Detection of Methicillin Resistant *Staphylococcus aureus* and Determination of Minimum Inhibitory Concentration of Vancomycin for *Staphylococcus aureus* Isolated from Pus/Wound Swab Samples of the Patients Attending a Tertiary Care Hospital in Kathmandu, Nepal

Raghabendra Adhikari,¹ Narayan Dutt Pant,² Sanjeev Neupane,³ Mukesh Neupane,¹ Roshan Bhattarai,¹ Sabita Bhatta,⁴ Raina Chaudhary,⁴ and Binod Lekhak¹

¹Department of Microbiology, Golden Gate International College, Battisputali, Kathmandu, Nepal
²Department of Microbiology, Grande International Hospital, Dhapasi, Kathmandu, Nepal
³Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
⁴Department of Microbiology, Nepalese Army Institute of Health Sciences, Sanobharyang, Kathmandu, Nepal

Correspondence should be addressed to Narayan Dutt Pant; ndpant1987@gmail.com

Received 9 September 2016; Accepted 14 December 2016; Published 5 January 2017

Academic Editor: Jorge Garbino

Copyright © 2017 Raghabendra Adhikari et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The present study was conducted to evaluate the performance of cefoxitin disc diffusion method and oxacillin broth microdilution method for detection of methicillin resistant *S. aureus* (MRSA), taking presence of mecA gene as reference. In addition, inducible clindamycin resistance and beta-lactamase production were studied and minimum inhibitory concentration (MIC) of vancomycin for *S. aureus* isolates was determined. A total of 711 nonrepeated pus/wound swab samples from different anatomic locations were included in the study. The *Staphylococcus aureus* was identified on the basis of colony morphology, Gram’s stain, and biochemical tests. A total of 110 (15.47%) *S. aureus* isolates were recovered, of which 39 (35.50%) isolates were identified as MRSA by cefoxitin disc diffusion method. By oxacillin broth microdilution method, 31.82% of the *Staphylococcus aureus* isolates were found to be MRSA. However, mecA gene was present in only 29.1% of the isolates. Further, beta-lactamase production was observed in 71.82% of the isolates, while inducible clindamycin resistance was found in 10% of *S. aureus* isolates. The MIC value of vancomycin for *S. aureus* ranged from 0.016 \( \mu \text{g/mL} \) to 1 \( \mu \text{g/mL} \). On the basis of the absolute sensitivity (100%), both phenotypic methods could be employed for routine diagnosis of MRSA in clinical microbiology laboratory; however cefoxitin disc diffusion could be preferred over MIC method considering time and labour factor.

1. Introduction

Although *Staphylococcus aureus* is a commensal of humans [1], it is also a frequent cause of human infections which may become serious if caused by antimicrobial resistant strains [2]. Antibiotic resistant *S. aureus*, especially MRSA, are equally adopted to hospitals and outer environments evolving as major pathogens of public health concern [3, 4].

Shortly after the introduction of methicillin in clinical world to treat infections caused by penicillinase producing *S. aureus* in 1960, MRSA emerged and spread worldwide [5, 6]. The high rate of methicillin resistance among *Staphylococcus aureus* has resulted into the increased interest for the use of clindamycin for treatment of infections caused by *S. aureus* [7]. But recently, increasing numbers of strains of *S. aureus* are acquiring resistance toward clindamycin [7].

Vancomycin is regarded as the drug of choice for treatment of infections caused by MRSA [8]. But emergence of VISA and VRSA has been reported by many authors [8]. Further, there are reports of treatment failure of the infections
caused by MRSA having MIC of vancomycin just below cutoff value [8]. High vancomycin MIC for MRSA which are susceptible to vancomycin may indicate the drug resistance to many antibiotics [8].

MRSA is resistant to entire classes of β-lactams including cephalosporins and carbapenems and has higher risk of development of resistance to quinolones, aminoglycosides, and macrolides [9–12]. Methicillin resistance in S. aureus is mediated through an altered protein called low-affinity penicillin binding protein (PBP2a). PBP2a is encoded by mecA gene which is present in chromosomal mobile genetic element called Staphylococcal cassette chromosome mec (SCCmec) [13, 14]. Due to possible association of MRSA with multiple antibiotic resistance and relatively difficult and higher cost of treatment, the accurate and rapid identification of MRSA is crucial in clinical world for timely management of the infections caused by this superbug [15]. Detection of methicillin resistance in Nepal is based on cefoxitin and oxacillin disc diffusion methods with limited reports on MIC determination and detection of mecA gene by polymerase chain reaction (PCR) [16, 17]. In present study, we evaluated the performance of cefoxitin disc diffusion and oxacillin broth microdilution methods for detection of MRSA taking presence of mecA gene as reference. Further, we also studied the rates of inducible clindamycin resistance and beta-lactamase production among the strains of S. aureus and we determined the minimum inhibitory concentration of vancomycin for S. aureus isolated from pus/wound swab samples.

