.2445 2.544 0.119 0.405 -0.306 0.244 1.354 -1.116 0.405 -0.356 0.2445 2.544 0.119 0.405 0.244 1.354 -1.116

1 1 0 0 1 1 1 1 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1 1

Figure 4: Solution in MOCS-KNN population.

Table 2: KNN results.

Features Number of channels Accuracy (%)
AR5 64 87
AR10 64 91
AR20 64 92
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Figure 5: Results of KNN with whole EEG channels.
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classification process is applied here using 10-fold-cross-
validation, where the reduced data is iteratively divided into
10 parts, where one part is considered as testing data and the
remaining parts as training data. -is process is repeated 10
times where the testing part is allocated new samples each
time until all samples being covered. -e 10-fold-cross-
validation process is presented in Figure 7. In this work, the
classification accuracy obtained by k-nearest neighbors
(KNN) and the number of channels are used to design the
multiobjective fitness function.

Table 3 shows the parameters used for selected meta-
heuristic algorithms in this work. With respect to CS, we
need to define β, which is utilized for the computation of the

Levy distribution and pa. pa stands for the probability of
replacing worst nest by new constructed ones.

5.4. Comparison between MOCS-KNN and Other Meta-
heuristic Algorithms. Since the proposed approach is
nondeterministic, we computed the mean accuracy rate
over 25 runs to avoid biased results. -e experiments
have been performed using a Lenovo PC, Intel® Core i7
2.59 GHz processor, 12 GB of RAM, and official Win-
dows 10. -e performance of the MOCS-KNN is eval-
uated using five measures: (i) accuracy (EEGACC), (ii)
Specificity (EEGPrecision), (iii) F-score (EEGFscore), (iv)
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Figure 6: Distribution of the EEG sensors used in this work.
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Table 3: Metaheuristic parameters.

Approach Parameters
MOCS β � 1.5, Pa � 0.25
MOPSO c1 � c2 � 2
MOMVO WEPMax � 1, WEPMin � 0.2
MOBAT A � 0.5, r � 0.5
MOFFA α � 0.5, c � 1, β0 � 0.2
MOMOF —
MOGWO —
MOWOA a� [2, 0], b� 1
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Figure 8: Boxplot of MOCS with other metaheuristic algorithms. (a) Boxplot of AR5. (b) Boxplot of AR10. (c) Boxplot of AR20. (d) Boxplot
of TDF. (e) Boxplot of T-FDF.
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Figure 9: Convergence rate of MOCS with other metaheuristic algorithms. (a) Convergence rate of AR5. (b) Convergence rate of AR10.
(c) Convergence rate of AR20. (d) Convergence rate of TDF. (e) Convergence rate of T-FDF.
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Figure 10: Evaluation measures of MOCS with other metaheuristic algorithms.
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Sensitivity or Recall (EEGRecall), and (v) the number of
selected channels (EEGLen), which can be computed as
follows:

EEGACC �
TA + TR

TA + FA + TR + FR
× 100, (12)

EEGRecall �
TA

TA + FR
, (13)

EEGPrecision �
TA

TA + FA
, (14)

EEGFscore � 2 ×
EEGRecall × EEGPrecision

EEGRecall + EEGPrecision
􏼠 􏼡, (15)

where FR, FA,TA, and TR represent the false rejection, false
acceptance, true acceptance, and true rejection, respectively.

Figures 8–10 show the boxplot and convergence rate
over 25 runs for selected metaheuristic algorithms during
the experimental evaluation using AR5, AR10, and AR20,
respectively. -e boxplot components are defined as follows:

box length illustrates interquartile range, the whiskers in-
dicate the range of the values, the horizontal line in the box
indicates the median value, and the outliers are represented
by the circles. -e boxplots reveal that MOCS-KNN man-
aged to yield highly accurate results. As shown in Figure 8,
for AR5 and AR20 datasets, it can be observed that MOCS-
KNN shows a superior efficacy in convergence trends
compared to other metaheuristic algorithms. For AR10
dataset, MOCS-KNN andMOMVO-KNN show competitive
efficacy in the early stage of convergence, but in the later
stages, MOCS-KNN surpasses MOMVO-KNN. Overall,
MOCS-KNN shows improved convergence learning due to
its capability to pave the way for its swarm to achieve the best
trajectory leading to global optimal solution by avoiding
stagnation drawbacks.

