Invasive tests for *Helicobacter pylori* in children

Hien Q Huynh MBB5 FRACP

One of the primary indications for upper gastrointestinal (GI) endoscopy in children is the presence of persistent and severe upper abdominal symptoms. Upper GI endoscopies are performed to allow the physician to confirm or rule out upper GI pathology. Additionally, upper GI endoscopies with mucosal biopsies are the gold standard for the diagnosis of *Helicobacter pylori* infection and its complications in children. The gastric biopsies can be used for the rapid urease test, histological examination and bacterial culture to determine antibiotic sensitivity. DNA extracted in these biopsies can also be subjected to genotyping using molecular methods to determine the presence of *H pylori* infection, antibiotic resistance mutations and *H pylori* virulence factors.

Key Words: Children; Endoscopy; *H pylori*; Histology; Invasive; Molecular diagnostics

Currently, upper gastrointestinal (GI) endoscopy with mucosal biopsies remains the gold standard for the diagnosis of *Helicobacter pylori* infection in children. The added advantage of endoscopy includes the detection of upper gastrointestinal pathologies including complications of *H pylori* infection such as nodular gastritis, peptic ulcer disease and gastric cancer, and mucosa-associated lymphoid tissue lymphoma. The biopsies obtained can be used for bacterial culture, determining antibiotic sensitivity and bacterial genotyping. The need for anesthesia in children, the high cost and small risks of perforation and aspiration pneumonia are some of the disadvantages of endoscopy.

One of the primary indications for upper GI endoscopy in children is the presence of persistent and severe upper abdominal symptoms, to detect upper GI tract pathologies and not simply the presence of *H pylori*. It is not clinically possible to differentiate between complications in *H pylori*-infected children and other upper GI pathologies or functional dyspepsia. In a retrospective cohort study (1), 52 of 2550 children who had undergone upper GI endoscopy were found to have peptic ulcers (1). Apart from vomiting (found more frequently in those without pathology), no statistical difference was noted in symptomatology between those with and without peptic ulcers. In the subgroup with peptic ulcer disease, symptoms did not differ between *H pylori*-infected and -noninfected individuals (1,2). Nevertheless, children with a family history of peptic ulcer disease are more likely to have *H pylori* infection (3).

The gastritis secondary to *H pylori* infection is not always evident endoscopically, but can be seen in histological examination of gastric biopsies. The most common endoscopic finding in children with *H pylori* infection is nodular gastritis, often seen more in the antrum than the body of the stomach (4). Nodular gastritis can be identified when the gastric mucosa has an irregular 'cobblestone' appearance, highlighted with blood from a bleeding biopsy site. There is a significant association between nodular gastritis and *H pylori* infection. Nodular gastritis was found in 45% of *H pylori*-infected and 1.5% of -noninfected children (4), and its prevalence increased with age (5). The authors of these studies (4,5) concluded that nodular hyperplasia or gastritis is highly specific (98.5%) and, therefore, has a high positive predictive value for *H pylori* infection, but low sensitivity (44%). The absence of nodular hyperplasia does not preclude the presence of infection. In addition, there is a positive correlation among nodular hyperplasia, severity of gastritis and bacteria density (4).

TESTS FOR DETECTING *H PYLORI*

Biopsy site

At least two biopsies from one or more regions of the stomach (body, antrum and transitional zone, ie, cardia and incisura) are required for diagnosis (6). In patients who have not received treatment, an antral biopsy has a much higher yield than biopsies obtained from the body in *H pylori* detection (94% versus 73%, respectively). The region that has the highest detection rate is the midantrum region of the lesser curvature (6). Often biopsies from the transitional zone and body are also required to improve the yield in patients who have been treated with acid suppression therapy or antibiotics (7,8). For
those with complications of H pylori infection, such as peptic ulcer disease, it is recommended to have biopsies from multiple regions of the stomach.

Histological staining of biopsy section
Histological detection of H pylori remains an affordable and reliable method in comparison with other assays (9). In the majority of cases, H pylori can be seen with hematoxylin and eosin staining; however, this method has a lower sensitivity and most laboratories use alternative staining methods for improved detection. Polyclonal anti-H pylori antibody staining is regarded as a reliable assay; however, this method is expensive and time consuming (10). In comparison, the Giemsa stain, although less reliable, is widely available, affordable and can be readily prepared. The optimal staining method is often best determined by the expertise available locally.

Rapid urease tests
Numerous urease tests are commercially available. Urease is a metalloenzyme produced in abundance by H pylori (11). Urease converts urea to ammonia, thereby increasing the pH in the bacterium’s microenvironment. Urease tests are highly specific and sensitive for indirectly detecting H pylori infection in adults (11). In children, however, its sensitivity is much lower and false-negative results are produced. The lower sensitivity could be secondary to reduced urease activity in H pylori strains isolated from children and lower bacterial load (12). The accuracy of urease tests, like histological examination, is also dependent on the number of biopsies taken, sites of biopsy and the use of antibiotics and proton pump inhibitors (13).

