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Goal. Stroke patients are usually accompanied by motor dysfunction, which greatly affects daily life. Electroacupuncture is a kind
of nondrug therapy that can effectively improve motor function. However, the effect of electroacupuncture is hard to be measured
immediately in clinic. )is paper is aimed to reveal the instant changes in brain activity of three groups of stroke patients before,
during, and after the electroacupuncture treatment by the EEG analysis in the alpha band and beta band. Methods. Seven different
functional connectivity indicators including Pearson correlation coefficient, spectral coherence, mutual information, phase
locking value, phase lag index, partial directed coherence, and directed transfer function were used to build the BCI-based brain
network in stroke patients. Results and Conclusion. )e results showed that the brain activity based on the alpha band of EEG
decreased after the electroacupuncture treatment, while in the beta band of EEG, the brain activity decreased only in the first two
groups. Significance. )is method could be used to evaluate the effect of electroacupuncture instantly and quantitatively.)e study
will hopefully provide some neurophysiological evidence of the relationship between changes in brain activity and the effects of
electroacupuncture. )e study of BCI-based brain network changes in the alpha and beta bands before, during, and after
electroacupuncture in stroke patients of different periods is helpful in adjusting and selecting the electroacupuncture regimens for
different patients. )e trial was registered on the Chinese clinical trial registry (ChiCTR2000036959).

1. Introduction

Cerebrovascular diseases are the leading causes of death in the
world. Stroke is a kind of cerebrovascular disease characterized
by local neurological deficits caused by blood circulation
disorders in the brain. Upper limb motor dysfunction is a
major problem in the rehabilitation of stroke patients [1].
Upper limb dysfunction can result in limited daily activities in
all aspects of having meals, clothing, living, and transportation

[2]. It is well known that stroke is a major cause of paralysis
[3–5]. )erefore, the rehabilitation of motor function of stroke
patients is a research area of great concern at present [2].)ere
are a lot of methods to assist stroke patients in motor function
rehabilitation, including passive and active approaches, while
brain-computer interface (BCI) plays an important role in the
application of active rehabilitation [6].

Acupuncture treatment is a traditional Chinese medicine
approach that is used to help stroke patients recover motor
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function with the nondrug method [7–9]. It is also a kind of
useful treatment to help the other diseases rehabilitation or
neurological diseases rehabilitation [10–13]. It is reported
that the acupoints such as Quchi, Hegu, and Shousanli are
the common and useful acupoints during acupuncture
treatment [14, 15]. In recent years, there have been many
pieces of research on electroacupuncture treatment for the
rehabilitation of upper limb motor function after stroke.
However, most of the researches focus on the treatment
efforts of the electroacupuncture treatment, not the effect on
brain remodeling. On the other hand, there is no good
quantitative method to evaluate the immediate therapeutic
effect of electroacupuncture.

Most of the studies are to explore the mechanism of
electroacupuncture in the treatment of stroke [16–18] and
the impact of electroacupuncture on the life of stroke
patients [19–22]. In particular, scales are used to evaluate
the efficacy of electroacupuncture therapy. Most of the
evaluations using scales require relatively obvious im-
provement effects to have differences in the evaluation
results. )e high temporal resolution of EEG makes it
suitable to evaluate the effect of electroacupuncture in a
short time. )ere have also been several studies of elec-
troacupuncture for stroke patients based on EEG [23–25].
However, most of the methods used in these EEG-based
studies are to observe changes in the rhythm, amplitude,
or power of the EEG. )ese basic features of EEG do not
characterize changes in specific brain regions, nor do they
characterize changes in correlations between brain
regions.

It is proved that the brain activity represented by elec-
troencephalogram (EEG) can explain information related to
motor function for both the healthy subjects [26, 27] and the
patients [28, 29]. Brain connectivity can be used for the study
of brain activity [30–32], which is defined as the connection
between the different but related parts of the brain in
neuroscience [33, 34]. EEG is a high temporal resolution
method that can be used to effectively measure brain con-
nectivity [35, 36].

In 2016, it is reported that the synchronization increases
at low frequencies and decreases at high frequencies after the
transcutaneous acupoint electrical stimulation [37]. In 2017,
it is illustrated that the phase synchronization measured by
the coherence will have changes in the alpha and beta bands
during the acupuncture treatment [38]. In 2018, Yu et al.
analyzed the changes of power spectrum and phase lag index
before, during, and after acupuncture to study the regulating
effect of acupuncture on brain activity [39]. Most of the
previous studies only used single index of functional con-
nectivity to evaluate, which cannot reflect the comprehen-
sive effect of acupuncture treatment.

