Corticotropin-releasing factor and the brain-gut motor response to stress

Yvette Taché PhD1, Vicente Martinez DVM PhD1, Mulugeta Million DVM PhD1, Jean Rivier PhD2

1CURE: Digestive Diseases Research Center, West Los Angeles VA Medical Center and Departments of Medicine and Brain Research Institute, University of California, Los Angeles, and 2Clayton Foundation Laboratories for Peptide Biology, Salk Institute, La Jolla, California, USA

Correspondence and reprints: Dr Yvette Taché, Building 115, Room 203, West Los Angeles VA Medical Center, 11301 Wilshire Boulevard, Los Angeles, CA 90073, USA. Telephone 310-312-9275, fax 310-268-4963, e-mail ytache@ucla.edu

La corticolibérine (CRF) et la réponse de l’axe cerveau-intestin au stress

RÉSUMÉ: La caractérisation de la corticolibérine (ou CRF, pour corticotropin-releasing factor) et de ses récepteurs, ainsi que le développement d’antagonistes spécifiques du CRF manifestant une sélectivité à l’endroit de certains sous-types des récepteurs, ont pavé la voie à une meilleure compréhension de l’encodage biochimique de la dysmotilité intestinale liée au stress. Les rapports ont toujours confirmé que l’administration centrale de CRF agit sur le cerveau pour inhiber la vidange gastrique tout en stimulant la motricité du côlon par l’entremise d’une modulation de l’influx vagal et parasympathique sacré chez le rat. Au niveau cérébral, le CRF endogène joue un rôle de médiateur sur diverses formes de stases gastriques dues au stress, notamment l’iléus gastrique post-opératoire; et il active le transit colique et l’émission des selles déclenchées par des stimuli aversifs ou terribles. On sait que le CRF cérébral participe aux échanges entre les systèmes immunitaire et gastro-intestinal parce que l’administration systémique ou centrale d’interleukine-1-bêta retardé la vidange gastrique tout en stimulant l’activité motrice colique par le biais de la sécrétion du CRF dans le cerveau. Le noyau paraventriculaire de l’hypothalamus et le complexe vagal dorsal sont des sites de l’action inhibitrice du CRF sur la motricité gastrique, alors que le noyau paraventriculaire de l’hypothalamus et le complexe du locus coeruleus sont des sites de l’action stimulante du CRF sur la motricité colique. L’inhibition de la vidange gastrique par le CRF est amenée par l’interaction avec les récepteurs du CRF2, alors que les réponses motrices anxiogènes et coliques mettent en cause les récepteurs CRF1. On se demande si l’hypersécrétion de CRF au cerveau ne contribuerait pas à la physiopathologie de l’exacerbation du syndrome du côlon irritable lié au stress.

Key Words: Brain-gut interactions, Colonic motor function, Corticotropin-releasing factor, Irritable bowel syndrome
Brain CRF and gut motor response to stress

COPYRIGHT PULSUS GROUP INC. - DO NOT COPY

...Should this man receive bad news, or should sad and baneful passions suddenly arise in his soul, his stomach and intestine will immediately cease to act on the foods contained in them. The very juices in which the foods are already almost entirely dissolved will remain as though struck by a moral stupef.”

Caluний's statement in 1802 (1) is among the first prescientific recognitions that the brain affects gut function. A few years later, Beaumont (2) reported clinical observations that emotional states linked with fear or anger disturbed gastric function. Pioneer experimental reports of brain-gut interactions by Pavlov (3) and Cannon (4) demonstrated that psychological stimuli such as sham feeding and fear influence gastric secretory and motor function in dogs and cats. Hall (5) established in rodents that defecation scores are a means of measuring the fearfulness response to unfamiliar surroundings or arousing situations.

Selye (6,7), while working at McGill University, Montreal, fathered the unifying concept of stress initially reported in 1936 as a “syndrome produced by diverse noxious agents” and later defined as the “nonspecific response of the body to any demand”. The activation of the pituitary adrenal axis induced by exposure to various stressors (7) stimulated research on the biochemical coding of the hypothalamic factors triggering the endocrine response. In the 1960s, Guillemin (8) (a former doctoral student of Selye) observed independently the presence of a corticotropin-releasing factor (CRF) in hypothalamic extracts that stimulates adrenocorticotropic hormone (ACTH) release from anterior pituitary cells. However, CRF eluded characterization until 1981, when Vale and coworkers (9) (former doctoral students of Guillemin) reported the isolation of the 41-amino acid peptide involved in the pituitary stimulation of ACTH release. Recently, a new CRF-related mammalian peptide, urocortin, was identified in rats and humans, and the 40-amino acid peptide involved in the pituitary stimulation of ACTH release. Currently, a new CRF-related mammalian peptide, urocortin, was identified in rats and humans, and the 40-amino acid peptide shares 45% homology with CRF (10).