H pylori culture
H pylori is a fastidious organism and is difficult to culture from gastric biopsy. Bacterial culturing is also time consuming and expensive. In one study (14), culture tests had a low sensitivity, with positive results in only 70% of H pylori-infected children. However, bacterial culture tests allow for antibiotic sensitivity to be determined, which is particularly useful in those who have failed previous eradication therapy. Various antibiotic susceptibility tests are also available, including the epimerol (E)-test, disc test and agar dilution methods. The Clinical and Laboratory Standards Institute (formerly known as the National Committee for Clinical Laboratory Standards) recommends agar dilution as the method of choice for antibiotic sensitivity testing in H pylori infection (15). A positive culture test also allows for the opportunity to genotype clinical isolates for specific virulence factors (a method employed in the research setting).

Molecular diagnostics using gastric tissue
Over the past few years, advances have been made using rapid molecular diagnostics to detect H pylori infection, antibiotic sensitivity, the presence of specific virulence factors and the patient’s genotype (as reviewed by Simala-Grant and Taylor [16] and Rusovics et al [17]). These molecular diagnostic tests may allow for more cost-effective and individualized treatment, resulting in improved eradication rates, and reduction in antibiotic-resistant strains.

Molecular methods for detecting H pylori in gastric biopsies
The polymerase chain reaction (PCR) is highly sensitive in detecting microbes in human tissue. Using paired primers directed at a region of the urease A gene or glmM (ureC gene) of H pylori (10,18), it was found that although nested PCR performed on gastric biopsy specimens was sensitive, it was not as specific as histopathology and the rapid urease test for detecting H pylori infection.

Recently, three studies (19-21) have used real-time PCR to detect and quantify H pylori infection directly from gastric biopsy specimens. He et al (19), using this technique with a LightCycler apparatus (Roche Diagnostics, USA) and a frozen section, amplified a fragment of the ureC gene, but a low specificity was achieved (a high number of specimens were positive by real-time PCR but negative by culture and histology). Lascols et al (20), however, demonstrated with the same apparatus that targeting the 23S ribosomal (r)RNA gene in frozen section by real-time PCR gave a sensitivity of 97% and a specificity of 94.6% (infection was defined as a positive culture, histology or positive PCR, if confirmed by a positive concomitant serology or urea breath test). In addition, Kobayashi et al (21) used the TagMan apparatus and a paraffin section to target the 16S rRNA gene and had both the highest sensitivity and specificity (100%) compared with culture tests, histology, the urea breath test and rapid urease test. The detection of H pylori on gastric specimens by real-time PCR is very promising; however, more clinical studies are needed to determine the optimal target gene and confirm its reliability.

Molecular methods to detect H pylori with antibiotic resistance genotypes
PCR, when performed on cultured clinical isolates or directly on gastric biopsies obtained from infected individuals, has been used to determine the antibiotic sensitivity of H pylori strains, particularly with respect to clarithromycin. The predominant cause of clarithromycin resistance is a point mutation in the peptidyl transferase of the 23S rRNA gene (22). Using LightCycler real-time PCR to detect these point mutations, Chisholm et al (22) demonstrated a strong correlation between wild-type and clarithromycin sensitivity in 47 of 48 strains of H pylori. Four strains had clarithromycin resistance mutations, but only two demonstrated resistance when assessed by disk diffusion. There were four PCR-negative specimens, and three were sensitive to clarithromycin; the reliability of this test was unclear. However, in a recent study, Lascols et al (20) showed a very high concordance rate of 98.3% (58 of 59) comparing clarithromycin susceptibility testing with E-test and LightCycler real-time PCR. The prevalence of clarithromycin resistance was 18.5% in that study. Thus, the use of real-time PCR in the detection of H pylori with clarithromycin resistance genotypes is likely to be a valuable tool.

Fluorescent in situ hybridization using labelled oligonucleotides can be used to detect H pylori by probing for H pylori-specific 16S rRNA and point mutations in the 23S rRNA of clarithromycin-resistant strains (23). This technique can be used in both frozen as well as formalin-fixed and paraffin-embedded gastric biopsy sections, and is reliable in detecting clarithromycin-resistant H pylori (24-26).

Mutations in the fdxA gene encoding for a nitroreductase (which converts metronidazole from a harmless prodrug to a bactericidal agent) may result in H pylori resistance to metronidazole (27). In other reducease genes, such as fdxB (encoding for ferredoxin-like protein) and frxA (encoding for flavin
nitroreductase), inactivating mutations enhance metronida-
zo resistance (28). It is likely that there are other reductases
that are involved in H pylori resistance to metronidazole (29-31).
These studies (29-31) suggest that there are multiple H pylori
proteins involved in reducing metronidazole, and the con-
tribution of each of these proteins to metronidazole resistance is
likely variable in different strains, making it more difficult to
develop a reliable molecular method determining metronida-
zo susceptibility.