)erefore, the main purpose of this paper is to explore
the instant changes in brain activity by exploring the
changes of brain networks in stroke patients before,
during, and after electroacupuncture. Both the alpha band
and beta band of EEG from stroke patients were analyzed,
and seven different functional connectivity indexes were
used to measure the functional connectivity of the brain.
)is method is promising to be used as a quantitative

measurement of the immediate effect of electro-
acupuncture treatment.

2. Methods

2.1. Participants and EEG Recording. )e participants aged
18–80 years old involved in the study were from the De-
partment of Rehabilitation Medicine, Huashan Hospital,
and Shanghai )ird Rehabilitation Hospital. )e included
subjects (1) were diagnosed with stroke by Computed To-
mography (CT) and Magnetic Resonance Imaging (MRI);
(2) have no obvious cognitive impairment; (3) have uni-
lateral upper limb hemiplegia and symptoms of weak muscle
tone; (4) have no serious comorbidity of osteoarthrosis; (5)
are not allergic to EEG electrodes and conductive paste; (6)
did not participate in clinical drug trials. According to the
above criteria, a total of 18 subjects were selected. According
to their lasting time of flaccid paralysis after stroke, they were
divided into three groups: the first group is the short-term
flaccid paralysis group, and their duration was less than two
months; the second group is the mid-term flaccid paralysis
group, whose duration was 2–6 months; the third group is
the long-term flaccid paralysis group, and their duration was
more than 6 months. )ere are six subjects in each group.
)e demographic data of the patients is shown in Table S1
(see supporting documents). All subjects included in the
experiment received an electroacupuncture treatment. )e
experiment was approved by the Medical Ethics Committee
of Jing’an District Central Hospital of Shanghai (Ethics
reference number: 2020–29). )e trial was registered on the
Chinese clinical trial registry (ChiCTR2000036959).

During electroacupuncture treatment, the subjects’
Shousanli, Hegu, and Quchi acupoints were all inserted
vertically with acupuncture needles. After the acupuncture
needle was inserted, electrical stimulation was performed at
a frequency of 2Hz. )e electroacupuncture treatment
process took 20 minutes. )e EEG signals were recorded
using BrainCap 32-channel EEG electrodes at the sampling
rate of 1000Hz. )e electrodes were positioned according to
the international 10–20 system. )e EEG acquisition in the
experiment lasted for a total of 30 minutes, including the 5-
minute EEG acquisition before the electroacupuncture
treatment, the 20-minute EEG acquisition during the
electroacupuncture treatment, and the 5-minute EEG ac-
quisition after the electroacupuncture treatment.

2.2. EEG Preprocessing. )e preprocessing of the EEG sig-
nals in the experiment was carried out through the EEGLAB
toolbox ofMatlab R2020a.We used bandpass filters to divide
the frequency bands: alpha band (8–13Hz) and beta band
(14–30Hz). After that, the EEG signals were rereferenced
according to the computed average reference. )e EEG
signal has a low amplitude and is relatively weak and sus-
ceptible to interference. Electrooculogram (EOG) artifacts
have a significant impact on the subsequent analysis of EEG
signals. )erefore, removing EOG artifacts is a very im-
portant step. In the experiment, we chose independent
component analysis (ICA) for removing artifacts. After the
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EEG signal is processed by ICA, the artifact components are
automatically identified and removed.

2.3. EEGFunctionalConnectivityMeasurement. )e study of
functional connectivity is a very important part of EEG
research. )e brain is divided into many brain regions, all of
which do not work independently. Most of the tasks are
done by different brain regions working together. )erefore,
it is important to measure the functional connectivity of the
brain. Functional connectivity can mainly be used to
measure the degree of correlation between two signals. In the
experiment, we used seven functional connectivity indica-
tors to measure brain connectivity.

2.3.1. Pearson Correlation Coefficient. )e Pearson corre-
lation coefficient is the simplest of all the indicators of brain
connectivity. Although the Pearson correlation coefficient
can be used to characterize the correlation between two
signals, it is generally only used to characterize the linear
correlation.

)e Pearson correlation coefficient is defined as the ratio
of covariance to standard deviation. Let
X � X1, X2, . . . , XN􏼈 􏼉, Y � Y1, Y2, . . . , YN􏼈 􏼉 be two EEG
signals with N timepoints. )e Pearson correlation coeffi-
cient r of X and Y is [40]

r �
cov(X, Y)

σXσY

�
E X − μX( 􏼁 Y − μY( 􏼁􏼂 􏼃

σXσY

�
􏽐
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�������������

􏽐
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2
􏽱 ������������

􏽐
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2
􏽱 ,

(1)

where X and Y are the mean values of X and Y, and σX and
σY are the standard deviation of X and Y, separately.