Since the discoveries of CRF-related peptides along with the development of specific CRF receptor antagonists by Rivier et al (11), Gulyas et al (12), Hernandez et al (13) and Miranda et al (14), significant advances have been made in the understanding of the neurobiological basis of the stress response. In this article, we provide a brief background on CRF distribution in the brain, CRF receptor characterization and new advances in the development of selective CRF antagonists. In addition, we review recent experimental evidence supporting a role of brain CRF in mediating the gastric and colonic motor alterations induced by stress and its possible pathophysiological relevance to irritable bowel syndrome (IBS).

BRAIN CRF AND CRF RECEPTOR DISTRIBUTION, AND BIOLOGICAL ACTIONS OF CENTRAL CRF

CRF is widely distributed in the brain, with the highest abundance in the paraventricular nucleus of the hypothalamus (PVN) (15,16). A subset of CRF-containing neurons projects to the portal capillary zone of the median eminence to stimulate the secretion of ACTH from the anterior pituitary gland. The subsequent ACTH-induced release of adrenal glucocorticoids is part of the response of the peripheral limb of the hypothalamic-pituitary axis (HPA) to stress (15,16). In addition to its neuroendocrine role, CRF, when injected centrally, elicits a wide spectrum of behavioural, autonomic and visceral responses, including anxiogenic behaviour and inhibition of food intake, increases in sympathetic outflow, decreases in vagal activity, and alterations in cardiovascular and immunological function that mimic the bodily alterations induced by various stressors (17-23).

CRF mediates its actions through interaction with specific, high affinity, membrane-bound receptors that are coupled to a guanine nucleotide stimulatory factor-signalling protein, resulting in increased intracellular cAMP levels (19,24,25). Two different CRF receptors, CRF1 and CRF2 subtypes, have been cloned and characterized in rats as well as in humans (24-26). These receptors show an overall 71% identity and differential pharmacological and anatomical profiles, indicative of distinct functional roles (26,27). Binding constants in transfected cells indicate that rat/human CRF (r/hCRF) exhibits a higher affinity for the CRF1 receptor than the CRF2 subtype (25,26,28). By contrast, CRF-related peptides, sharing a 40% to 50% structural homology with CRF, namely, sauvagine, a 40-amino acid peptide isolated from the Phylomedusa sauvagi amphibian’s skin, and urotensin-I, a 41-residue peptide isolated from teleost fish, as well as mammalian urocortin, display a higher affinity at the CRF2 receptor than CRF, while having a similar affinity to CRF at the CRF1 subtype (25,26,28). The CRF1 receptor is the predominant form localized in the pituitary gland, olfactory bulb and cerebral cortex, while the CRF2 subtype is found in the lateral septum, hypothalamus, amygdala and brain stem (25,26).

CRF RECEPTOR ANTAGONISTS

Rivier et al (11), Gulyas et al (12), Hernandez et al (13), Miranda et al (14), Fisher et al (29) and Menzaghi et al (30) developed three generations of CRF analogues with competitive antagonistic activity at both the CRF1 and CRF2 receptor subtypes (Table 1). Alpha-helical CRF9-41, [Met18,Lys23, Glu27,29,40,Ala32,41,Leu33,36,38]r/hCRF9-41 developed in 1982 and the D-Phe12 CRF12-41 analogue [D-Phe12,Nle21,38,Cys31,33,36,38]r/hCRF12-41 developed in 1982 and the D-Phe12 CRF12-41 analogue [D-Phe12, Nle21,38,Cys31,33,36,38]r/hCRF12-41 have been extensively used in vivo to assess the physiological role of CRF in endocrine, autonomic, immune, behavioural and gastrointestinal responses to various stressors (11,13,18,21,29-33). However, these antagonists have some limitations due to their poor solubility, persistence of intrinsic activity and weak potency at pituitary receptors (12,29,30). In addition, alpha-helical CRF9-41 has a high affinity for the CRF binding protein (12). Further research aimed at achieving conformational stability of CRF antagonists resulted in the development of astressin, cyclo[30-33]r/hCRF12-41 (12,14). Astressin’s main characteristics are its low intrinsic
activity, high solubility in aqueous solutions, and high affinity
to both CRF₁ and CRF₂ receptor subtypes, while lacking an
affinity to the CRF binding protein (12,34). Recent reports
indicate that astressin has an approximately 32-fold and
100-fold higher potency than D-Phe CRF₁₂-₄₁ and
alpha-helical CRF₁₀₋₄₁, respectively, to inhibit ACTH secre-
tion from pituitary cells in culture (12,14). Moreover, after
peripheral administration in rats, astressin is 10-fold more
potent than any other CRF antagonists reported to inhibit
stress-induced increases in ACTH plasma levels (12).

