Use of the 14C breath test in the treatment of Helicobacter pylori

AJ Rae BSc MCS, A Belzberg MD FRCP FACP, IGM Cleator MB CHB FRCS FRCSC FACS, M Caglar MD

The presence of Helicobacter pylori is strongly associated with gastric and duodenal ulcers; studies have shown this organism to be found in up to 100% of patients displaying gastric and duodenal ulcers not induced by nonsteroidal anti-inflammatory drugs (1,2). Application of antibiotic and acid-blocking pharmaceuticals aim at eradicating the organism and, if successful, result in an extremely high cure rate (3).

Diagnosis of H pylori infection involves endoscopy and biopsies of antral tissue. The organism can be visualized by the pathologist using a hematoxylin and eosin or acridine orange stain. Due to the patchiness of the gastric inflammation and the organism, several biopsies are usually required. Presently, biopsy represents the ‘gold standard’ for H pylori detection, although noninvasive testing (breath, saliva, blood) will undoubtedly become as accurate as biopsy.

14C breath test: The 14C urea breath test is based on the intense urease activity of the H pylori bacterium. Detection of H pylori is based on the liberation of 14C carbon dioxide following oral administration of 14C urea.

Unlike serology tests for H pylori, the 14C breath test can be used a month after eradication therapy for confirmation of treatment efficacy. In terms of ease of use, noninvasiveness, cost per test and usefulness in follow-up, the 14C breath test represents a
A very promising approach. Two initial European validation studies have reported sensitivity/specificity figures of 90.2%/83.8% (4) and 94%/89% (5), respectively.

PATIENTS AND METHODS

A retrospective study was conducted to investigate the validity of a 14C breath test developed for the diagnosis and follow-up of H pylori-infected persons entering the authors’ gastrointestinal clinic. All patients who were endoscoped by the same physician and possessed records of simultaneous biopsy and breath test from April 1993 to March 1994 were studied.

The department of Nuclear Medicine at St Paul’s Hospital, upon validation using normal controls, determined a positive test as greater than 0.3% at 10 mins or greater than 2.0% at 60 mins.

Biopsy was chosen as the ‘gold standard’ against which the 14C breath test was compared. Two gastric biopsies were taken, as well as biopsies from the duodenum if indicated. Patients already taking antacids, H2 blockers or omeprazole were not excluded. Double (omeprazole 20 mg bid and amoxicillin trihydrate 1 000 mg bid) or triple therapy (bismuth subsalicylate 5 mL qid, metronidazole 500 mg qid and tetracycline 250 mg by mouth daily for six weeks) had not yet been applied to this patient population.

The noninvasive breath test began with each patient blowing through a tube into a vial of carbon dioxide trapping agent (benzethonium hydroxide) to give baseline values for future comparisons. All patients had fasted before the procedure and brushing of teeth was not done. Afterwards, 370 kBq of 14C-labelled urea in 30 mL of water was ingested by patients (radiation exposure is approximately 1/50 that of a chest x-ray). Breath samples were taken at 10, 15, 20, 30, 45 and 60 mins. A pH marker turned from pink to clear when a sufficient breath sample (0.5 mmol carbon dioxide) had been obtained. The key values for beta-counting are those obtained at 10 mins and the total 14C-labelled carbon dioxide for 1 h.

Measurements were adjusted according to the weight, but not height, of each patient. A person’s test was considered normal if the counted value was less than 0.3% at 10 mins or less than 2% at 60 mins. This test was based on the notable urease activity of H pylori. Finally, the results of a 60 min cumulative collection were compared with those of a modified 10 min collection.

RESULTS

14C breath tests were conducted by the same physician, in conjunction with endoscopy and biopsy, in 52 cases. The pathology department performed hematoxylin and eosin staining and was blinded to the results of endoscopy and 14C breath tests. Excellent correlation existed between the cumulative 60 mins and 10 mins sample collections ($r^2=0.915$) (Figure 1). In three cases a 14C test positive result and negative biopsy were obtained. In four other cases a 14C test negative result and positive biopsy were determined. In four other cases a 14C test negative result and positive biopsy were determined. Sensitivity, specificity, reliability and positive predictive value were 83%, 89%, 87% and 87%, respectively (Table 1). However, when the first five cases were removed, these values increased to 85% (sensitivity), 93% (specificity) and 89% (reliability) (Table 2). In five cases, patients were once again biopsied and given a breath test (at least one month later). Biopsy and breath test corresponded in nine of 10 comparisons (90%). In two of four false negatives (14C breath test negative but biopsy positive) only scant numbers of homosexuals Helicobacter négatif, mais biopsie positive), seul un faible nombre d’organismes Helicobacter ont été isolés. Chez l’un des trois faux positifs (test respiratoire avec marquage au 14C positif, mais biopsie négative), une inflammation aiguë du matériel duodénal soumis à la biopsie a été décelée. Également, la double thérapie (par omeprazole 20 mg bid et trihydrate d’amoxicilline 1 000 mg bid) administrée aux trois faux positifs a été suivie de tests respiratoires avec marquage au 14C trois semaines plus tard, qui indiquaient des résultats normaux, ou l’absence de l’organisme pathogène.

