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In order to improve the accuracy and precision of music generation assisted by robotics, this study analyzes the application of deep
learning in piano music generation. Firstly, based on the basic concepts of robotics and deep learning, the advantages of long
short-term memory (LSTM) networks are introduced and applied to the piano music generation. Meanwhile, based on LSTM,
dropout coe�cients are used for optimization. Secondly, various parameters of the algorithm are determined, including the e�ects
of the number of iterations and neurons in the hidden layer on the e�ect of piano music generation. Finally, the generated music
sequence spectrograms are analyzed to illustrate the accuracy and rationality of the algorithm.  e spectrograms are compared
with the music sequence spectrograms generated by the traditional restricted Boltzmann machine (RBM) music generation
algorithm.  e results show that (1) when the dropout coe�cient value is 0.7, the function converges faster, and the experimental
results are better; (2) when the number of iterations is 6000, the error between the generated music sequence and the original
music is the smallest; (3) the number of hidden layers of the network is set to 4. When the number of neurons in each hidden layer
is set to 1024, the training result of the network is optimal; (4) compared with the traditional RBM piano music generation
algorithm, the LSTM-based algorithm and the sampling frequency distribution tend to be consistent with the original sample. e
results show that the network has good performance in music generation and can provide a certain reference for automatic
music generation.

1. Introduction

In recent years, with the continuous development of theory
and technology in the �eld of arti�cial intelligence (AI), its
related research results have been widely used. For ex-
ample, language recognition, image recognition, natural
language processing, and other related achievements have
brought a lot of convenience to all aspects of people’s lives
[1–4]. Robotics is one of the main technologies in the �eld
of AI. Music robotics is a top-level applied discipline at the
intersection of music and technology. Since the 21st cen-
tury, music robot technology has been widely developed,
including di�erent technologies such as the principle of
music robot pronunciation, expressive performance, bionic

structure, and intelligence. As one of the symbols of “AI,”
the problem of music generation by music robots has
become a research hotspot [5]. emost important thing in
the �eld of music style recognition and generation is the
extraction of relevant features and the selection of classi-
�ers. Di�erent music feature vectors are selected for music
style recognition, and di�erent classi�cation e�ects will be
produced. At present, the identi�cation of musical styles
still uses features such as pitch, timbre, and loudness. If this
study only relies on manually extracted features, the speed
and accuracy of classi�cation will be greatly reduced. In
order to obtain a more accurate recognition e�ect, it is also
necessary to deeply mine the intrinsic correlation between
the data [6].
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With the deepening of research, deep learning models
have been widely used in music generation. )ese deep
models include recurrent neural network (RNN), genera-
tive adversarial network (GAN), restricted Boltzmann
machine (RBM), convolutional neural network (CNN), and
long short-term memory (LSTM) [7]. In addition, the
mixed-use of networks in reinforcement learning (RL) and
deep learning is also used in music generation. Each al-
gorithm has certain drawbacks. For RNN, since the net-
work does not have the effect of long-term memory, the
effect of the generated music is not very good. For GAN, the
network is not very good at dealing with variable content. A
problem that is easy to arise is adding some rhythms to the
generated music that are different from the original music.
RBMs are slightly insufficient in controllability. Some
scholars have used the forward feature selection algorithm
to extract the underlying features of music. )ese features
include spectral center value, linear prediction coefficient,
zero-crossing rate, and more than ten musical features.
Music features are combined with multimodal analysis and
identification methods to finally achieve the effect of music
genre classification. It mainly contains five music genres:
classical, country, pop, jazz, and rock. In addition, some
scholars also perform music recognition by extracting the
rhythm and pitch from the music features to form a two-
dimensional feature vector and finally achieve the effect of
music recognition [5, 8–11]. Hizlisoys et al. proposed a
method for music emotion recognition based on a deep
neural network (DNN) architecture with convolutional
LSTM. )e CNN layer provides log Mel filter bank energy
and Mel frequency cepstral coefficients to obtain features.
)e classification results show that the best performance
can be obtained when the new feature set is combined with
standard features using LSTM fusion DNN classifiers [12].
Li et al. transferred DNNmodels to music classification and
used spectrograms to evaluate the performance of the
models, as shown by extensive experimental evaluations on
three music datasets. )e balanced trust loss function
model, Resnet50_trust, consistently outperforms other
DNN models [13].