During the past two years, nonpeptide competitive CRF
receptor antagonists, namely NBI-27914, CP-154,526 and
antalarmin, which exhibit a highly selective antagonist ac-
tion at the CRF₁ receptor subtype, became available (35-38)
(Table 1).

ROLE OF BRAIN CRF IN STRESS-RELATED INHIBITION OF GASTRIC MOTOR FUNCTION

Stress influences gastric motor function, including motility
and transit. Although the pattern of gastric motor changes
can vary in function according to the stressors (pages 26A to
31A), the most consistent effect relates to the inhibition of
gastric contractions and gastric emptying in experimental
animals and humans (39-41).

The injection of CRF into the cerebrospinal fluid (CSF),
into either the lateral or third ventricle or the cisterna
magna, delays gastric emptying of a non-nutrient viscous so-
lution and of a caloric meal, either liquid (glucose) or solid
(Purina chow,Ralston Purina, Missouri), in conscious rats
and mice (42-54). Active transport of CRF from the brain to
the periphery exists (55,56); however, convergent evidence
demonstrates that the delay of gastric emptying induced by
injecting CRF into the CSF is a central nervous system action
and not a peripheral effect due to leakage of the peptide
(44,46,51,53). Brain sites responsive to CRF and resulting in
the inhibition of gastric motor function include the PVN
and dorsal vagal complex, whereas the locus coeruleus com-
plex (LCC), lateral hypothalamus or central amygdala (uni-
lateral microinjection) microinjected with CRF did not alter
gastric motor function (52,57,58). CRF action is mediated
by a specific interaction with CRF receptors in the brain.
Central administration of either of the three peptidergic
CRF receptor antagonists blocked concurrent injection of
CRF-induced inhibition of gastric emptying in rats and mice
(42,43,45,46,54,53). In particular, astressin proved to be six-
to 16-fold more potent than the two previously developed
peptidergic CRF receptor antagonists (42). Evidence based
on the potency of the CRF-related peptides sauvagine and
urotensin, with a higher affinity for the CRF₂ receptor sub-
types, suggests that CRF₂ receptors may be preferentially in-
volved in the intracisternal injection of CRF-induced delay
in gastric emptying in rats (50,59,60). The central action of
CRF can be modulated by other transmitters. Intracisternal
injection of the sigma ligand JO 1784 attenuated intra-
cisternal CRF-induced delayed gastric emptying (47).

Peripheral autonomic pathways convey CRF action from
the brain to the stomach, whereas associated activation of
the pituitary-adrenal axis and endorphins do not play a role.
Inhibition of the gastric motor response by the central injec-
tion of CRF was not altered by hypophysectomy, acute
adrenalectomy and naloxone pretreatment, but was
abolished by ganglionic blockade in rats and mice
(31,44,46,50,54). Most reports, except one (54), indicate
that central CRF delays gastric emptying through vagal-
dependent mechanisms. Intracisternal injection of
CRF and sauvagine decreases the discharge of gastric vagal
efferents (61), and vagotomy completely prevents the inhibi-
tion of gastric emptying induced by intracisternal or
intracerebroventricular injection of CRF (44,50) and partly
prevents the inhibition of gastric emptying induced by PVN
microinjection of CRF (57). CRF microinjected into the
dorsal vagal complex inhibits exogenous and endogenous
thyrotropin-releasing hormone (TRH) in the dorsal vagal
complex-induced vagal stimulation of gastric contractility
(58). Further indication of an inhibition of preganglionic
vagal motor neuron activity by intracerebroventricular injec-
tion of CRF also came from studies using Fos expression as
a marker of neuronal activation (62). Cold exposure activ-
ates dorsal motor nucleus of the vagus neurons through
medullary TRH release (63-65). Intracerebroventricular
injection of CRF suppressed the number of Fos-positive cells
in the dorsal motor nucleus of the vagus that were induced by
cold exposure by 80% (66).