To further validate the results obtained by MOCS-KNN
and other methods, Wilcoxon signed-rank statistical test
[70] is adopted in this study to show if there is statistically
significant difference between these methods. In Table 4, Z-
value represents standardized test statistics, and P-value
represents the statistical significance (P< 0.05). A P value
< 0.5 means that there is statistical significant difference

Table 4: Wilcoxon signed-rank test of MOCS-KNN and other metaheuristic algorithms.

Dataset Metaheuristic Z-value P value MOCS-KNN

AR5

MOPSO-KNN −4.3724 <0.00001 Significant
MOGWO-KNN −4.3724 <0.00001 Significant
MOFFA-KNN −4.3724 <0.00001 Significant
MOBAT-KNN −4.2109 <0.00001 Significant
MOMVO-KNN −4.2109 <0.00001 Significant
MOWOA-KNN −4.3724 <0.00001 Significant
MOMFO-KNN −4.3724 <0.00001 Significant

AR10

MOPSO-KNN −4.3724 <0.00001 Significant
MOGWO-KNN −4.3724 <0.00001 Significant
MOFFA-KNN −4.3724 <0.00001 Significant
MOBAT-KNN −4.1302 <0.00001 Significant
MOMVO-KNN −4.3724 <0.00001 Significant
MOWOA-KNN −4.3724 <0.00001 Significant
MOMFO-KNN −4.3724 <0.00001 Significant

AR20

MOPSO-KNN −2.758 0.00578 Significant
MOGWO-KNN −4.3455 <0.00001 Significant
MOFFA-KNN −4.3455 <0.00001 Significant
MOBAT-KNN −4.3455 <0.00001 Significant
MOMVO-KNN −2.166 0.03 Significant
MOWOA-KNN −4.184 <0.00001 Significant
MOMFO-KNN −4.0226 <0.00001 Significant

TDF

MOPSO-KNN −3.7132 0.0002 Significant
MOGWO-KNN −3.1143 0.00188 Significant
MOFFA-KNN −4.3724 <0.00001 Significant
MOBAT-KNN −4.3724 <0.00001 Significant
MOMVO-KNN −3.1143 0.00188 Significant
MOWOA-KNN −1.9238 0.05486 Nonsignificant
MOMFO-KNN −4.3724 <0.00001 Significant

T-FDF

MOPSO-KNN −4.1973 <0.00001 Significant
MOGWO-KNN −4.3724 <0.00001 Significant
MOFFA-KNN −4.3724 <0.00001 Significant
MOBAT-KNN −4.332 <0.00001 Significant
MOMVO-KNN −3.7714 0.00016 Significant
MOWOA-KNN −2.5571 0.01046 Significant
MOMFO-KNN −4.3724 <0.00001 Significant
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between paired methods; otherwise, there is no statistical
significant difference. From Table 4, it can be observed that
MOCS-KNN achieved statistical significant results in all
datasets when compared with other methods.

In this section, the performance of the proposed method
(MOCS-KNN) is compared with other seven metaheuristic
algorithms (PSO algorithm (MOPSO-KNN), GWO algo-
rithm (MOGWO-KNN), binary FFA algorithm

(MOFFA-KNN), binary BAT (MOBAT-KNN), MVO
(MOMVO-KNN), WOA (MOWOA-KNN), and MFO
(MOMFO-KNN)). -e comparison includes five measures,
which are accuracy ratio (EEGACC), channels selected
(EEGLen), Specificity (EEGPrecision), F-score (EEGFscore), and
Recall (EEGRecall). Table 5 shows the results of proposed
technique (MOCS-KNN) with other metaheuristic algo-
rithms using autoregressive three different coefficients.