Music genre identification and classification have been
deeply analyzed in music robotics research. Deep learning is
also used to generate music and has a certain research basis.
As a very important part of deep learning, RNN has also
made great strides in music generation. )e network is very
powerful in dealing with long-time series problems. How-
ever, using an RNNmodel only for simple music is not ideal.
)is paper introduces the related technologies and theories
that are needed for different genres of music generation in
deep learning and summarizes some key technologies
currently used in music feature extraction. Based on the
LSTM network, the music style recognition and generation
networks are redesigned. )e dimensions of the input
network matrix and output matrix are designed to make
training easier. )e comparison between different spectro-
grams illustrates the accuracy of the experiment, and genre
classification predictions are also performed on the gener-
ated music to illustrate that the network can generate music
of different genres.

2. Introduction of Related Algorithms and
Model Establishment and Training

2.1. Music Generation and Robots. As a creative artistic
expression, music is the unique crystallization of human
wisdom and emotion. )erefore, automatically generating
music with a clear style and in line with the aesthetics of
listening, especially different from existing music, has be-
come one of the criteria for AI evaluation. )is is also a hot
spot for deep learning applications [14].

Most methods use the musical instrument digital in-
terface (MIDI) as the notation of music [15]. Its advantages
are that it is straightforward, the result of the model is the
musical score, and the training data are easy to obtain. Its
downside is the lack of support for intervals or chords. In
addition, data augmentation of the song are required. )e
MIDI file contains only one way of playing a melody for the
model to learn all the possibilities of this melody in the entire
note definition domain. )is not only requires the network
to have higher capacity but also exacerbates the consump-
tion of training resources.

At present, most of the research focuses on the per-
formance of musical robots. )erefore, music generation is
the “performance basis” of music robots. )e intelligent
generation of music by the music robot will improve the
service level of the music robot. Music robots recognize
more beats and styles, including some music style recog-
nition and prediction systems based on spectrum infor-
mation and feature extraction of the support vector machine
(SVM) algorithm. In the past, most of the effort was devoted
to featuring extraction. )e quality of the features largely
determines the result of classification and recognition. Al-
though many features have been extracted to solve audio
problems, direct features related to the structure are always
difficult to describe. Today, the renewed development in the
field of deep learning has made neural networks widely used
in the field of audio processing. )erefore, this study uses
deep learning technology to study the intelligent music
generation of robots and strives to lay a certain foundation
for the development of music robots.

2.2. Advantages and Features of MIDI. Although the MIDI
format has many shortcomings in terms of neural network
data set acquisition and data modeling, this study prefers
symbol sequences that can accurately express information
such as rhythm, timing, pitch, and velocity, rather than
audio signals. )erefore, MIDI files are a more suitable
choice as the input dataset for the network.

)e standard midi format (SMF) of the standard MIDI
format is composed of a series of chunk data blocks. Its
header data block is a file, and immediately after the file
header block is a track block that stores track information
[16]. )e parts included in the standard MIDI format file are
shown in Figure 1.

2.3. Concepts Related to Deep Learning. Deep learning has
further improved based on machine learning. Since the deep
learning architecture contains more layers of networks,
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more features can be obtained when analyzing features. )is
can improve the learning ability of the network. Compared
with shallow networks, deep networks can use fewer neurons
to perform the same function and be more efficient and
accurate in the learning process. Deep learning has been
used in various fields, such as finance, security, and
manufacturing [17].

2.3.1. Neurons. Neurons are also called perceptrons. It is the
most basic unit of neural networks. )e neural network
structure is shown in Figure 2.

In Figure 2, a complete neural network consists of an
input layer, a hidden layer, and an output layer. )e input
layer is mainly used for input vectors. )e hidden layer is
used for vector analysis and parameter learning. )e output
layer is the output result. If the neural network has many
hidden layers, it belongs to the category of deep learning
[18]. Deep learning is mainly to study different DNNs, and
then use DNNs to solve different problems.

)e perceptron algorithm solves a lot of problems. )e
composition of a perceptron is shown in Figure 3.

)e initial value of the weightW of the perceptronmodel
is generally set randomly, which often fails to achieve a good
fitting result.)erefore, it is necessary to calculate the output
value and then make the difference between the actual
output value and the theoretical output value to adjust each
output. )e learning rule is an algorithm used to calculate a
new weight matrixW and a new bias b. )e input layer input
is a vector (m1, m2, m3, · · · , mn丨mi ∈ R). Each input cor-
responds to a weight w. Additionally, the other bias is b. )e
value of the offset is generally 1, denoted as w0. )e sum of
weight values is calculated as shown in the following:

z � 
n

i�1
wimi + b. (1)

)e output value can be denoted as y. )e value of y can
be calculated by the activation function g(z). )ere are
many choices of activation functions, as shown in the
following:

y � g(x). (2)

2.3.2. Feedforward Neural Network. Multiple neurons are
interconnected to form a neural network. )e feedforward
neural network (FNN), composed of a single layer of
neurons, is shown in Figure 4.

