Intrahepatic stones: The percutaneous approach

Horst Neuhaus MD

Intrahepatic stones are endemic in East Asia, with the highest incidence found in Taiwan, Hong Kong and southern China. Environmental conditions, dietary habits and parasitic infections may have an impact on this phenomenon. In Western countries, this disease is rare and mainly associated with bile stasis caused by postoperative, inflammatory or neoplastic bile duct strictures, common bile duct stones or cystic abnormalities (1). Enteric bacteria producing beta-glucuronidase may cause infection of the static bile with deconjugation of bilirubin diglucuronide. Hydroly-

Department of Internal Medicine, Evangelisches Krankenhaus, Düsseldorf, Germany
Correspondence: Dr Horst Neuhaus, Head, Department of Internal Medicine, Evangelisches Krankenhaus, Kirchfeldstrasse 40, D-40217 Düsseldorf, Germany. Telephone 49-211-919-1565, fax 49-2119-193960, e-mail honeu@rp-plus.de

Can J Gastroenterol Vol 13 No 6 July/August 1999 467
sis of bilirubin subsequently results in the formation of calcium bilirubinate stones; they are usually characterized as brown pigment stones (2).

Intrahepatic stones frequently induce bouts of cholangitis with a significant risk of sepsis or chronic progression to secondary biliary cirrhosis, portal hypertension and hepatic failure. In the majority of patients, emergency surgery can be avoided by means of antibiotic treatment and percutaneous transhepatic drainage (1). Although endoscopic drainage is superior to surgery for acute cholangitis caused by choledocholithiasis, the procedure is technically difficult and not established for intrahepatic stones (3,4).

The main objectives of definitive therapy are elimination of bile stasis and removal of stones as completely as possible. Residual or recurrent stones should be able to enter the intestinal tract spontaneously. Before treatment, ultrasonography, computed tomography and magnetic resonance cholangiography should be performed to exclude partial liver atrophy and liver abscesses, and localize obstructed segmental ducts that cannot be visualized by endoscopic retrograde cholangiography or percutaneous transhepatic cholangiography (PTC). These procedures are needed to determine precisely the biliary anatomy and the site of intrahepatic stones and associated strictures. Detection of a tissue mass associated with intrahepatic ducts can indicate cholangiocarcinoma, which has an incidence of 2% to 10% in patients with hepatolithiasis (1,5,6). Open surgery or PTC is required for definitive diagnosis.

In patients in whom hepatolithiasis is restricted to the left liver lobe, hepatic resection and left lateral segmentectomy are the best therapeutic options because the source of recurrent infection is completely removed. In contrast, when stones are located in the right liver lobe, hepatic lobectomy is rarely performed due to a high complication rate (1,7,8). In many cases various interventional procedures seem to be at least as effective and safe as surgery, although no controlled trial has been reported so far. The selection of the different therapeutic options mainly depends on the individual anatomy, additional risk factors and local expertise. Many patients, in particular those with recurrences, have to undergo several different interventions, eg, a combination of surgery and percutaneous transhepatic intubation (1,8).

Percutaneous transhepatic drainage and cholangioscopy (PTCS), initially described by Nimura et al (9), has been re-
ported as the most successful nonsurgical procedure for intrahepatic stones (10). These methods allow a direct approach to all liver segments for drainage, stone disintegration and removal, as well as dilation of associated ductal strictures with subsequent long term intubation.

**TECHNIQUE**

**Cholangioscopes:** Conventional cholangioscopes for intraoperative investigations or bronchoscopes with an outer diameter of up to 4.9 mm can be used. Smaller steerable cholangioscopes that allow therapeutic interventions have an outer diameter of 3.1 to 3.7 mm and a channel size of 1.0 to 1.2 mm. These instruments are more flexible than conventional choledochoscopes and are particularly useful for intrahepatic calculi. However, for therapeutic interventions, the small instrumentation channels accept only thin accessories such as minibaskets or laser fibres (11,12).