Table 5: Comparison of multiobjective cuckoo search algorithm with other metaheuristic algorithms.

Algorithms Measures AR5 AR10 AR20 TDF T-FDF

MOPSO-KNN

EEGFit 0.8483 0.8593 0.8604 0.8988 0.9008
EEGACC 91.29 93.14 93.34 0.9671 0.9714
EEGLen 27 29 29 24 24

EEGPrecision 0.9129 0.9314 0.9334 0.9722 0.9764
EEGRecall 0.9191 0.9385 0.9382 0.9671 0.9764
EEGFscore 0.9135 0.9319 0.9336 0.9673 0.9717

MOCS − KNN

EEGFit 0.8556 0.8665 0.8705 0.9078 0.9133
EEGACC 91.46 93.57 93.86 0.9668 0.9714
EEGLen 24 25 24 21 20

EEGPrecision 0.9146 0.9357 0.9386 0.9716 0.9763
EEGRecall 0.9202 0.9420 0.9424 0.9668 0.9714
EEGFscore 0.9150 0.9363 0.9387 0.9670 0.9716

MOMVO − KNN

EEGFit 0.8492 0.8619 0.8627 0.9011 0.9058
EEGACC 91.26 93.20 93.46 0.968 0.9734
EEGLen 26 27 27 23 23

EEGPrecision 0.9126 0.9320 0.9346 0.9730 0.9779
EEGRecall 0.9180 0.9394 0.9388 0.968 0.9734
EEGFscore 0.9130 0.9325 0.9348 0.9680 0.9737

MOBAT − KNN

EEGFit 0.8346 0.8408 0.8469 0.8849 0.8931
EEGACC 89.89 90.97 91.91 0.9568 0.9665
EEGLen 27 28 28 26 26

EEGPrecision 0.8989 0.9097 0.9191 0.9635 0.9722
EEGRecall 0.9068 0.9180 0.9235 0.9568 0.9665
EEGFscore 0.8995 0.9102 0.9189 0.9569 0.9668

MOFFA − KNN

EEGFit 0.8412 0.8519 0.8559 0.8920 0.8975
EEGACC 90.94 92.49 92.77 0.9642 0.9691
EEGLen 28 28 28 25 25

EEGPrecision 0.9094 0.9249 0.9277 0.9702 0.9746
EEGRecall 0.9149 0.9325 0.9326 0.9642 0.9691
EEGFscore 0.9096 0.9254 0.9278 0.9645 0.9694

MOMFO-KNN

EEGFit 0.8326 0.8419 0.8429 0.8859 0.8880
EEGACC 89.82 92.46 92.66 0.9605 0.964
EEGLen 28 31 31 26 27

EEGPrecision 0.8983 0.9246 0.9266 0.9672 0.9707
EEGRecall 0.9057 0.9317 0.9313 0.9605 0.964
EEGFscore 0.8986 0.9251 0.9268 0.9607 0.9643

MOGWO-KNNN

EEGFit 0.8294 0.8398 0.8425 0.8825 0.8869
EEGACC 90.17 91.90 92.31 0.9577 0.9628
EEGLen 29 30 31 26.76 26.68

EEGPrecision 0.9017 0.9189 0.9231 0.9647 0.9688
EEGRecall 0.9077 0.9260 0.9270 0.9577 0.9628
EEGFscore 0.9024 0.9194 0.9229 0.9577 0.9630

MOWOA-KNN

EEGFit 0.8517 0.8618 0.8652 0.9054 0.9092
EEGACC 90.74 92.23 92.94 0.9674 0.9697
EEGLen 24 24 25 21.92 21.28

EEGPrecision 0.9074 0.9223 0.9294 0.9724 0.9747
EEGRecall 0.9137 0.9302 0.9345 0.9674 0.9697
EEGFscore 0.9079 0.9228 0.9296 0.9675 0.9699

