Campylobacter pylori detection in gastric mucosa: Association with gastritis

Alain Paradis, MD, Marie Gourdeau, MD, FRCP, Suzanne Lambert, MD, FRCP, Sylvain Laviole, MD, FRCP, Suzanne Lemire, MD, FRCP, Claude Parent, MD, FRCP, Rejean Cantin, MD, FRCP

ABSTRACT: In order to evaluate the association between Campylobacter pylori and gastritis, two biopsies were taken from the duodenal bulb, antrum, body and fundus (and from lesions if there were any) in 100 consecutive patients referred to this gastroscopic clinic. For each site, one biopsy was for histology and C pylori detection by Warthin-Starry staining, and the second biopsy was for culture. In addition, for each patient a gastric brushing was Gram stained. Twenty-one patients were excluded from the study. Among the remaining, 33 patients had positive biopsy culture for C pylori and, of these, 30 (91%) had gastritis (including 23 with active chronic gastritis). The culture sensitivity increased with the number of biopsies. Forty-two patients had a positive brushing specimen, of which 30 (71%) had gastritis. Gram stain on a brushing specimen had a sensitivity of 84.8% in comparison with the biopsy culture. Of the 23 patients with positive Warthin-Starry stain, 19 (83%) had an histology of gastritis. There was a strong correlation between the presence of C pylori in the stomach mucosa and the gastritis. The incidence of C pylori associated gastritis is similar in Quebec to other parts of the world. The biopsy culture is a simple and specific test, and at least two biopsies are necessary for a good sensitivity. Gram stain on a brushing specimen is an adequate test for rapid detection of C pylori in the stomach.

Key Words: Campylobacter, Campylobacter-like organism, Campylobacter pylori, Gastritis

Reports of spiral bacteria in the human stomach have occurred sporadically over the last century (1,2). However, it was only in 1982 that a microaerophilic campylobacter-like organism was isolated by Marshall and Warren (3) from gastric antral biopsy specimens. This initial publication sparked off worldwide enthusiastic research into this bacterium now named Campylobacter pylori (4,5). Since this time, a number of studies have shown an association between the presence of C pylori in gastric mucosa and histologically confirmed gastritis. However, there is still some discussion whether the organism has a causative role or is simply a secondary invader.

With this study, it was confirmed that C pylori was correlated with gastritis and then different methods for C pylori detection in the human stomach were evaluated. The literature was also reviewed, emphasizing principal arguments in favour of the causative relationship of the bacterium with gastritis. Finally, some basic notions for a C pylori detection pro-
 PATIENTS AND METHODS

Endoscopy: One hundred consecutive patients were included who were referred for gastroscopy on clinical grounds from January to March 1987. Informed consent was obtained from all patients for endoscopy and biopsies. Biopsies were obtained from the duodenal bulb, antrum, body, fundus and from lesions if there were any. Two biopsies were taken in each area, one for culture and the other for histology, giving eight to 10 tissue specimens from each patient. Also, one brushing specimen from the antrum was spread on a glass slide and air dried. An endoscopist recorded the clinical history, medication and drug use, alcohol consumption, clinical diagnosis and endoscopic findings.

Microbiology: Samples for culture were immediately immersed in 5 mL of thiglycollate broth, transported to the laboratory within 2 h of collection and macerated in 2 mL of the same broth. One drop was then plated on blood agar (tryptiase soy agar with sheep blood 5%) and chocolate agar (GC agar, bio-X 1% and hemoglobin 1%) and incubated microaerophilically in anaerobic jars for seven days at 37°C. The gaspak (Campy-Pak, BBL) was replaced every 24 h. C. pylori, when isolated, was identified using direct examination with Gram stain, oxidase, catalase, oxidation-fermentation test with purple bromocresol, nitrate reduction, hippurate hydrolysis, urease (Christensen's urea medium), indole, and susceptibility to cephalexin and nalidixic acid. The brushing specimens were fixed and stained by Gram method.

Histology: The biopsies for histological examination were fixed in formalin and routinely processed. Sections were stained with hematoxylin and eosin and assessed for gastritis using the same criteria as Marshall (3), that is normal stomach, chronic gastritis or active chronic gastritis. Chronic gastritis indicates inflammation with no increase in polymorphonuclear leukocytes but with increased or normal number of lymphoid cells and edema, congestion or cell damage. Active chronic gastritis is indicated if polymorphonuclear leukocytes are increased in number, if a few infiltrate one gland neck or pit, or if they are scattered throughout the superficial epithelium. In addition, other sections from all biopsies were stained by the Warthin-Starry method (6) and examined for presence or absence of small curved bacilli on the surface of the epithelium.