In Figure 4, the single-layer neuron feedforward network
has four input units and three neurons as output units. Each

input unit feeds forward to the output layer of each neuron.
)is two-layer neuron structure is also called a perceptron.
Another common network structure is a multilayer FNN. Its
basic structure is like a single-layer feedforward network, but
there are some additional hidden layers between the input
and output layers. Neural networks can extract higher-order
and global data based on these hidden layers. Neural net-
work knowledge is acquired through the network’s learning
process on the dataset. Among them, the weights of the
synapses are continuously adjusted in order to match the
network output with the desired output. )is approach is
also known as supervised learning. )e learning ability of
multilayer networks is much stronger than that of single-
layer perceptrons. Among them, the most commonly used
method for training multilayer networks is the back-
propagation algorithm. It is the most successful neural
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Figure 2: )e structure diagram of the neural network.
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Figure 3: Perceptron diagram.
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network learning algorithm and can be used not only for
multilayer FNN but also for other networks, such as RNN.
)e algorithm is based on the gradient descent strategy, and
the difference between the expected value of the network and
the actual output is sent back to the input, so the current
learning situation of the network can be obtained. Usually, a
loss function is used to express this criterion [19–21].

)e most used loss function is the mean squared error.
For the training data sample (xn, tn), assuming that the
output of the neural network is t

(n), the mean square error of
the neural network on this sample is calculated as shown in
the following:

En �
1
2



l

j�1
t
n

j − t
n
j )

2
. (3)

2.3.3. Gradient Descent. )e gradient descent algorithm is
relatively efficient. By using this algorithm, it is relatively
easy to obtain the optimal solution for the function that
needs to be trained, thereby improving the accuracy of the
model. )e method can be divided into three categories,
namely batch gradient descent, mini-batch gradient descent,
and stochastic gradient descent [22].

When this function is derivable, by calculating the in-
verse of the function, the optimal solution θ of the training
function is regarded as a variable, and the optimal solution
can be obtained. Additionally, the calculation of the weights
also needs to be adjusted according to the learning rate η.
)e update of θ is shown in the following:

θ � θ − η∇θJ(θ). (4)

In the actual application process, the update of θ takes a
long time. )erefore, in the process of training with large
batches of data, it is difficult to complete the training online.
For larger datasets, the training process may be harder
because more memory is required.

One disadvantage of the stochastic gradient descent
algorithm (SGDA) is that it is only suitable for training
datasets. Each set of training data can calculate the gradient.
For example, there is a set of training data (xi; yi), the value
of i belongs to (0, n), and n represents the size of the entire
data set. )e update of θ is shown in the following:

θ � θ − η∇θJ θ; x
i
; y

i
 . (5)

Since this method is aimed at the training dataset, and
only one sample is randomly selected to update the pa-
rameters at a time, the learning efficiency of this method is
very high, and it can be updated online.)e only downside is
that there will be optimization fluctuations due to updates
not going in the right direction. In general, the advantages of
SGDA are still obvious, and it is relatively easy to find better
local minimum points.

)e mini-batch gradient descent algorithm is derived
from the two algorithms mentioned above. )e algorithm
needs to find a balance point in the process of updating, and
each update will select fewer samples than n from the
training set. θ is updated as shown in the following:

θ � θ − η∇θJ θ; x
(i: i+n)

; y
(i: i+n)

 . (6)

Compared with the batch gradient descent algorithm,
the mini-batch gradient descent algorithm greatly improves
the learning efficiency of the mini-batch algorithm. It does
not require a large amount of memory. It is also more ef-
ficient when performing matrix operations. )erefore, the
mini-batch gradient algorithm is one of the most used al-
gorithms in neural networks.

2.3.4. LSTM. LSTM is a special type of RNN. Its purpose is
to solve the long-term dependency problem of traditional
RNN. It is designed to avoid the rapid decay of back-
propagated errors [23]. )e storage unit structure of the
LSTM network is shown in Figure 5.

In Figure 5, a single storage unit in a conventional RNN
neuron is replaced with a storage block containing multiple
storage units. )ey can pass memory cell values down
multiple time steps along the time axis and can be mem-
orized or forgotten at each time beat. It can capture the
information and dependencies of long-distance steps, which
is a very necessary function for the extraction of abstract
musical features. )erefore, it is a more appropriate choice
for the LSTM network to be applied to the generation of
musical melodies [24].