In a recent study (32), fluorescence resonance energy transfer-
based real-time PCR performed on bacterial DNA isolated
from pure culture was used to detect point mutations in the
gyrA gene, which confers resistance to ciprofloxacin in H pylori.
This assay appears reliable when compared with the E-test in
100 H pylori isolates (32). However, the sensitivity and speci-
ficity will need to be evaluated in the clinical setting, prefer-
ably using biopsy specimens.

The presence of amoxicillin resistance in H pylori is rarely
reported. A single amino acid substitution in HP0597, a penicillin-binding protein 1A homologue of Escherichia coli,
was demonstrated in an amoxil-resistant strain of H pylori
(33). Similar to metronidazole resistance, there likely are
other proteins involved in conferring amoxicillin resistance. The
mechanism of amoxicillin resistance is still not well understood.
Currently, a molecular diagnostic test is not available for the
detection of amoxicillin resistance.

PCR-based assays have been developed to detect a restric-
tion length polymorphism associated with a triple base pair
substitution (adenine-guanine-adenine [926-928] thymine-thymine-cytosine) in the 16S rRNA gene (34). This substitution
is associated with tetracycline resistance (34); however, the
accuracy of this mutation in determining tetracycline resistance is unknown.

Virulence genotyping
Numerous PCR methods (real-time PCR, PCR-length polymor-
phism, PCR-restriction fragment length polymorphism and
line probe assay) have been used to determine the presence of
H pylori virulence genes such as cagA, cagE, vacA, babA and
iceA in fresh and paraffin-embedded tissues, or from DNA iso-
lated from bacterial culture (35). These virulent genotypes have
been associated with a more severe disease outcome; however, these results are debatable (36). The relevance of vir-
ulent genotyping in clinical practice remains to be determined.

CONCLUSIONS
One of the primary indications for upper GI endoscopy in
children is the presence of persistent and severe upper abdom-
inal symptoms. Upper GI endoscopy with mucosal biopsies
remains the gold standard for the detection of H pylori infec-
tion and its mucosal complications in children. Molecular
methods can be employed using obtained gastric biopsies to
determine the presence of H pylori infection, antibiotic resist-
ance and H pylori virulence factors. In the future, it is likely
that these molecular methods will become more widely used in
the clinical setting and allow for individualized treatment.

REFERENCES
1. Roma E, Kafritsa Y, Panayiotou J, Liakou R, Constantopoulos A.
Is peptic ulcer a common cause of upper gastrointestinal
2. Elitsur Y, Lawrence Z. Non-
Helicobacter pylori related duodenal
3. Nijevitch AA, Scherbakov PL. Helicobacter pylori and
gastrointestinal symptoms in school children in Russia.
Endoscopic nodular gastritis: An endoscopic indicator of
high-grade bacterial colonization and severe gastritis in
5. Rafee M, Jafari Rouhi AH, Gassemi BA, Rouhi AJ. Relationship
between endoscopic nodular gastritis and Helicobacter pylori
6. Elitsur Y, Lawrence Z, Triest WE. Distribution of Helicobacter pylori
organisms in the stomachs of children with H pylori
infection. Hum Pathol 2002;33:1133-5.
7. Van Zanten SJ, Dixon MF, Lee A. The gastric transitional zone:
Neglected links between gastrointestinal pathology and
8. Logan RP, Walker MM, Misiewicz JJ, Gummett PA, Karim QN,
Baron JH. Changes in the intragastric distribution of
9. Brookes HJ, Ahmed D, McConnell MA, Barbeat GO. Diagnosis of
Helicobacter pylori infection by polymerase chain reaction: Is it worth it?
identification of Helicobacter pylori: Comparison of staining
11. Ho CY, Chen TS, Chang FY, Lee SD. Rapid urease test from non-
ulcer part of stomach is superior to histology from ulcer in
detection of Helicobacter pylori infection in patients with gastric
12. Chu C, Yu Y, Kong MS, Ou JT. Rate of Helicobacter pylori
infection in children and colonity of Taiwan strains. Microbiol
13. el-Zimaity HM, al-assi MT, Genta RM, Graham DY.
Confirmation of successful therapy of Helicobacter pylori infection:
Number and site of biopsies or a rapid urease test.
and antimicrobial susceptibility from pediatric patients in
incidence and risk factors among Helicobacter pylori-infected
16. Simala-Grant JL, Taylor DE. Molecular biology methods for the
characterization of Helicobacter pylori infection and their
17. Runowicz AS, Molnar B, Tulassay Z. Review article: Deoxyribonucleic acid-based diagnostic techniques to detect
Helicobacter pylori culture and antimicrobial susceptibility from pediatric patients in
quantitative detection of Helicobacter pylori and identification of
clarithromycin resistance mutations in H pylori isolates from gastric
22. Chisholm SA, Owen RJ, Teare EL, Saverymuttu S. PCR-based
detection of Helicobacter pylori macrolide resistance in gastric
macrolide-resistant Helicobacter pylori via fluorescence in situ