The role of endogenous brain CRF in stress-related de-
layed gastric emptying was further established by the use of
the three peptidergic CRF receptor antagonists injected into
the CSF or the PVN at doses that block the effect of exoge-
 nous CRF. Abdominal and brain surgery-, restraint-, forced
swimming- and ether anesthesia-induced inhibition of gas-
tric emptying were all prevented by the central injection of
the CRF receptor antagonists (42,43,49,53,57,67) (Table 2).
Recently, we reported that 3 µg astressin injected intra-
cisternally completely inhibited abdominal surgery, and
cecal manipulation induced 60% to 65% inhibition of gas-
tric emptying 3 h after surgery. By contrast, 10 to 50 µg is re-

TABLE 1

Peptides and nonpeptide antagonists

<table>
<thead>
<tr>
<th>CRF antagonist</th>
<th>Selectivity</th>
<th>Effective doses</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peptides</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>alpha-helical CRF₁₀₋₄₁</td>
<td>CRF₁,R₂</td>
<td>50 µg, ic, icv; 2 mg/kg, iv</td>
<td>11,29</td>
</tr>
<tr>
<td>[D-Phe¹², Nle²¹,³₈, C⁹ Leu²⁷] /CRF₁₂₋₄₁</td>
<td>CRF₁,R₂</td>
<td>20 µg, ic, icv; 0.5 mg/kg, iv</td>
<td>13,30</td>
</tr>
<tr>
<td>Astressin</td>
<td>CRF₁,R₂</td>
<td>3 µg, ic, icv; 0.1 mg/kg, iv</td>
<td>12,42</td>
</tr>
<tr>
<td>Nonpeptides</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP-154,526</td>
<td>CRF₁,R₁</td>
<td>5 to 30 mg/kg, icv, po</td>
<td>36,37</td>
</tr>
<tr>
<td>NBI 27914</td>
<td>CRF₁,R₁</td>
<td>NT</td>
<td>35</td>
</tr>
<tr>
<td>Antalarmin</td>
<td>CRF₁,R₁</td>
<td>20 µg/kg, ip</td>
<td>38</td>
</tr>
</tbody>
</table>

CRF: Corticotropin-releasing factor; CRF-R: Corticotropin-releasing factor receptor; ic: Intracerebral; icv: Intracerebroventricular; ip: Intraperitoneal; iv: Intravenous; NT: Not tested; po: Oral
quired for the other CRF receptor antagonists, D-Phe CRF
_{17-41} and alpha-helical CRF9-41, demonstrating the en-
hanced potency of astressin (42,67) (Figure 1). The demon-
stration that the postoperative ileus is mediated by
supraspinal CRF-dependent mechanisms may add to the un-
derstanding of the biochemical coding and neuronal cir-
cuity involved in the efferent limb of the reflex (43,67,68).
Indeed, earlier studies recognized the importance of
sympathoadrenergic as well as vagal efferent pathways in
postoperative gastroparesis (69,70). Such pathways are con-
sistent with the release of CRF in the brain by surgery
(71,72) and CRF-dependent modulation of autonomic out-
flow, resulting in alterations of gastric motor function
(61,73-77).

In addition, CRF in the brain may play a role in func-
tional alterations of gastric motility during immune chal-
lenge. Interleukin-1, one of the key mediators involved in
the immunological and pathological response to infections
and antigencic challenges (78), activates CRF neurons in the
PVN (79,80). In line with a role of brain CRF in the regula-
tion of gastric emptying in response to various challenges,
interleukin-1-beta injected peripherally or into the CSF de-
lays gastric emptying of a non-nutrient meal (48,81-83).
Upon microinjection into the dorsal vagal complex, it inhib-
its the vagal-dependent stimulation of gastric contractility
induced by coinjection of TRH (84). Central injection of
the CRF receptor antagonist D-Phe CRF
_{17-41} prevents the
delayed gastric emptying induced by intracisternal or in-
travenous injection of interleukin-1-beta in rats (48,81).
Taken together, these findings strengthen the important
role of brain CRF in the gastric stasis resulting not only from
exposure to psychological, physical or chemical stress (31)
but also from immunological challenges associated with ac-
activation of interleukin-1 (48,81). By contrast, CRF in the
brain is not involved in the basal regulation of gastric empty-