**Lithotriptor systems – Electrohydraulic lithotripsy:** Electrohydraulic lithotripsy (EHL) comprises a shockwave generator and probes with a minimal diameter of 0.8 mm for transmission of the energy to the surface of the stone. A spark discharge from a bipolar coaxial electrode at the tip of the probe induces shockwaves in a fluid medium. Absorption of the energy within the stone leads to a buildup of pressure gradients that subsequently cause stone fragmentation. The frequency and the intensity of the shockwave generation can be adjusted depending on the size and composition of the stones. Although EHL probes with built-in balloon catheters for positioning in the central axis of the bile duct are available, cholangioscopic control of shockwave application is strongly recommended because damage of the ductal wall may occur when the ductal wall comes in direct contact with the probe (13-21).

**Laser lithotripsy:** Several systems for biliary laser lithotripsy have recently been reported in animal and clinical studies. A flash-lamp, pulsed dye laser with a wavelength of 504 nm (Candela Company, Wayland, Massachusetts) has been used most frequently (21-27). The laser energy is transmitted via a 200 µm or 320 µm flexible quartz fibre. Pulses with a duration of approximately 1 µs can be applied at a repetition rate of 1 to 10 Hz with an energy output up to 150 mJ. A fluid medium is required for initiation of a laser plasma leading to stone fragmentation. Although conventional laser lithotripsy is probably safer than EHL, direct visual control is recommended because bile duct perforation may occur when the energy is inadvertently applied to the ductal wall (21,27). Intracorporeal cholangioscopic lithotripsy may be further improved by use of a new ‘smart’ laser with an automatic stome recognition system. This technique allows lithotripsy even under a limited direct visual control or under fluoroscopy (28-31). This flashlamp-excited rhodamine-6G laser has a wavelength of 594 nm (Baasel Lasertech, Starnberg, Germany). The system provides an automatic cutout on tissue contact. The laser energy is transmitted via a 200 µm flexible quartz fibre. The laser light that is backscattered by a surface in the first hundreds of nanoseconds of the pulse is conducted back through the fibre, decoupled by a beam splitter and analyzed. Previous studies demonstrated that tissue and ureter stones can be differentiated using this method. If, therefore, the intensity of the reflected laser beam is below a threshold value that indicates that the fibre is not in contact with a concrement, the pulse is immediately interrupted with the aid of a polarizer by rotating the plane of polarization by 90°. Up to this moment, less than 10% of the total power of the laser pulse has been emitted, and tissue damage is thus safely excluded. Several uncontrolled series demonstrated the efficacy and safety of ‘smart’ lithotripsy under fluoroscopy or cholangioscopy with miniscopes (28,29,31). The first randomized, controlled trial of intracorporeal laser lithotripsy (ILL) versus extracorporeal shock-wave lithotripsy (ESWL) was performed in 60 patients with bile duct stones in whom standard extraction including mechanical lithotripsy failed or in whom the papilla was not accessible, thus requiring percutaneous access (30). Bile duct clearance was achieved in 22 of 30 patients (73%) in the ESWL group and in 29 of 30 patients (97%) in the ILL group (P<0.05). The number of treatment sessions and the duration of treatment were also significantly shorter in favour of ILL. Two minor complications occurred in each group; there was no 30-day mortality. This study shows that ILL is more effective in the treatment of difficult bile duct stones than ESWL in terms of stone clearance rate and treatment duration. The smart laser can be used under fluoroscopic targeting without the need for cholangioscopic control (28,30). This approach is less technically demanding and probably more cost effective. However, targeting of stones can be more difficult because the position of the radiolucent fibre inserted through a catheter is not visible. In addition, steering of the catheters is limited compared with that of bidirectionally manoeuvrable miniscopes.

**PATIENT PREPARATION**

A medical history, and physical and laboratory investigation are required before percutaneous transhepatic cholangiographical drainage. Attention should be paid to the coagula-
Neuhaus

..

..

..
Pancreatitis is another complication of PTC drainage and is sometimes observed when a large-bore catheter is positioned through the papilla without previous endoscopic papillotomy. Rapid improvement can usually be achieved by placing the tip of the catheter above the papilla with subsequent gradual dilation. After maturation of a cutaneous biliary fistula, cholangioscopic procedures rarely cause serious complications. Minor hemobilia was seen in up to 20% of patients treated with EHL but could be managed conservatively (14,15,19).