)e Pearson correlation coefficient r is in the range of
[−1, 1]. )e Pearson correlation coefficient can be used to
measure whether two signals are positively or negatively
correlated. )e greater the absolute value of the Pearson
correlation coefficient, the higher the correlation between
the two signals.

2.3.2. Spectral Coherence. Spectral coherence is also a
common index to measure the correlation between two
signals. Spectral coherence measures the degree to which
two signals are related in the frequency domain. Similar to
the Pearson correlation coefficient, spectral coherence can
only be used to evaluate the degree of linear correlation
between two signals.

)e spectral coherence Coh of X and Y at the frequency
f where X and Y are two EEG signals is defined as [41]

Coh �
ΡXY(f)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

ΡXX(f) · ΡYY(f)
, (2)

where ΡXY is the cross-spectral density of X and Y, and PXX

and PYY are the auto-spectral densities of X and Y,
respectively.

)e values of the spectral coherence are in the range of
[0, 1].)e increase of spectral coherence value represents the
increase of the correlation degree of signal X and Y at
frequency f. When the signals X and Y are completely
unrelated, the spectral frequency coherence index is 0.

2.3.3. Mutual Information. Mutual information is an ef-
fective information measurement method based on infor-
mation theory. Mutual information is a measure of the
degree of interdependence among random variables. Dif-
ferent from the Pearson correlation coefficient and spectral
coherence index introduced above, the mutual information
index can measure not only the linear correlation between
two signals, but also their nonlinear correlation. )is is the
most prominent advantage of it relative to the above two
indicators.

)e mutual information of two random variables is
defined as the relative entropy of their joint and independent
distributions. Assuming that X and Y are two random
variables, then their mutual information index I(X; Y) is
[42, 43]

I(X; Y) � H(X) − H(X|Y)

� H(X) + H(Y) − H(X, Y)

� 􏽘
x,y

PXY(x, y)log2
PXY(x, y)

PX(x)PY(y)
,

(3)

where H(X) is the entropy of the variable X, H(X|Y) is the
relative entropy of X and Y, PXY is the joint probability of X

and Y, PX is the probability of X, and PY is the probability of
Y.

)e mutual information calculated by the above formula
is real numbers greater than or equal to 0. In practical
applications, it is also a very important step to normalize
mutual information. )e normalized mutual information
NMI(X; Y) is

NMI(X; Y) �
2I(X; Y)

H(X) + H(Y)
. (4)

)e normalized mutual information is in the range of [0,
1]. Although mutual information has certain advantages
over the above two indicators, the value of mutual infor-
mation is easily affected by noise and signal length.

2.3.4. Phase Locking Value. Different from the above in-
dicators, the phase locking value is a phase-based indicator
for evaluating the functional connection of the brain. )e
phase locking value is mainly used to measure the phase
difference of the signals and characterize the synchroniza-
tion of the signals [44]. )e phase locking value (PLV) of X

and Y at time twhere X and Y are two EEG signals is defined
as [44]
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1
N

􏽘

N

t�1
e

i ϕxt−ϕyt( 􏼁
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, (5)

where N is the number of timepoints, ϕxt represents the
phase value of the signal X at time t, and ϕyt is the phase
value of the signal Y at time t.

)e value range of PLV is [0, 1]. )e increase of PLV
represents the enhancement of the phase synchronization of
the two EEG signals. PLV is a commonly used indicator to
measure functional connectivity of the brain, but it has an
obvious disadvantage that it is susceptible to volume effects.

2.3.5. Phase Lag Index. Similar to PLV, the phase lag index
(PLI) is also a phase-based measure of functional connec-
tivity. PLI is an indicator to measure the asymmetry of phase
difference distribution between two signals [45]. PLI can also
be used to measure the degree of phase synchronization
between two signals. )e phase lag index is defined as [45]

PLI � |sign[Δϕ(t)]|
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,

(6)

where N represents the number of timepoints, sign() rep-
resents signum function, and Δϕ(tn) is the phase difference
between two signals at the time tn.

PLI values range from [0, 1].)e larger the PLI value, the
more synchronous the phase between the two EEG signals.
Different from PLV, PLI calculations are not susceptible to
volume conduction effects [46, 47], but PLI is sensitive to
noise.

2.3.6. Partial Directed Coherence. Partial directed coherence
(PDC) is considered as a multivariable functional connec-
tion measurement method based on Granger causality [48].
None of the functional connectivity indicators introduced
above is directional. However, PDC measures the causal
relationship between signals, so it is directional.