![Figure 1](https://via.placeholder.com/150)

Figure 1 Plot of cumulative 14C excreted over 60 mins compared with a 10 min 14C excretion ($r^2=0.915$)

| TABLE 1
<p>| Results of 14C breath tests |</p>
<table>
<thead>
<tr>
<th>Biopsy positive</th>
<th>Biopsy negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>14C test positive</td>
<td>20</td>
</tr>
<tr>
<td>14C test negative</td>
<td>4</td>
</tr>
</tbody>
</table>

| TABLE 2
<p>| Results of 14C breath tests when the first five cases were removed |</p>
<table>
<thead>
<tr>
<th>Biopsy positive</th>
<th>Biopsy negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>14C test positive</td>
<td>17</td>
</tr>
<tr>
<td>14C test negative</td>
<td>3</td>
</tr>
</tbody>
</table>
H pylori organisms were found. The authors believe that these results were simply due to a low number of H pylori organisms producing minimal extracellular urease rather than due to sampling error. In one of three false positives (14C breath test positive but biopsy negative) acute inflammation of the duodenal biopsied material was detected (Table 3). Also, double eradication therapy, administered in all three of these false positive cases, was followed by 14C breath testing six weeks later, which indicated normal scores or absence of the organism.

Finally, five patients in whom 'double therapy' did not work and for whom only 14C breath testing was used in follow-up were examined. In all cases repeat 14C breath tests were positive and values showed little change from earlier measurements (Table 4).

DISCUSSION

Values obtained in our study correspond well with those established in other 'validation' trials. Interestingly, five of seven noncorresponding breath tests and biopsies could be clearly explained and reveal a pitfall of comparing breath tests with biopsy. As earlier noted, biopsy sampling is crucial because inflammation and presence of H pylori are patchy. Hansing et al (6) noted a lower H pylori infection rate in their study but attributed this to several factors, including number and site of biopsies. In the same study, pathological analyses revealed that H pylori organisms were commonly identified in both the antrum and body, although corresponding neutrophilic inflammatory compounds, as well as mucus degeneration and depletion, "were more common and more severe in the antrum" (6). In our validation study we made several observations that might indicate a higher sensitivity and specificity for the 14C breath test. One of three false positives (breath test positive but biopsy negative) displayed acute inflammation of duodenal biopsied material. Because H pylori is associated with almost all duodenal ulcers (7) and because double therapy was applied in this case and followed by a negative breath test, this case may have been a legitimate positive. Also, in the two other false positive cases double eradication therapy was applied and followed by 14C breath testing six weeks later; each test at that time indicated normal scores or absence of the organism. Additionally, in two of four false negatives (breath test negative but biopsy positive) only scant numbers of helicobacter organisms were found and no inflammatory infiltrate was observed. Pathological investigation indicated basically normal tissue, and thus the question arises whether such persons should be treated in this instance.

Finally, one other argument may exist for a higher reliability of the 14C breath test. We looked at five additional patients in whom 'double therapy' did not work and for whom only 14C breath testing was used for follow-up. In all cases repeat 14C breath tests were positive and values showed little change from earlier measurements (Table 4). The correlation between scores seems quite close and reveals only a slight diminishing of H pylori infection. Again, these observations are meant only to be descriptive and require a larger sample size for validation. We included them, however, to indicate the intrinsic difficulty of comparing the 14C breath test solely with biopsy, and suggest that more accurate noninvasive diagnostic tests for H pylori may overtake the biopsy as gold standard in the future.

We conclude that 14C testing has been a welcome addition to the standard gastrointestinal work-up at our institution and we believe it to be the noninvasive test of choice at this time. Because the correlation between cumulative 60 min collection and 10 min collection is excellent, the possibility of reduced test times will likely increase patient acceptance without reducing accuracy. Saliva and blood testing have not yet come of age, although new refinements may improve the questionable reliability or time-dependent accuracy they presently display (8-10). (In a separate study we are investigating the utility of the saliva test that measures immunoglobulin...
lin G antibodies to H pylori by ELISA and have found it to possess a sensitivity no greater than 80% [unpublished data].

As for blood tests, improvements in reliability still are outweighed by the dilemma of seroconversion, ie, how long after anti-H pylori treatment can the test be administered to check for eradication? In contrast, the 14C breath test represents a reliable and safe alternative. The 14C test displayed a 87% (n=52)/89% (n=47) accuracy in this study, and this figure may have been higher than reported previously due to the biopsy sites chosen. We recommend the 14C breath test, particularly for follow-up of H pylori infection therapy in limited cases, no sooner than one month after double therapy is finished. This ability to follow-up without worrying about seroconversion provides a strong argument for this test versus other noninvasive tests. Additionally, centres may perform these tests and have them analyzed at a more equipped centre, a further argument for the ease of use of this test even in poorly equipped centres.

Clearly the use of this test must be delineated according to clinical indication. Does a patient with a proven duodenal ulcer require any test? Probably not if H pylori is responsible, as in nearly 100% of these cases. Gastric ulcer requires endoscopy to rule out cancer. Persons with gastritis and nonulcer dyspepsia initially should be endoscoped. So what is the place of the 14C breath test? Perhaps the most obvious use presently is in the follow-up of clinically healed duodenal ulcer and of clinically established (upon endoscopic evaluation) gastritis, replacing re-endoscopy. On the other hand, 14C follow-up of gastric lesions cannot be supported because of cancer risk.

CONCLUSIONS

We recommend the 14C test for follow-up of a limited population (clinically healed duodenal ulcer and follow-up of clinically established gastritis) already endoscoped and receiving H pylori eradication therapy. Retesting must be performed at least one month after therapy has ended. Until blood and saliva tests prove more reliable, we view this form of H pylori detection as a superior noninvasive test.

REFERENCES

BIBLIOGRAPHY