Data analysis: The results were recorded in each department (gastroenterology, microbiology and pathology) independently. For statistical analysis of the findings, the Fisher's exact test or the χ^2 test was used depending on sample size. For the study of the correlation between the presence of C. pylori and gastritis, only biopsies from the antrum, body and fundus were considered. A patient was considered positive when there was at least one positive site for C. pylori by culture and/or histology.

RESULTS

From the 100 patients, 21 were excluded (two for having taken antibiotics in the week preceding the endoscopy, three for upper digestive neoplasia, one for incomplete clinical data, one for uninterpretable culture and 14 for peptic ulcers). The number of peptic ulcers was too small to study adequately any association with C. pylori.

C. pylori was isolated from 75 biopsies of 33 patients. The bacteria were curved or S-shaped Gram-negative rods. In electronic microscopy, they had three to five sheathed flagella arising from one end of the cell. The biochemical feature was typical of C. pylori: microaerophilic growth in two to four days at 37°C; positive reaction for oxidase and catalase; inert reaction in oxidation-fermentation test; negative reaction for hippurate hydrolysis, indole and nitrate reduction; very strong positive reaction for urease (5 to 10 mins); susceptibility to cephalexin and resistance to nalidixic acid.

Among the 79 patients remaining in the study, 40 had normal histology and 39 had gastritis (chronic or active chronic). These two groups were closely matched for sex distribution, age, medication, excessive alcohol consumption and upper digestive tract surgery.

The correlation between gastritis and the presence of C. pylori defined by biopsy culture was impressive (Table 1). Among the 33 patients with at least one positive biopsy culture, 91% had gastritis (of which 77% were active chronic) and only 9% had normal histology. Table 2 shows the number of positive patients by culture according to different combinations of biopsy sites. The number of positive patients was similar whatever the biopsy site but increased with the number of sites.

With the Gram stain on the brushing specimen, a good correlation between gastritis and presence of C. pylori was obtained (Table 3). In comparison with the culture, the Gram sensitivity was 84.8% since 28 of the 33 positive patients by culture were also Gram-positive.

Sections stained with the Warthin-Starry method were not all easy to interpret. When there was a doubt, often caused by artefacts, the specimen was considered negative. However, a correlation between gastritis and C. pylori was established by this method (Table 3). Only 23 cases were positive but 83% had gastritis and only 17% had a normal histology.

Finally, the endoscopic findings were compared with the histological diagnosis. There were 20 cases with endoscopic diagnosis of gastritis. One-half of these patients had gastritis by histology.

Table 1

<table>
<thead>
<tr>
<th>Histology</th>
<th>Culture Positive</th>
<th>Culture Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active chronic</td>
<td>23</td>
<td>4</td>
</tr>
<tr>
<td>Chronic</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>Normal</td>
<td>3</td>
<td>37</td>
</tr>
</tbody>
</table>

• C. pylori was isolated from at least one biopsy. $P < 0.0001$ (χ^2 test)

Table 2

<table>
<thead>
<tr>
<th>Biopsy sites</th>
<th>Patients with positive culture(s)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antrum</td>
<td>22</td>
</tr>
<tr>
<td>Body</td>
<td>22</td>
</tr>
<tr>
<td>Fundus</td>
<td>23</td>
</tr>
<tr>
<td>Antrum and body</td>
<td>27</td>
</tr>
<tr>
<td>Antrum and fundus</td>
<td>28</td>
</tr>
<tr>
<td>Body and fundus</td>
<td>28</td>
</tr>
<tr>
<td>Antrum, body and fundus</td>
<td>33</td>
</tr>
</tbody>
</table>

• C. pylori was isolated from at least one biopsy.
and the remaining were normal. In the group with endoscopic diagnosis of normal gastric mucosa, 30 had normal biopsies and 29 had gastritis confirmed by histology.

DISCUSSION

Findings about the identification of the *C. pylori* were similar to those of other authors (1,7). The very strong Urease activity is the striking feature, indeed *C. pylori* is the sole *Campylobacter* species with a positive urease test (8) and this test could suffice in itself to presumptive identification.

A high correlation was found between the presence of *C. pylori* and gastritis in the biopsies. Thirty of 33 (91%) of the patients who tested positive for *C. pylori* also had gastritis. It was confirmed that the incidence of *C. pylori* associated gastritis in Quebec was similar to that found in other parts of the world. Marshall (7) in Australia discovered 100% (52 of 52) of the patients who tested positive to *C. pylori* also had gastritis while Jones (9) in the United States had a 96% (26 of 27) correlation and Taylor (10) in Alberta, Canada obtained a 95% correlation. Other authors had similar data (11-14).

