Pneumatic dilation in achalasia

Maximilian Bittinger MD, Martin Wienbeck MD

Achalasie et dilatation pneumatique

RéSUMÉ : La dilatation pneumatique constitue le traitement de première intention le plus courant de l’achalasie. La dilatation vise à provoquer une rupture ménagée des fibres musculaires circulaires du sphincter inférieur de l’œsophage pour diminuer l’obstruction fonctionnelle. Il existe différentes techniques de dilatation et différents types de dilatateurs, mais ils donnent tous à peu près les mêmes résultats. Le taux moyen de réussite à court terme atteint environ 80 % mais, dans certains cas, il est nécessaire de reprendre l’intervention, surtout chez les jeunes patients. On obtient de meilleurs résultats à long terme si la pression du sphincter inférieur de l’œsophage peut être abaissée à moins de 10 mm Hg. La dilatation pneumatique donne rarement lieu à des complications graves ; la plus sérieuse est la perforation de l’œsophage, qui se produit dans environ 2,5 % des cas. Compte tenu des avantages et des inconvenients d’autres traitements efficaces de l’achalasie (myotomie de Heller, injection intra-sphinctérienne de toxine botulique), la dilatation pneumatique demeure encore le traitement de première intention chez la plupart des patients.

Key Words: Achalasia; Pneumatic dilation

The hallmarks of achalasia, a primary esophageal motility disorder, are incomplete relaxation of the lower esophageal sphincter (LES), elevated LES pressure in the majority of patients and aperistalsis in the esophageal body (1). The aim of treatment for achalasia is to weaken or eliminate the functional obstruction caused by the incomplete relaxation of the LES. This may be achieved pharmacologically (2), by intrasphincteric injection of botulinum toxin (3), by surgical myotomy (4) or by pneumatic dilation of the LES. The latter form of treatment, which is still the most common first-line therapy for the treatment of achalasia, is reviewed in this paper.

The aim of dilation in achalasia is a controlled disruption of circular muscle fibres of the lower esophageal sphincter to reduce the functional obstruction. To achieve this goal, a forceful overstretching using a mechanical or pneumatic dilator is necessary. Simple bougienage is inadequate because of the smooth muscle properties of the circular muscle fibres, which adapt to stretch; it produces only transient improvement of symptoms for several days at best (5).

The patient should be prepared adequately for the dilation procedure. Because many patients with achalasia have a dilated esophagus that retains food debris, it is advisable to...
Bittinger and Wienbeck

Dilators: Several types of dilators are used in the treatment of achalasia. The Starck dilator, a mechanical dilator, was the first widely available dilator and has been used since 1924 (10). Although this dilator produces good clinical results, even in the long term (success rate 84% in a mean follow-up period of 11.5 years) (11), that are comparable with results from newer pneumatic dilation systems (12), its use has been abandoned in most centres because of some disadvantages; the correct placement of this dilator is difficult and an exact dosage of the dilation pressure is not possible (7,13). If this type of dilator is used by an experienced physician, however, the complication rates are not different from those seen after pneumatic dilation (12).

The pneumatic dilators may be classified into high compliance (HC) balloons (eg, Brown-McHardy dilator [Narco Scientific, USA], Rigiflex 30 mm and Rigiflex 35 mm [Microvasive, USA]) and low compliance (LC) systems (eg, Rigiflex dilator [Microvasive, USA]). LC balloons are inflated up to a designated maximum diameter; further inflation only results in an incremental increase in the pressure but not in a further incremental increase in diameter. Because of these characteristics, the balloon attaches to the esophageal wall only in the stenotic zone; therefore, wall tension is increased maximally in this zone. In contrast, HC balloons adapt their form more closely to the esophagus. This leads to an increase in the esophageal wall tension proximal to the stenotic zone, and, according to Laplace’s law, the wall tension is higher in the proximally widened esophagus than in the stenotic zone (14). Indeed, the typical location for esophageal perforation during pneumatic dilation is proximal to the cardia on the left lateral side of the esophagus (15). Theoretically, the use of LC systems should, therefore, reduce the rate of perforations. In addition, positioning of the older HC dilators (eg, Brown-McHardy dilator) can be difficult in patients with tortuous esophagus (16), while the Rigiflex dilator can be easily positioned over a guidewire under fluoroscopic control.