<table>
<thead>
<tr>
<th>Stressors</th>
<th>Gastric/colonic motor changes</th>
<th>CRF antagonist</th>
<th>Antagonist dose (µg/rat)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdominal surgery</td>
<td>Decreased GE</td>
<td>Astressin</td>
<td>3, ic</td>
<td>2</td>
</tr>
</tbody>
</table>
| Abdominal surgery | Decreased GE | D-Phe CRF
_{17-41} | 10, ic | 67 |
| Abdominal surgery | Decreased GE | alpha-helical CRF9-41 | 100, ic | 43 |
| 20 min swim | Decreased GE | alpha-helical CRF9-41 | 100, ic | 43 |
| Restraint | Decreased GE | alpha-helical CRF9-41 | 30, icv | 49 |
| Interleukin-1-beta | Decreased GE | D-Phe CRF
_{17-41} | 20, icv | 48 |
| Effer | Decreased GE | alpha-helical CRF9-41 | 100, icv | 43 |
| Water avoidance | Increased defecation | Astressin | 10, ic | 42 |
| Water avoidance | Increased CT, defecation | alpha-helical CRF9-41 | 50, PVN, icv | 53,57 |
| Restraint |Increased CT, defecation | alpha-helical CRF9-41 | 50, PVN, icv | 51,53,57 |
| Conditioned fear | Increased colonic spike burst | alpha-helical CRF9-41 | 2.5, icv | 87 |
| Interleukin-1-beta | Increased colonic spike burst | alpha-helical CRF9-41 | 10, icv | 102 |

CT Colonic transit; ic Intracisternal; icv Intracerebroventricular; GE Gastric emptying; PVN Paraventricular nucleus of the hypothalamus

Figure 1) Reversal of a postoperative ileus by intracisternal injection of various peptidergic corticotropin-releasing factor (CRF) antagonists in conscious rats. Fasted rats were exposed to short enflurane anesthesia for 10 mins. Saline or a CRF receptor antagonist was injected intra-
cisternally (ic) immediately before abdominal surgery (laparotomy plus 1 min manipulation of the cecum). Gastric emptying was determined 160 to 180 mins after surgery. Each column is the mean ± SEM of four to 10 rats. Data from references 13, 42 and 67.
stress stimulates colonic motor function has come from the use of CRF and CRF receptor antagonists injected into the brain (31,33).

Williams et al (51) were among the first to establish that intracerebroventricular injection of CRF results in the stimulation of colonic transit and fecal output in conscious female rats. Since then, several reports have shown that CRF injected into the lateral brain ventricle activates colonic motor function assessed by the increase in colonic spike-burst frequency, contractility, transit and fecal output in conscious male rats (33,42,53,55,73,87-91). Brain sites of action for CRF to activate colonic motor function have been located in the PVN and LCC; microinjection of CRF targeted at these specific nuclei increased colonic motility, transit and fecal output as well as diarrhea at the maximally effective dose in conscious rats (52,57,92-96). By contrast, microinjection of CRF into the lateral, anterior or ventromedial hypothalamus, central amygdala (unilateral injection) or the bed nucleus of the stria terminalis did not alter the rate of colonic transit or defecation (57,93,94). CRF-induced stimulation of colonic motor function upon central injection is mediated by receptor-specific interactions in the brain as shown by the prevention of CRF action by the competitive CRF receptor antagonists alpha-helical CRF9-41 and astressin, injected into the CSF but not intravenously in conscious rats (42,51,53,87,96). In these functional studies, astressin proved to be more potent than the previously developed peptidergic CRF receptor antagonists (42). In anesthetized rats, microinjection of the CRF antagonist D-Phe CRF12-41 into the LCC abolished the stimulation of characteristic spike burst activity induced by microinjection of CRF into the LCC (97).

Pharmacological studies indicate that the central action of CRF – activation of colonic motor function – is modulated by several transmitters acting on specific receptors. The anxiolytic drug buspirone, acting through 5-hydroxytryptamine1A autoreceptors (88); cholecystokinin (CCK) through CCK-A receptors (89,98); neuropeptide Y (89,90); the sigma agonists (90); and arginine vasopressin receptor antagonist (91) prevented the stimulation of colonic spike burst activity in rats induced by the intracerebroventricular injection of CRF (87).

Autonomic pathways mediate the central action of CRF – activation of colonic motor function – while the activation of the HPA axis does not play a role. This was established by the inhibition of the colonic response to CRF injected into the lateral ventricle by the ganglionic blocker chlorisondamine and the unchanged stimulatory response after hypophysectomy, adrenalectomy and naloxone pretreatment (54,87,93). The parasympathetic nervous system is involved as shown by the prevention of the central action of CRF by atropine, while noradrenergic blockade by bretylium had no effect (54,57,92,93). It is likely that the sacral component of the parasympathetic pathways also plays a role because subdiaphragmatic vagotomy does not alter the activation of colonic transit and fecal output induced by CRF microinjection into the PVN (57).