Let X(t) � X1(t), X2(t), . . . , XN(t)􏼈 􏼉
T be the EEG sig-

nal with N channels. It can be represented with a multi-
variable autoregressive (MVAR) model [48]:

X(t) � 􏽘

p

r�1
ArX(t − r) + W(t), (7)

where p represents the order of the MVAR model, Ar is the
MVAR coefficient, and W(t) is the white Gaussian noise.

By Akaike information criterion, p can be calculated. Ar

can be obtained with the Yule-Walker equation. Ar is
transferred to A(f) in the frequency domain using the
Fourier transform. A(f) can be defined as [48]

A(f) � I − 􏽘

p

r�1
Are

− 2jfrπ
, (8)

where I is the identity matrix. )e PDC from channel j to
channel i at frequency f can be calculated as [48]

PDC(i, j, f) �
Aij(f)

����������
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2
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(9)

)e PDC values are in the range of [0, 1]. )e larger the
value of PDC, the stronger the information flow from
channel j to I.

2.3.7. Directed Transfer Function. Directed transfer function
(DTF) is also a kind of connectivity measurement method
based on Granger causality. Just like PDC, DTF is direc-
tional. At the same time, DTF can be calculated with the
similar method used to calculate PDC. )e DTF from
channel j to channel i can be defined as [49]

DTF(i, j, f) �
Hij(f)

�����������

􏽐k Hkj(f)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

􏽲 ,
(10)

where H(f) represents the inverse matrix of A(f). Although
DTF is very similar to PDC, PDC only detects the direct
connection between channels, whereas DTF may detect the
indirect connection between channels.)is is the disadvantage
of DTF relative to PDC, which may lead to a false connection.

)e calculation of the seven kinds of functional con-
nection indicators is implemented with MATLAB R2020a.
Among them, the calculation of spectral coherence, PLV,
and PLI is carried out by SIFT toolbox.

2.4. Graph Deory. After calculating all the functional
connection indicators, we present the results in the form of
the brain network diagram. )e graph of each functional
connection metric mainly includes two factors: node
strength and edge weight.

)e weight of the edge represents the absolute value of the
corresponding indicator. At the same time, the edges of MI,
spectral coherence, the Pearson correlation coefficient, PLV,
and PLI are not directional, while the edges of PDC and DTF
are directional. )e directionality of the edges of PDC and
DTF represents the flow of information between channels.

To some extent, the node strength represents the im-
portance of the node in the brain network. For directional
indicators, the strength of a node is the sum of the outgoing
degree and incoming degree of the node. For nondirectional
indicators, the strength of a node is equal to the sum of the
weights of the edges associated with it that exceed a certain
threshold. )e thresholds of different functional connec-
tivity indicators were selected according to the specific
conditions of patients in the three groups. At the same time,
the different colors of the nodes also indicate the strength of
the nodes. )e stronger the node is, the greater the index of
the corresponding color in the color bar will be.

3. Results

In the experiment, three groups of patients with different
duration of flaccid paralysis were treated with electro-
acupuncture, and seven different kinds of functional
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connectivity indicators were analyzed before, during, and
after electroacupuncture. Connections that exceed the set
threshold are considered as the significant connections that
we need to focus on.

3.1. Pearson Correlation Coefficient. )e Pearson coefficient
is the simplest indicator to measure the functional con-
nectivity between the signals. Figure S1 of the supporting
document illustrates the functional connections based on the
Pearson coefficient in the beta band of all three groups
before, during, and after the electroacupuncture treatment.
)e gray edges in the figure represent all connections. )e
blue edges indicate the significant connections where the
value exceeds the set threshold. )e size and color of the
nodes represent node strength. )e value of the Pearson
coefficient in each group was the mean of each group.

It is found that the first and second groups both have
more significant connections and stronger nodes than the
third group before, during, and after the electroacupuncture
treatment in Figure S1. )e numbers of the significant
connections and the strength of the nodes of the first group
have not changed a lot during and after electroacupuncture
compared with those during electroacupuncture, just de-
creasing a little. )e second group has fewer significant
connections after electroacupuncture than those before the
treatment. However, the third group has stronger nodes in
the central region and more significant connections during
and after the electroacupuncture treatment than those be-
fore electroacupuncture.