However, until now, only two prospective, randomized studies have compared HC and LC dilators in achalasia. Stark et al (16) studied 20 patients and found a 100% success rate for the HC dilator (Brown-McHardy) and a 70% success rate for the LC dilator (Rigiflex), but 13 additional patients could not be randomly assigned because of difficulties in placing the Brown-McHardy dilator due to a tortuous esophagus. Therefore, selection bias cannot be excluded in this study. Mühldorfer et al (17) studied 25 patients – 13 were treated with an HC dilator (Pentax FG-29X [Pentax Scientific, USA]) and 12 with an LC system (Rigiflex). There was no difference in the long term success rate nor in the complication rate. In addition, a retrospective study, including 30 patients with achalasia, found no significant difference in the reduction of the LES pressure between an HC dilator (Brown-McHardy) and two LC dilators (Rigiflex 30 and 35 mm) (Figure 1) (18). HC and LC systems, therefore, seem to have equal efficacies.

Efficacy: Many studies show that pneumatic dilation is an effective therapy for the majority of patients with achalasia (Figure 2); the mean success rate is about 80% in the short term (7,19). A substantial number of dilated patients (about 18% [Figure 2]), however, need a redilation in the further course of their disease (7). In the long term, the effect of the first dilation seems to decline with time (Figure 3); Eckardt et al (20) saw a decline in the remission rate, from 78% immediately after dilation to 26% after five years, and Ponce et al (21) observed a decline from 80% after dilation to 51% after five years. This, however, has been questioned by others who found a long term success rate of 85% (mean follow-up 6.5 years) after one or two dilations (22), and many patients were treated effectively for years by a single dilation (22,23). In patients who require redilation, repeated dilations seem to increase the duration of the remission; Eckardt et al (20) found a rise in

![Figure 1](image-url) Influence of the type of dilator on the achieved reduction of the lower esophageal sphincter pressure in 30 patients with achalasia (first dilation). There is no significant difference among the three dilators (Brown-McHardy [Narco Scientific, USA], Rigiflex 30 mm and Rigiflex 35 mm [Microvasive, USA]). n.s. Not significant. Data from reference 18.
the one-year remission rate – from 36% after the first dilation to 55% after the second and to 89% after the third dilation, respectively.

Outcome predictors: Several studies have investigated whether the effect of pneumatic dilation can be predicted by patient characteristics, dilation parameters or results of postdilation investigations. In a retrospective study comprising 123 patients, the only parameter that showed a significant association with a better long term outcome after pneumatic dilation was a patient age greater than 45 years. All other parameters (sex, LES pressure before dilation, duration of symptoms, esophageal diameter, inflation pressure and inflation time during dilation) were not useful predictors of outcome (24). A prospective study involving 54 patients supported these data; patients older than 40 years of age showed a significantly better response to pneumatic dilation than younger patients, while other parameters (sex, LES pressure before dilation, duration of symptoms, esophageal diameter) showed no significant influence (20).

The most valuable factor predicting long term clinical response, however, seems to be the LES pressure four weeks after the dilation (Figure 4). The two-year remission rate was 100% in patients showing a postdilation LES pressure less than 10 mmHg, and 71% if LES pressure was between 10 and 20 mmHg, but only 21% if LES pressure was greater than 20 mmHg (19). Similar results were observed by Ponce et al (21), who also found a significantly better long term efficacy in patients with a postdilation LES pressure less than 10 mmHg (Figure 4).