RESULTS
According to several Eastern and Western trials, percutaneous cholangioscopic electrohydraulic lithotripsy and laser lithotripsy seem to be comparably effective, with success rates of 81% to 100% (5,13-25,28-31). The largest series were reported from Asian countries because of the high incidence of hepatolithiasis. The difficult treatment is a challenge for endoscopists, surgeons and radiologists. Yeh et al (32) recently reported 615 patients with hepatolithiasis, of whom 450 initially underwent surgery with or without postoperative cholangioscopy in Taiwan. PTCS was the primary therapy for 165 patients because of a poor surgical risk, previous biliary surgery or refusal of surgery. Cholangioscopy was performed two weeks after initial percutaneous transhepatic drainage and subsequent dilation of the tract. EHL was used for larger stones. No general anesthesia was required. A mean of 5.1 sessions of PTCS was needed for bile duct clearance, which was completely achieved in 81% of patients. Every fifth patient had at least one episode of cholangitis, and the mortality rate was 1.2%. In patients with difficult ductal strictures, large-bore transhepatic drainage catheters were left in situ for several months to avoid rapid restenoses. Follow-up after PTCS indicates a stone recurrence rate of 33% after a mean period of 58 months. All but one patient with recurrent stones were nonsurgically managed by PTCS or conservative treatment.

In a further study from Taiwan, Jan and Chen (5) reported the use of PTCS and EHL or laser lithotripsy in 48 patients with intrahepatic stones, of whom 40 had previously undergone biliary tract surgery. A large-bore transhepatic fistula had been sequentially established often on an outpatient basis. Complete bile duct clearance was achieved in 83% of patients, with a mean number of five PTCS sessions. Complications were seen in 15% of patients, and the short term mortality rate was 2.1%. During a four- to 10-year follow-up, 16 of the 40 patients with initially successful PTCS developed symptomatic or asymptomatic recurrent stones. Only one of these patients underwent surgery. The recurrence rate was statistically higher in patients with associated bile duct strictures.

In the past two years, we performed percutaneous transhepatic interventions in 22 patients with postoperative bile duct strictures and/or ductal stones. ERCP failed because of a difficult anatomy after gastroduodenal or biliary surgery, eg, hepaticojejunostomy. Internal biliary drainage was achieved in all cases. Removal of intrahepatic stones succeeded in all of eight cases by PTCS and laser lithotripsy. The 30-day morbidity rate of 23% was mainly caused by temporary cholangitis. After a mean follow-up period of 403±226 days, all patients were free of symptoms. Metal stents were implanted in four cases, and transhepatic tubes are still in situ in another four patients and were removed in 13. One patient underwent elective surgery for a recurrent stricture of a jejunal anastomosis. There was no mortality in this series (33).

CONCLUSIONS
Percutaneous transhepatic interventions are safe and effective for the removal of intrahepatic stones, even in patients who are high risk candidates for surgery or had previous biliary tract operations. A high incidence of procedure-related cholangitis suggests that routine antibiotic prophylaxis is useful. Comparative trials between primary surgery or percutaneous techniques would be of interest in patients with hepatolithiasis not appropriate for partial hepatic resection, which seems to be the best form of treatment. Further improvement of the short term results of PTCS may be possible by use of miniscopes, which are more flexible for introduction through a thinner transhepatic tract in secondary or angulated biliary radicals. Laser lithotripsy, in particular with an automatic stone detection system, is highly effective for stone disintegration and faster than ESWL.

Asian studies demonstrate excellent long term results in patients with hepatolithiasis and without associated bile duct strictures so that surgery can be avoided in this group of patients. On the other hand, in patients with strictures, the rate of recurrent stones or symptoms seems to be higher than that in recent surgical series. Further studies should evaluate whether placement of temporary large-bore transhepatic catheters or stents can overcome these problems (34).

In spite of these promising results, treatment of intrahepatic stones remains a challenging task, and the optimal therapeutic strategy should always be planned by experienced surgeons, gastroenterologists and radiologists.

REFERENCES