3.2. Spectral Coherence. )e brain network diagram of
spectral coherence in the alpha band of the three groups is
shown in Figure S2 of the supporting document. As shown
in Figure S2, in the alpha band of the second group, there is
an obvious increase in the number of significant connections
during and after electroacupuncture relative to it before
electroacupuncture, while, in the third group, there is a
certain decrease in the number of significant connections
during and after electroacupuncture. At the same time, the
number of significant connections has less change in the first
group during electroacupuncture compared to those before
electroacupuncture. )e number of significant connections
has decreased after electroacupuncture. Only patients in the
second group, those with flaccid paralysis between two and
six months, have an increase in the number of significant
spectral coherence-based connections during and after the
electroacupuncture treatment.

Figure 1 shows the brain network graph based on
spectral coherence in three groups of patients in the beta
band before, during, and after electroacupuncture. In
contrast to the phenomenon shown in Figure S2, the number
of the significant connections during electroacupuncture
increased significantly in all three groups compared to the
number before electroacupuncture, while the first group had
less increase in the number of significant connections, and
then they all returned to the smaller number after electro-
acupuncture than the number before electroacupuncture.

In addition to that, the node color represents the
strength of the node. As shown in Figure S2 and Figure 1, the
stronger nodes are concentrated in the central region.

3.3. Mutual Information. In contrast to spectral coherence,
MI can also be used to measure nonlinear connections. As
illustrated in Figure S3 of the supporting document, the
third group has the fewest number of significant functional
connections based on MI in the brain networks before,
during, and after electroacupuncture relative to the other
two groups in the alpha band.

In the alpha band of the first group, the number of the
significant connections during electroacupuncture is dis-
tinctly smaller than that before electroacupuncture, and the
strength of the nodes was also obviously reduced. However,
the number of the significant functional connections and the
strength of the nodes both return to a similar state with those
before electroacupuncture, only slightly reduced.

As shown in Figure S3, in the second group, the nodes at
the left-edged area of the brain network decrease in the
strength during electroacupuncture compared to those be-
fore electroacupuncture, while most of the nodes at the
central and right edged areas increase in the strength. At the
same time, the number of significant connections in the left-
edged area decreases a little. After electroacupuncture, the
node strength and the number of the significant connections
in the left and central regions are similar to those before
electroacupuncture. However, the strength of the majority of
the nodes in the right-edged area obviously increases.

3.4. Phase Lag Index. It is illustrated in Figure 2 that patients
in the second group have the largest number of PLI-based
significant connections before, during, and after electro-
acupuncture in the alpha band relative to those in the first
and third groups under the same threshold.

As shown in Figure 2, the number of the significant
connections based on PLI and the strength of the nodes in
the first group in the alpha band both increase during
electroacupuncture compared with those before electro-
acupuncture. However, the number and node strength both
return to the state similar to it before the electroacupuncture
treatment.

)e number of the significant connections and the
strength of the nodes of PLI in the second group decrease
during and after the electroacupuncture treatment com-
pared to those before electroacupuncture. Similar results are
found in the third group.

3.5. Phase Locking Value. )e indicator PLV also measures
the phase synchronization between the EEG signals.
Figure S4 of the supporting document illustrates the brain
network based on the functional connectivity indicator PLV
of all the three groups in the beta band. It can be seen in
Figure S4 that the first group and the second group have
relatively more significant connections than the third group
before the electroacupuncture treatment.

Computational Intelligence and Neuroscience 5



During and after the electroacupuncture treatment, the
brain network graphs of the three groups all have changed a
bit. As shown in Figure S4, the number of significant
connections and the strength of the nodes of the first group
have not changed a lot, just slightly decreased. According to
the three graphs in the second column of Figure S4, it can be
seen that the number of the significant PLV connections in
the second group has decreased during and after the elec-
troacupuncture treatment.

In contrast to the first and second groups, the number of
the significant connections based on PLV and the strength of
the nodes of the third group in the beta band both have
increased during and after the electroacupuncture treatment
compared with those before electroacupuncture. On the
other hand, as illustrated in Figure S4, the third group has
the most significant connections during the electro-
acupuncture treatment.

3.6. DirectedTransfer Function. )emost obvious difference
between the metrics DTF and those indicators described
above is that DTF is directional. )erefore, the brain net-
work map based on DTF is a topological map with
directivity.

Figure 3 illustrates the brain network based on the DTF
of all the groups in the alpha band. It is can be seen that the
first group has the most significant connections and stronger
nodes in the alpha band whether before, during, or after the
electroacupuncture treatment.