The role of central CRF in mediating stress-related activation of colonic motor function is supported by several neuropharmacological studies in conscious rats. Alpha-helical CRF9-41 injected into the lateral brain ventricle or PVN abolishes partial wrap restraint- or water avoidance stress-induced stimulation of colonic transit and defecation (51,53,57,92). In other studies, intracerebroventricular injection of alpha-helical CRF9-41 and astressin reduced the water avoidance stress-induced fecal output in fed rats by 60% (42,95). Interestingly, water avoidance stress stimulates Fos expression in specific populations of neurons, mainly in the PVN, LCC, septum and bed nucleus of the stria terminalis, and the alpha-helical CRF9-41 selectively decreases the activation of neurons located in the PVN and LCC in tandem with the suppression of colonic output in conscious Sprague-Dawley rats (96). In addition, simultaneous recording of locus coeruleus neuronal and cecocolonic myoelectric activity showed that microinjection of CRF at the locus coeruleus induces a similar onset of activity in both locus coeruleus neurons and colonic myoelectric activity. Both responses are abolished by microinjection of the CRF antagonist into the LCC (95). Female Lewis rats, which display a defective CRF response to immune challenge stress (99,100), have a 50% lower fecal output response to water avoidance stress in association with a significant decrease in Fos expression in the PVN, LCC and sacral parasympathetic neurons compared with female Fischer rats (101). These observations suggest that the activation of PVN and LCC neurons by CRF may have a bearing on the neuronal network involved in the stimulation of colonic motor function in this model of water avoidance stress. Conditioned fear-induced increases in the frequency of cecal and colonic spike bursts were also prevented by intracerebroventricular injection of alpha-helical CRF9-41. Interleukin-1 injected into the lateral brain ventricle stimulates colonic spike burst frequency through brain CRF mechanisms as shown by the reversal of the response by intracerebroventricular injection of alpha-helical CRF9-41 (102). These data further support the concept that immunological stress may influence colonic motor function through interleukin-1-mediated activation of CRF in the brain. By contrast, central CRF does not play a role in the basal regulation of colonic motor function in nonstressed rats (42,51,53,57,87,93).

RELEVANCE OF BRAIN CRF PATHWAYS TO IBS

The possible relevance of brain CRF pathways in the pathophysiology of IBS has been recently suggested (33). Of significance is the association of IBS in patients who scored higher on psychological vulnerability than normal subjects, and in those with a diagnosis of psychiatric illness involving depression, panic disorders or anxiety (103-109). A correlation between stressful life events and bowel symptoms has also been reported (110). In addition, for patients with IBS, the improvement of psychological status by psychological or pharmacological treatments led to parallel improvements in bowel symptomatology, particularly in patients suffering from anxiety or depression associated with diarrhea, and in-
termittent abdominal pain exacerbated by stress (105,111). Consistent with a possible role of brain CRF is the link between psychological and IBS symptoms and recent findings that the sites in the brain inducing stimulation of colonic motor function such as the PVN and LCC are also sites of CRF action to increase emotional, antigenic and fear-related behaviours in several mammals including monkeys (17-20). In addition, CRF antagonists injected into these nuclei or into the CSF abolished both stress-induced anxiogenic behaviour (112-115) and stimulation of colonic motor function (92,95). Recent reports suggest that both the anxiogenic and colonic motor responses to stress are mediated by endogenous CRF interaction at the CRF1 subtype (36,37,116-118). These findings indicate that enhanced CRF activity may be associated with neuropsychiatric disorders and IBS manifestations.

ACKNOWLEDGEMENTS: The authors’ work was supported by the National Institute of Arthritis, Metabolism and Digestive Diseases, grants DK-33061 (to Dr Taché) and DK 26741 (to Dr Rivier), and the National Institute of Mental Health, grant MH-00663 (to Dr Taché). Mr Paul Kirsch is acknowledged for help in the preparation of the manuscript.

REFERENCES
20. Webster EL, Lewis DB, Torpy DJ, Zachman EK, Rice KC, Chrousos GP. In vivo and in vitro characterization of antalarmin, a nonpeptide corticotropin-releasing hormone (CRH) receptor
Brain CRF and gut motor response to stress

Can J Gastroenterol Vol 13 Suppl A March 1999

COPYRIGHT PULSUS GROUP INC. - DO NOT COPY