CASE REPORT

Cladophialophora bantiana brain abscess in an immunocompetent patient

Sanjay G Revankar MD

Cladophialophora bantiana is a dematiaceous mold that is a rare cause of human disease or phaeohyphomycosis. However, it is relatively unique due to its predilection to be involved in central nervous system infection, particularly in immunocompetent patients of widely varying ages (1). It has a worldwide distribution and is likely a soil organism, although its exact ecological niche is unknown. It is the most commonly isolated dematiaceous species from brain abscesses (1). For unclear reasons, most patients are male. Therapy is not standardized, and mortality rates are high (>70% in one large series [1]). We report a case of brain abscess due to C. bantiana in an immunocompetent woman.

CASE PRESENTATION

A 79-year-old woman with a history of hypertension, diverticulitis, recent pulmonary embolus and deep venous thrombosis presented with progressive left-sided facial droop and left-sided weakness for 10 days. She denied headache, fever, nausea or vomiting. She had no allergies and was taking medications for hypertension. No recent travel, pets or unusual exposures were reported. On examination, the patient was afebrile and alert, but was occasionally confused. Neurological deficits noted were left facial weakness and mild left-sided upper and lower extremity weakness. Her laboratory studies were normal. Magnetic resonance imaging of the brain demonstrated a 2 cm × 3 cm right fronto-temporal ring-enhancing mass with a small satellite lesion (Figure 1). Malignancy was initially suspected, and she underwent surgical excision of the larger mass lesion. Pathology showed an abscess with necrotizing granulomatous inflammation with brown, irregular hyphal elements on hematoxylin-eosin staining. The cultures grew C. bantiana. Susceptibility testing was not available. The patient was treated with liposomal amphotericin B at doses ranging from 3 mg/kg/day to 5 mg/kg/day for five weeks; follow-up imaging initially demonstrated a decrease in the size of the remaining lesion after three weeks of therapy, although an increase in enhancement was noted at five weeks. At that time, she had developed progressive nausea and vomiting, which were believed to be due to refractory disease or intolerance to the amphotericin B. Therapy was switched to voriconazole and flucytosine for one week, although this was also discontinued secondary to intractable nausea and vomiting. However, she continued to deteriorate and was placed in a hospice with no further antifungal therapy at the family’s request. She died one month later. The cause of death was believed to be progressive fungal infection.

DISCUSSION

C. bantiana brain abscess is a rare and frequently fatal infection, often seen in immunocompetent individuals. Clinical presentation may be indistinguishable from malignancy, and men are predominantly affected for unclear reasons. The first reported case of this infection was by Binford et al (2) in 1952 involving a 22-year-old American man who had no underlying immunodeficiency. Many recent cases have been reported from India including a series of 10 cases from a single institution over a 27-year period (3). All of these cases were in immunocompetent males. The mortality rate in this large series was more than 70%, despite aggressive medical and surgical therapy (1).

There are no prospective trials that help define optimal therapy; consequently, no standardized approach exists for these infections. Amphotericin B (including lipid preparations) is the most commonly used agent. Itraconazole and voriconazole have broad activity against dematiaceous fungi and are often used for these infections (4). Voriconazole has been used in a number of case reports, due to its broad activity and good cerebrospinal fluid penetration; however, failures have been reported (5). The use of an alternative agent, such as iraconazole, may be reasonable if the patient does not respond to voriconazole. While iraconazole does not achieve useful cerebrospinal fluid levels, penetration into the brain tissue appears to be good (6). Another option may be posaconazole, which was used successfully in a brain abscess case due to another dematiaceous species – Ramichloridium mackenziei, which is particularly difficult to treat (7). While the newer azoles are likely to have good penetration into the brain tissue (6), serum levels should be monitored in patients...
receiving prolonged therapy, although correlation between serum and brain tissue levels is lacking. Flucytosine is another agent with good in vitro activity against *C. bantiana*; a recent study in mice showed that adding flucytosine to posaconazole improved survival (8). In reviews of phaeohyphomycosis cases involving the central nervous system, the use of flucytosine was associated with several successfully treated cases (in addition to amphotericin B and itraconazole) (1,3). Complete resection of the abscess was also found to be associated with improved outcomes (1). In our patient, complete resection was not possible, and she did not tolerate liposomal amphotericin B or the combination of voriconazole and flucytosine, and eventually succumbed to the infection. Based on the European Organization for Research and Treatment of Cancer/Mycoses Study Group criteria for response to therapy in invasive fungal infections, our patient would be considered a clinical failure due to progressive disease at end of therapy (9). Although the use of high doses of liposomal amphotericin B (≥10 mg/kg/day) has been advocated in the treatment of central nervous system fungal infections (10), its use in our patient was not possible due to intolerance of standard doses of liposomal amphotericin B.

Patients with mass lesions of the brain should always have tissue sent for culture (including for fungi). Clinicians must consider fungal infection in the differential diagnosis of these patients, even if they are immunocompetent. Fungal brain abscess carries a poor prognosis, regardless of underlying disease. Based on available data and experience, complete surgical resection appears to be necessary for optimal outcomes. Therapy with amphotericin B alone (standard or lipid preparations) may not be adequate. Some successfully treated cases used itraconazole and/or flucytosine in combination with amphotericin B, although few have been documented. The newer azole antifungals, such as voriconazole and posaconazole, may also have a role in therapy, based on their good in vitro activity (11). The optimal therapeutic regimen is not known, although some combination of agents is likely better than monotherapy (8,12). Prolonged follow-up (>1 year) is essential because relapses are not uncommon.

ACKNOWLEDGEMENTS: The author thanks William Sutker for providing details of the clinical aspects of the case.

REFERENCES