Despite its strong association with gastritis, the pathogenic role of *C. pylori* is still controversial. Is it simply a colonizer of a mucosa altered by gastritis or the primary disease etiology? Several observations support the latter hypothesis. First, *C. pylori* in the stomach seems to provoke a local (12,13,15,16) and systemic immune response (9,11,17-20). Second, *C. pylori* is present in primary gastritis and not in secondary gastritis, i.e., with known predisposing cause (14,21-23). Third, *C. pylori* appears particularly adapted to gastric epithelial cells in which it is associated with well described specific lesions (17,15,16,24-26). Further, few treatment studies have been done but the available data up to now are very much in favour of a pathogenic role of *C. pylori*. Bismuth compounds or amoxicillin clear the organism and the associated gastritis (27-29). Finally, one of the most convincing arguments for the pathogenic action of *C. pylori* comes from the demonstration of third and fourth Koch's postulates. Two volunteers with normal stomach developed symptomatic gastritis after ingestion of *C. pylori* suspension (15,16). All these observations support a cytopathogenic activity by *C. pylori* and militate against the hypothesis that the organism is associated with gastritis merely by colonizing the mucosa after inflammation has occurred.

C. pylori associated gastritis is diagnosed by histological and/or microbiological examination of gastric biopsy specimen. The culture of biopsy specimen is the most specific test. The typical identification profile of the bacterium provides very little risk of false-positive culture. The technique is simple and may be performed in a routine laboratory. Numerous causes of false-negative result are possible, such as recent antibiotic therapy, but can be avoided without difficulty (7). As demonstrated in Table 2, the culture sensitivity increases with the number of biopsies. However, although the number of positive patients is similar whatever the observed site, it cannot be concluded that the choice of biopsy site does not influence the sensitivity of the culture. As the biopsy forces were not sterilized between each area and as the order of biopsies was always the same, a cross-contamination of culture from preceding samples was theoretically possible, particularly from the antrum, which is positive in most positive patients. Hazell et al (30), in a study of *C. pylori* distribution within the stomach, (in which they cleaned and rinsed biopsy forces between each site) suggested taking biopsies from both the antrum and body because the bacterium may be limited to one of these areas. Unfortunately, their method was not perfect since the endoscope lumen was not sterilized between each biopsy.

The principal disadvantage with the culture is the delay of several days before obtaining results. A Gram-stained brushing specimen is useful because results may be available within 1 h, i.e. when the patient is still in the gastroscopy clinic. Present results demonstrated a good sensitivity of 84.8% in comparison with culture but a decreased specificity since 10 patients with negative culture and normal histology were positive on Gram-stain. Unfortunately, it is impossible to establish if these positive Gram stains are true positive since there was no culture from the brushing specimens. Also, present results cannot be compared with others since most studies used Gram-staining on biopsy specimens instead of brushing specimens and none evaluated the test specifically.

Other rapid detection tests have been previously investigated. Urease tests performed directly on biopsy specimens obtained different results depending on technique. Its sensitivity varied from 50% to 100% (14,25,31-35) but there is a commercially available urease test (CLO Test) with high specificity and sensitivity (36,37). Furthermore, a recent study demonstrated a correlation between the urease reaction time and the grades of inflammation and number of bacteria seen in biopsies (32). The 13C-urea breath test also exploits the strong urease activity of *C. pylori* and its initial results are encouraging (38). Detection of the bacterium by phase contrast microscopy (39) or immunofluorescence (40) is possible but, like the 13C-urea breath test, is not available in many hospitals.

As with most previous studies, the Warthin-Starry stain was used for histological detection of *C. pylori*. Data with this stain were less interesting than with culture and Gram stain. The test was time consuming and difficult to interpret because there were a lot of artefacts. Some pathologists suggest, as an alternative, the Giemsa, hematoxylin and eosin or fluorescent acridine orange tests (10,41,42). In a recent study, the bacterium was detected with the hematoxylin and eosin stain in 95% of positive culture biopsies (29).
CONCLUSION

Despite several major reasons to consider \textit{C. pylori} as a pathogen, some continue to refute this idea because the bacterium is found in apparently healthy subjects. However, as with other bacteria, such as group A streptococcus in the pharynx, a carrier state is possible. Although further clinical trials on \textit{C. pylori} infection treatment are required to confirm its pathogenicity, an investigation of different gastroduodenal diseases, particularly gastritis, should include an attempt to detect \textit{C. pylori} within the stomach in addition to the usual histological colouration. At least two biopsies are necessary, one from the antrum. A rapid detection of the bacterium by Gram stained brushing specimen is very simple but not specific enough. The rapid urease test deserves much consideration, however, it should be evaluated in the clinical setting before being used routinely. Any kind of rapid test should be confirmed by culture. Special staining of biopsies to find the bacterium is not indispensable if rapid test and culture are done.

ACKNOWLEDGEMENTS: The authors acknowledge Myrrin Noël (technologist), Jacqueline Larochelle (nurse), Louise Rochette (statistician) and Lucie P. Jobin (medical secretary) for their indispensable contribution.

REFERENCES

Submit your manuscripts at http://www.hindawi.com