As shown in the first and second columns of Figure 3, the
numbers of the significant connections of the first and
second groups based on DTF have decreased after the
electroacupuncture treatment relative to those before elec-
troacupuncture. Also, the strength of the nodes of the first
and second groups has changed a lot during and after the
electroacupuncture treatment.
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Figure 1: )e brain network based on the spectral coherence of the three groups in the beta band before, during, and after the elec-
troacupuncture treatment. G1: the first group, which is the short-term flaccid paralysis group, and their duration was less than two months;
G2: the second group, which is the mid-term flaccid paralysis group, whose duration was 2–6months; G3: the third group, which is the long-
term flaccid paralysis group, and their duration wasmore than 6months (gray edges: all connections; blue edges: significant connections, the
color that corresponds to the colormap and the size of the nodes: node strength).
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It is also illustrated that the third group has more sig-
nificant DTF connections and stronger nodes during and
after the electroacupuncture treatment than those before
electroacupuncture. )e number of the significant con-
nections is the largest after electroacupuncture in the third
group.

3.7. Partial Directed Coherence. PDC and DTF are similar in
that they both represent causality and have directivity.
)erefore, the brain network maps based on them are all
directed topology maps. )e general threshold for the PDC
indicator is 0.1.

Figure 4 shows the three groups’ brain network graphs
according to the PDC. It is shown that the number of the
significant connections has not changed during the elec-
troacupuncture treatment relative to it before electro-
acupuncture in the first group. However, the important
nodes have changed from Cz and FC2 to Fz and FC2.
Among the three groups, the first group has the most

significant PDC connections before the electroacupuncture
treatment. After electroacupuncture, the number of signif-
icant connections increased a little and the important nodes
have not changed compared to those during electro-
acupuncture in the first group.

As illustrated in the second column of Figure 4, the
second group has more significant PDC connections and
important strong nodes during and after the electro-
acupuncture treatment than those before electro-
acupuncture. However, the number of the significant
connections and the strength of the nodes both decreased
after electroacupuncture compared to those during the
electroacupuncture treatment.

It can be seen from Figure 4 that the third group does not
have any significant connections based on PDC before and
during the electroacupuncture treatment. )is situation has
changed after electroacupuncture. )ere is a small number
of significant connections after the electroacupuncture
treatment in the third group. At the same time, the strength
of the nodes has changed a little after electroacupuncture.
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Figure 2: )e brain network based on PLI of the three groups in the alpha band before, during, and after the electroacupuncture treatment
(gray edges: all connections; blue edges: significant connections, the color that corresponds to the colormap and the size of the nodes: node
strength).
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4. Discussion

Pei et al. used a new wavelet limited penetrable visibility
graph (WLPVG) approach to construct the brain network to
study the effects of manual acupuncture on the regulation of
brain activity in healthy individuals [50]. )e power spectral
density and simultaneous likelihood of EEG were used to
explore the effects of manual acupuncture on the modula-
tion of functional brain activity in healthy individuals [51].
)e Pearson correlation coefficient has also been used to
study how acupuncture affects the functional network of the
brain in healthy subjects [52]. Yu et al. explored the effects of
different acupuncture techniques on brain activity in healthy
individuals using the brain network based on the phase
locking value indicator [53]. )e subjects in the studies
exploring the effects of acupuncture using indicators of
functional brain connectivity were usually healthy subjects,
which differed significantly from stroke subjects, and these
studies were unable to account for the effects of electro-
acupuncture on the brain network of stroke patients.

However, most of the studies on electroacupuncture for
stroke [23–25] have used methods based on the amplitude
and power of the recorded EEG and do not involve the use of
functional brain connectivity indicators to assess the brain
activity of the subject. In the relevant animal studies, more
attention has been paid to the feasibility basis of electro-
acupuncture for stroke treatment. In contrast, we used the
functional connectivity network to more quantitatively as-
sess the effect of acupuncture on brain activity in stroke
subjects at different periods and changes in correlation
between brain regions. Whereas, in our previous study, we
used only partial directed coherence metrics [54], in the
paper, we use more comprehensive functional connectivity
metrics.

In this research, we experimented with the instant
changes of brain network graphs before, during, and after
the electroacupuncture treatment based on the functional
connectivity of the three groups. In the experiment, seven
different functional connectivity indicators including linear
correlation index and nonlinear correlation index, directed
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Figure 3:)e brain network based on DTF of the three groups in the alpha band before, during, and after the electroacupuncture treatment
(gray edges: all connections; blue edges: significant connections, the color that corresponds to the colormap and the size of the nodes: node
strength; direction of arrows: information flow).
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index, and undirected index were used to construct brain
network maps in alpha and beta bands.