)e current state of a memory cell depends on its
previous state, the network itself, the forget gate, and the
input value of the input gate. )e neuron state update is
shown in the following:

Sc � Scy
φ

+ g netc( y
in

. (7)

After the input vector enters the neuron, through the
activation function, g squeezes the input value into the
interval of 0 to 1 and thenmultiplies the input value obtained
by the input gate. )e process is shown in the following:

y
in

� σ netin( . (8)

Among them, σ represents the sigmoid activation
function. When yin is 0, by multiplying g(netc) and yin, the
input gate can prevent the network input netin from
updating the neuron storage unit.

Like in the calculation process of yin, the output value yc

of the neuron is the storage unit state sc. After being
squeezed through the activation function h, it is multiplied
by the value yout of the output gate, as shown in the
following:

y
out

� σ netout( , (9)

y
c

� h sc( y
out

. (10)

2.4. Implementation and Training of a Music Generation
Model Based on Deep Learning

2.4.1. Training and Testing Data. )e MIDI music website
selects relevant data (musescore.com) and selects ten genres.
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One hundred music clips are selected for each music genre,
for a total of 1000 music clips. )e time of each song is
different, generally between the 30 s and 300 s. All data are in
MIDI music format. In the experiment, five groups of music
were selected for analysis. )e number of training and test
sets for all groups is 180 and 20, respectively. )e amount of
data per genre is 200.

2.4.2. Network Training and Optimization. )e neural
network uses Python 3.10.6 to write the entire system, uses
Tensorflow to implement the programming language
framework, and uses Music21 for music classification.
Training of the network: after all model parameters are
determined, the network is trained. In the training process,
the training data are used, and the updated parameters are
selected repeatedly to optimize the model performance [25].
During the training process, the values of some hyper-
parameters in the model are set, such as the number of
iterations and the number of network layers and hidden
layer units. Figure 6 shows the training process of the music
generation algorithm.

In Figure 6, after the network is trained, it can generate
music of different genres. )e music generation network
generates a new note, mainly by combining the previous
input note with the current input note and then making
predictions [26]. Here, all notes are converted into vectors,
which are used to compare and predict. )e detailed flow
chart of music sequence generation is shown in Figure 7.

In Figure 7, first, the trained network and the set pa-
rameters are loaded. N represents the length of the sequence.
If the sequence length is greater than 0, forward propagation
is performed, and the value of the loss function is calculated.
Here, there is a threshold. If the value of the loss function is
already smaller than the threshold, it means that the music
feature vector is valid at this moment, and the next mo-
ment’s sequence value is predicted. Finally, the entire se-
quence of predicted music is output.

(1) Network Optimization. During training, when the dataset
is small, a common problem is overfitting. )e general-
ization ability is poor, and the consequence is that the effect
of the model is not good and the accuracy is not enough. In

order to prevent the overfitting problem and improve the
accuracy of the network, the experiment adopts the dropout
method. A dropout refers to randomly ignoring the weights
of some hidden layer nodes when training a neural network
[27]. During training, these nodes will not work. )eir
weights are also not updated. Dropout is added between
hidden layers, as shown in the following:

r � (1 − p)xf Wv + b( . (11)

Here 1 − p is a binary model that follows the Bernoulli
distribution. When the probability value is p, the value is 1,
and the rest is 0. In the experiment, all parameters are
multiplied by p to achieve the purpose of changing the
parameters [28, 29].

3. Experimental Results

3.1. Network Optimization Results. In this experiment, in
order to optimize the performance of the model, the con-
vergence effect of the loss function in the three cases of
p � 0.5, p � 0.6, and p � 0.7 is analyzed separately. )e
convergence effect of the loss function is shown in Figure 8.

In Figure 8, when the probability value is p � 0.5, the
convergence value is 0.0035, which is larger than when p � 0.7.
At p � 0.6, the experimental effect is better than at p � 0.5 but
not as good as at p � 0.7. )erefore, the experimental results
are best when the probability value is p � 0.7. Finally, the
dropout coefficient value of this model is determined to be 0.7.

3.2. Analysis of Algorithm Influencing Factors. According to
the experience of neural network training and as the number
of iterations of the LSTM network increases, the experi-
mental error will become smaller and smaller [30–32]. )e
data means that the closer the actual output value is to the
target value, the closer the training result is to the target
value, as shown in Figure 9.

In Figures 9(a) and 9(b), after 3000 iterations, the frequency
distribution of the generatedmusic sequence is roughly the same
as the original music sequence frequency distribution, but there
are still some obvious differences. For example, the generated
music sequence spectrogram contains many frequencies, not in
the original music sequence spectrum. In Figure 9(c), after 6000

Input:yin

Output:yout

G (yin)

H (yout)

Sc=Sc (yφ)+g (yin)

H (Sc)

Figure 5: Storage unit structure of LSTM network.
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iterations, the generated music spectrogram is completely
consistent with the originalmusic spectrogram.)emain reason
is that with the increase in the number of iterations, the model
parameters are also updatedmany times. Finally, the parameters
of the model are optimized.