Neither the dilation pressure nor the dilation time has a significant influence on the results. In a study of 30 patients with achalasia receiving their first dilation, the reduction of the LES pressure was correlated with neither the dilation pressure nor the dilation time (18). Similar results were observed by several other investigators (20,24,25). Another recent prospective, randomized study comprising 81 patients showed that a short dilation time of 6 s is as effective as a long dilation time of 60 s (26). As discussed above, the type of dilator seems to have no significant influence on the results.

Complications: After pneumatic dilation, several complications can occur – the most serious is esophageal perforation. Other major complications are hemorrhage, fever and the development of gastroesophageal reflux disease. Less serious adverse events include intramural hematoma, mucosal tears, prolonged chest pain and transient cardiac arrhythmias. The overall rate of complications (major and minor) was 9% in a retrospective study by Nair et al (27) comprising 178 patients, but 30% in another study comprising 67 patients (28). The complication rate in the latter study, however, was criticized in an accompanying editorial (29) because the majority of these adverse events (namely prolonged chest pain and formation of diverticula at the cardia) had no clinical sequelae. Aside from these minor events, the complication rate in the latter study was 4.4%.

Esophageal perforation occurs in about 2.5% of cases, with a range of 0% to 3% in different studies (Figure 5). Perforation is usually detected by an esophagogram, but it must be kept in mind that an immediate radiological check
Comparison with other forms of treatment for achalasia:

Until now, only one prospective, randomized study comparing pneumatic dilation with esophagomyotomy existed (4). In this study, which comprised 81 patients with a median follow-up of 60 months, the long-term benefit of esophagomyotomy was significantly better than that of pneumatic dilation (remission rate 95% versus 65%), but the study was criticized because the technique used for dilation was not optimal (32). Treatment costs and, at least in the case of the nonlaparoscopic esophagomyotomy, the rate of complications, particularly the rate of subsequent gastroesophageal reflux disease, are higher after surgical therapy (4,24). The average cost of surgical treatment by open esophagomyotomy was US$19,000, while the average cost of an uncomplicated pneumatic dilation was US$3,654 (24). In addition, it has been shown that many patients can be treated effectively for years with a single pneumatic dilation (22,23). These advantages of pneumatic dilation, however, have to be seen in the light of the rapidly accumulating data on the laparoscopic approach to esophagomyotomy (which suggest an efficacy equal to the open technique but reduced morbidity and reduced cost). Until now, no studies comparing pneumatic dilation with laparoscopic esophagomyotomy have been available.

Since 1994, a third effective form of therapy for achalasia has existed – the intrasphincteric injection of botulinum toxin (3). In the short term, injection of botulinum toxin is equally effective compared with pneumatic dilation (22,33,34). The main drawback of botulinum toxin, however, is its short duration of response. The mean duration of response to a single injection therapy is about seven months (34), and the need for retreatment after two years far exceeds that of pneumatic dilation. While 70% of patients treated by a single pneumatic dilation were in remission after two years, this was the case in only 22% of those treated by a single botulinum toxin injection (35). In addition, the consequences of repeated injections of botulinum toxin are unknown.

CONCLUSIONS

Pneumatic dilation is an effective and safe treatment for the majority of patients suffering from achalasia of the esophagus. Because of the drawbacks of other forms of treatment, pneumatic dilation is still considered to be the first-line treatment for achalasia. In some selected patient groups (young patients, patients not responsive to pneumatic dilation, patients with severe medical disorders excluding surgical therapy if perforation occurs), esophagomyotomy and intrasphincteric injection of botulinum toxin are valuable alternatives. The choice of the dilator and technique used for dilation should be based on the experience of the dilating physician because the results seem to be similar among the different dilators and techniques.

REFERENCES

33. Richter JE. Surgery or pneumatic dilation for achalasia: a head-to-head comparison: now are all the questions answered? Gastroenterology 1989;97:1340-1.