Bold values indicate best results.
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Overall, it is worth mentioning that the MOCS-KNN ob-
tained the best results on all measurements for all datasets.
To be more precise, in terms of number of channels, the
results of MOCS-KNN and MOWOA-KNN are equal,
where MOCS-KNN obtained the minimum number of
channels in AR20 (24), while MOWOA-KNN obtained the
minimum number of channels in AR10 (25), and both
methods minimize the number of channels in AR5 to the
least length (24). To gain a clear overview of the performance
of MOCS-KNN and other methods in all measurements, the
summation of ranks is applied in AR5, AR10, and AR20
datasets for all measurements as shown in Table 6. To
elaborate the summation of ranks procedure, the method
that achieved the best result will be given a rank of “1,” the
second best method will be given a rank of “2,” etc. -e
summation of ranks in the last row of Table 6 represents the
sum of ranks of each method with the corresponding
datasets. -e bold font highlights the best result. -e results
suggest that MOCS-KNN achieved the best performance in
all evaluation measurements, followed by MOMVO,
MOPSO, MOWOA, MOFFA, MOMFO, and MOGWO.

6. Conclusion and Future Work

In this work, we proposed a binary version of multiobjective
approach using several metaheuristic algorithms with the
aim of addressing the challenge of channel selection in EEG-
based biometric person identification. -e main purpose of
this work is to demonstrate that not all available EEG

channels need to be used to achieve high accuracy rate.
-erefore, we introduce for modeling the problem of
channel selection as an optimization issue, where the
channel subset which optimizes the recognition ratio over a
validation set is utilized as the fitness function.

-e outcomes of experiments showed that the intro-
duced method outperformed several metaheuristic algo-
rithms and the one proposed by Rodrigues et al. [1]. It is
worth noting that, while retaining high accuracy rates, the
number of sensors has been lessened by half. Additionally,
the outcomes displayed a positive correlation between the
number of features obtained from the EEG signal and the
accuracy ratio; i.e., further features lead to higher accuracy
rates. Such finding suggests that the proposed algorithm has
the potential to remove duplicate and undesirable features
whereas retaining specific features.

Regarding the future work, we intend to evaluate selected
metaheuristic algorithms over different features, such as time-
and frequency-domain information, to improve the overall
identification performance while selecting fewer channels.
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Table 6: Sum of ranks of autoregressive features using several evaluation measures.

Measures MOPSO MOMVO MOGWO MOMFO MOWOA MOFFA MOBAT MOCS
ACC-AR5 2 3 6 8 5 4 7 1
ACC-AR10 3 2 7 5 6 4 8 1
ACC-AR20 3 2 7 6 4 5 8 1
ACC-TDF 4 3 8 6 2 5 7 1
Len-T-FDF 4 3 8 7 2 5 6 1
Len-AR5 3 2 5 4 1 4 3 1
Len-AR10 5 3 6 7 1 4 4 2
Len-AR20 5 3 6 6 2 4 4 1
Len-TDF 4 3 7 6 2 5 6 1
Len-T-FDF 4 3 7 8 2 5 6 1
Recall-AR5 2 3 4 8 6 5 7 1
Recall-AR10 3 2 7 4 6 5 8 1
Recall-AR20 3 2 7 6 4 5 8 1
Recall-TDF 3 1 7 6 2 5 8 4
Recall-T-FDF 1 2 8 7 4 5 6 3
Precision-AR5 2 3 6 8 5 4 7 1
Precision-AR10 3 2 7 6 4 5 8 1
Precision-AR20 3 2 7 6 4 5 8 1
Precision-TDF 3 1 7 6 2 5 8 4
Precision-T-FDF 2 1 8 7 4 5 6 3
F-score-AR5 2 3 6 8 5 4 7 1
F-score-AR10 3 2 7 5 6 4 8 1
F-score-AR20 3 2 7 6 4 5 8 1
F-score-TDF 3 1 7 6 2 5 8 4
F-score-T-FDF 2 1 8 7 4 5 6 3
Summation of ranks 75 55 170 159 89 117 170 41
Bold values indicate best results.
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