It is illustrated that, before, during, and after electro-
acupuncture, the brain network graphs of all the three
groups have a certain change, no matter which indicator was
used to map. As shown in Figure S1 of the supporting
document, the situation that the number of the significant
connections based on the Pearson coefficient in the beta
band increased after the electroacupuncture treatment
compared to it before electroacupuncture only occurred in
the third group whose patients had been paralyzed over six
months. As illustrated in Figure S4 and Figure 3, a similar
state also appeared in the PLV in the beta band and the DTF
in the alpha band. Figure S1, Figure S4, and Figure 3 show
that only the third group had the increase in brain activity
after electroacupuncture based on Pearson and PLV in the
beta band and based on DTF in the alpha band.

In contrast to the above situation, Figure S2 of the
supporting document shows that, for the indicator spectral
coherence in the alpha band, only the second group had
more significant connections during and after the treatment

relative to it before electroacupuncture. It is shown that only
the second group had the increase in brain activity based on
spectral coherence in the alpha band.

However, it is illustrated in Figure 1 that the numbers of
the significant spectral coherence connections of all three
groups in the beta band firstly increased during the elec-
troacupuncture treatment and then decreased after the
treatment compared to those before electroacupuncture.

Similar to the situation shown in Figure 1, Figure 2 il-
lustrates that all the three groups had fewer significant
connections based on PLI in the alpha band after the
electroacupuncture treatment compared with those before
the treatment. In particular, the first group saw an increase
in the number of significant connections during electro-
acupuncture. It is also shown in Figure 2 that the important
nodes of the first and second groups were mostly concen-
trated in the left parietal lobe and the left central region. It is
illustrated that the brain activity based on the spectral co-
herence in the beta band and based on PLI in the alpha band
decreased in all three groups after the electroacupuncture
treatment.
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Figure 4: )e brain network based on PDC of the three groups in the beta band before, during, and after the electroacupuncture treatment
(gray edges: all connections; blue edges: significant connections, the color that corresponds to the colormap and the size of the nodes: node
strength; direction of arrows: information flow).
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Different from the above situation, it is illustrated in
Figure S3 that the number of the significant MI connections
in the alpha band has not changed after the electro-
acupuncture treatment compared to it before the treatment
in all three groups. In other words, the three groups do not
have changes in brain activity based onMI in the alpha band.
In contrast to the all above situations, Figure 4 shows that the
three groups all had more significant connections and more
important nodes based on PDC in the beta band during and
after the electroacupuncture treatment than those before the
electroacupuncture treatment. )e results show that dif-
ferent groups had different changes during and after the
electroacupuncture relative to those before the treatment.

)e increase in the number of the significant PDC
connections in the three groups illustrates the increase in
brain activity in the three groups. In addition, the second
group showed the greatest increase in brain activity based on
PDC in the beta band after electroacupuncture.

It is illustrated that the first group had fewer significant
connections based on Pearson, spectral coherence, and PLV
after electroacupuncture in the beta band compared to those
before the treatment. A similar situation is observed in the
second group. However, the numbers of the significant
connections based on Pearson, spectral coherence, PLV, and
PDC of the third group all increased after the treatment in
the beta band.)is may indicate that the brain activity in the
beta band of the first and second groups decreased after
electroacupuncture but increased in the third group. In the
alpha band, based on most functional connectivity indica-
tors, brain activity in all three groups showed a downward
trend after the electroacupuncture treatment.

)e decrease in EEG power in the alpha band was re-
ported in healthy subjects after manual acupuncture [51, 55].
It may characterize the relative sedative effect of electro-
acupuncture on healthy subjects. Also, it suggests that, in the
alpha band, brain activity is reduced in healthy subjects after
electroacupuncture. In the paper, it is shown that, based on
most of the functional connectivity indicators, patients in
whatever period of flaccid paralysis showed a decreasing
trend in their brain activity in the alpha band, which is
consistent with the experimental effect in healthy subjects.
At the same time, our study represents the change more
comprehensively and quantitatively and visually in terms of
the number of significant connections as well as the degree of
the brain network.

It is illustrated that the mean power in the beta band in
stroke subjects increased during the needle retention phase
and decreased slightly after needle removal compared to
before electroacupuncture treatment [25]. However, when
studying the effects of electroacupuncture frequency on
healthy subjects, the power values in the beta band of the
subjects were significantly lower [56]. )e result of the paper
indicates that brain activity in the third group of patients
with a period of flaccid paralysis greater than 6 months rose
after electroacupuncture. However, the other two groups
showed a decreasing trend. It suggests that changes in beta-
band brain activity are influenced by the duration of flaccid
paralysis and further suggests that the therapeutic effect of
electroacupuncture is also influenced by the duration of

flaccid paralysis. )e study refines the effects of electro-
acupuncture more in comparison to previous studies.