)e effect of the number of neurons in the hidden layer
of the neural network on the experiment is analyzed. )e

influence of the hidden layer neurons on the experimental
error is shown in Figure 10.

In Figure 10, when the number of neurons in each layer
is 128, 256, 512, and 1024, in turn, the training results be-
come more and more accurate, and the error value becomes
smaller and smaller. If the number of neurons is too large,
the computer environment is very demanding, and the
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Figure 9: Music spectrogram under different iterations. (a): Spectrogram of original sample music sequence; (b): spectrogram of music
sequence iterated 3000 times; and (c): Ssectrogram of music sequence iterated 6000 times.
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training time will increase geometrically, increasing the
complexity by several degrees. )erefore, the number of
neurons in the network’s hidden layer is 1024, which can
make the training result optimal.

During the experiment, the spectrum analysis is per-
formed on the music sequences generated by the model
under different hidden layers in turn. )e generated music
spectrograms and sample spectrograms are shown in
Figure 11.

In Figure 11, the effect of LSTM on music analysis is
still obvious. With the increased number of neural net-
work layers, the trained music spectrogram is getting
closer and closer to the original spectrogram, indicating
that its accuracy is getting higher and higher. When there
are two hidden layers, some frequencies do not appear.
When the hidden layer has four layers, the difference
between the generated music sequence and the original
music sequence is very small, which shows that the
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Figure 12: Music spectrograms of the two algorithms. (a): Original music spectrogram; (b): RBM-generated music spectrogram; and
(c): LSTM-generated music spectrogram.
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Figure 11: Spectrogram of music with different hidden layers. (a): Spectrogram of sample music sequence; (b): spectrogram of music when
the hidden layer is 2; and (c): spectrogram of music when the hidden layer is 4.

8 Computational Intelligence and Neuroscience



generated music is the most accurate when there are four
hidden layers.

)e LSTM-based music generation algorithm is com-
pared with the traditional RBMmusic generation algorithm,
and the spectrograms of the music generated by the two
generative models are analyzed separately. )e results of the
music spectrogram generated by the two methods are shown
in Figure 12.

In Figure 12, the trend of the spectrograms of the music
generated by the traditional RBM and the original music is
highly similar. However, RBM-generated music is not as
accurate as LSTM-generated music. In Figure 12(a), when
the frequency of the original sample music is around
1000–2000Hz, the voltage value exceeds 35, and
Figure 12(b) does not exceed. Compared with Figure 12(c),
the music spectrogram generated by LSTM is more con-
sistent with the original music spectrogram in both the
overall frequency distribution and the sample frequency
distribution.

4. Conclusion

)is experiment mainly analyzes the experimental effect of
deep learning in piano music generation under robotics
technology.)emusic sequence spectrograms are analyzed to
illustrate the accuracy and rationality of the algorithm. Firstly,
based on introducing the basic concepts of deep learning, the
advantages of the LSTM network in music generation are
introduced. Meanwhile, dropout coefficients are used to
optimize the neural network. )rough experimental verifi-
cation, the dropout coefficient value is 0.7. Secondly, this
experiment analyzes the experimental effect of the algorithm,
including the influence of the number of iterations and
neurons in the hidden layer, on the effect of music generation.
When the number of iterations is 6000, the error between the
generated music sequence and the original music is the
smallest. When the number of hidden layers of the network is
set to 4 and the number of neurons in the hidden layer is set to
1024, the training results of the network are best. Spectro-
grams of sequences generated bymusic generation algorithms
based on LSTM and traditional RBM show that neural
networks perform well in music generation. )e shortcom-
ings of this study that can be improved in the future are (1)
due to limited energy, the music training dataset selected is
small, and the music styles are similar. )e internal structure
and logic of different styles of music are not similar. If it is
mixed together to generate music, the accuracy will be much
less. Future research will focus on how the more complex data
can be separated from other multitrack data. )e processing
of the data of these tracks enables the neural network to
process and analyze the multitrack data. (2) )is experiment
mainly extracts digital features of music, including pitch,
timbre, and loudness. Other features can be extracted later,
such as energy features and time domain features. Rich data
features lead to better results. (3) )e algorithm model finally
generates a matrix containing music features, which also
needs to be converted into playable music. Future research
could be considered to include how to automatically generate
music without the need to reverse the process.
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