)e numbers of the significant connections based on the
different connections may be related to the threshold value
set under each indicator. )is may also explain why different
indicators based on the same band produce different results.
On the other hand, it is suggested that the acupoints, du-
ration, and frequency of acupuncture may have a certain
influence on the changes of brain activity before and after
acupuncture.

)e current disease research is more likely to use clas-
sifiers to make predictions about disease. Although, in the
paper, brain networks were used to explore the effects of
electroacupuncture on stroke patients with different periods
of flaccid paralysis, in the future, classification methods such
as the Antlion optimization algorithm, implemented on
deep neural networks and combined with preprocessing
techniques [57], and the fuzzy system based on membership
function and fuzzy rules [58] could also be used to inves-
tigate the effects of electroacupuncture treatment.

5. Conclusion

Electroacupuncture, as a treatment of traditional Chinese
medicine, is of great significance in the recovery of motor
function of stroke patients. )e purpose of this study is to
investigate the changes of BCI-based brain networks in the
alpha and beta bands in stroke patients at different periods of
flaccid paralysis before, during, and after electro-
acupuncture. )ere were three groups of patients in the
study, those who had been paralyzed for less than two
months, two to six months, and more than six months. We
constructed brain networks in alpha and beta bands before,
during, and after electroacupuncture in three groups of
stroke patients based on seven different functional con-
nectivity indicators. )e results showed that the brain
networks of all groups have changed, regardless of which
measure the functional connectivity was based on. For most
functional connectivity measures, brain activity in both the
alpha and beta bands decreased in the first and second
groups. In the third group, brain activity increased in the
beta band and decreased in the alpha band. Although our
study comprehensively and quantitatively analyzed the effect
of electroacupuncture treatment on brain activity in stroke
patients with different periods of flaccid paralysis, with only
six stroke subjects in each group, the sample size was small,
and more subject data are needed to validate the results, and
with each subject receiving only one session of electro-
acupuncture rehabilitation, a single session of electro-
acupuncture treatment may not produce statistically
significant differences in results. Both of these points are
limited by the clinical willingness of the patients. We also
hope that our study will increase the willingness of patients
to receive electroacupuncture treatment. We hope that this
work will provide some neurophysiological insight into the
relationship between changes in brain activity and the effects
of electroacupuncture. )e method is promising to be used
to quantitatively evaluate the immediate effect of the elec-
troacupuncture treatment.)e study on the changes of brain
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networks before, during, and after electroacupuncture in
patients with different flaccid paralysis periods is helpful in
further developing and adjusting the electroacupuncture
treatment plan for stroke patients.

Data Availability

)e data that support the findings of this study are available
upon request from the corresponding author. )e data are
not publicly available because it would compromise the
privacy of the patients involved in the treatment.

Ethical Approval

)e experiment was approved by the Medical Ethics
Committee of Jing’an District Central Hospital of Shanghai
(ethics reference number: 2020–29).

Consent

)e patients consented to the experiment and the publi-
cation of the paper.

Conflicts of Interest

)e authors report that there are no conflicts of interest.

Acknowledgments

)is work was supported in part by the National Natural
Science Foundation of China (grant nos. 61904038,
U1913216, 9194830003, and 82021002); National Key Re-
search and Development Program of China (grant nos.
2021YFC0122702, 2018YFC2002300, and
2018YFC2002301); Shanghai Sailing Program (grant no.
19YF1403600); Shanghai Municipal Science and Technology
Commission (grant nos. 19441907600, 19441908200, and
19511132000); Fudan University-CIOMP Joint Fund (grant
no. FC2019-002); Opening Project of Shanghai Robot In-
dustry R&D and Transformation Functional Platform;
Opening Project of Zhejiang Lab (grant no. 2021MC0AB01);
Ji Hua Laboratory (grant no. X190021TB190); Yiwu Re-
search Institute of Fudan University (grant no. 20-1-16) and
Shanghai Municipal Science and Technology Major Project
(grant nos. 2021SHZDZX0103 2018SHZDZX01).

Supplementary Materials
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three groups of stroke patients before, during, and after
electroacupuncture. It is shown in Figure S1 and Figure S4
that the brain activity in the beta band based on Pearson and
PLV only increased in the third group. )e brain networks
based on the spectral coherence and mutual information in
the alpha band of the three groups before, during, and after
the treatment are described separately in Figure S2 and
Figure S3. It is illustrated that brain activity based on spectral
coherence in the alpha band only increased in the second

group, and there were no obvious changes in brain activity of
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