2. Materials and Methods

2.1. Study Site and Population. The present study was carried out among the patients (inpatients and outpatients) attending Shree Birendra Hospital, Kathmandu, Nepal, from July 2013 to January 2014. A total of 711 nonrepeated pus/wound swab samples from different anatomic locations received from the patients for bacteriological culture were included in the study.

2.2. Isolation and Identification of Staphylococcus aureus. The specimens were inoculated on blood agar and mannitol salt agar (HiMedia laboratories private limited, India) and incubated aerobically at 37°C for 48 hours. The strains of Staphylococcus aureus were identified on the basis of colony morphology, Gram’s stain, and different biochemical tests [18].

2.3. Antimicrobial Susceptibility Testing. The antimicrobial susceptibility testing was performed by modified Kirby-Bauer disc diffusion technique using Mueller-Hinton agar (HiMedia laboratories private limited, India) following Clinical and Laboratory Standards Institute (CLSI) guidelines [19]. Antibiotic discs used were ciprofloxacin (5 μg), clindamycin (2 μg), chloramphenicol (30 μg), erythromycin (15 μg), gentamicin (10 μg), tetracycline (30 μg), cotrimoxazole (25 μg), rifampin (5 μg), mupirocin (200 μg), and penicillin G (10 units).

2.4. Detection of Strains of MRSA by Cefoxitin Disc Diffusion Method. Susceptibility of Staphylococcus aureus isolates to cefoxitin (30 μg) was determined by modified Kirby-Bauer disc diffusion method following CLSI guidelines [19]. The strains of Staphylococcus aureus which were found to be resistant to cefoxitin were screened as MRSA (Table 1).

2.5. Determination of Minimum Inhibitory Concentrations (MICs) of Oxacillin and Vancomycin. MICs of oxacillin (Table 1) and vancomycin for all isolates of Staphylococcus aureus were determined by broth microdilution method as described by Andrews [20] and CLSI M07-A9 guidelines [21]. The results were interpreted according to CLSI guidelines [19]. The concentrations of oxacillin used were 0.0125 μg/mL to 128 μg/mL and the concentrations of vancomycin used were 0.06 μg/mL to 32 μg/mL.

2.6. Detection of β-Lactamase Production. β-lactamase production in isolated S. aureus was detected by iodometric method as described by Samant and Pai [22].

2.7. Detection of Inducible Clindamycin Resistance. Erythromycin resistant isolates were tested for inducible clindamycin resistance by D-test as per CLSI guidelines [19].

2.8. Detection of mecA Gene by Polymerase Chain Reaction (PCR). Conventional phenol: chloroform method [23] was employed for extraction of chromosomal deoxyribonucleic acid (DNA) from the isolates. After optimization, the extracted DNA was subjected to PCR (Figure 1) for detection of mecA gene using PCR profiles described by Abu Shady et al. [24] (Table 1). The primer mecAF (5’-aaatctagatgtaaggtggc-3’) and the reverse primer mecAR (5’-agtctgagctaccgagtgtg-3’) supplied by Eurogentec were used.

2.9. Quality Control. For quality control, Escherichia coli ATCC 25922, S. aureus ATCC 25923, S. aureus ATCC 29213 (mecA negative), and S. aureus ATCC 700699 (mecA positive) were used.

2.10. Data Analysis. The data obtained were analyzed with the help of statistical package for social sciences version 16.0. Chi-square test was used to analyze association between two variables and P value less than 0.05 was considered statistically significant.

3. Results

Among 711 pus/wound swab samples processed during the study, 110 (15.47%) showed culture positivity for S. aureus. Out of 110 S. aureus, 39 (35.50%) isolates were MRSA by cefoxitin disc diffusion method.

3.1. Antibiotic Susceptibility Patterns of S. aureus. Among the methicillin resistant strains, highest rate of susceptibility was seen toward chloramphenicol (100%) followed by mupirocin (97.40%). Similarly, among methicillin sensitive S. aureus
Table 1: Comparison of the phenotypic and genotypic methods for detection of MRSA.

| Methods to identify MRSA strains | Different methods used for detection of MRSA | Strains of S. aureus having oxacillin MIC of ≥4 μg/mL | Strains of S. aureus having mecA gene
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Methods to identify MRSA strains</td>
<td>Cefoxitin disc diffusion</td>
<td>Oxacillin broth microdilution</td>
<td>Polymerase chain reaction</td>
</tr>
</tbody>
</table>

| Strains of S. aureus having zone of inhibition of ≤21 mm to cefoxitin disc (30 μg) | Strains of S. aureus having oxacillin MIC of ≥4 μg/mL | Strains of S. aureus harboring mecA gene |

Table 2: Antibiotic susceptibility patterns of MSSA and MRSA.

<table>
<thead>
<tr>
<th>Antibiotics</th>
<th>MSSA Susceptible (%)</th>
<th>MRSA Susceptible (%)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erythromycin</td>
<td>33 (46.5)</td>
<td>7 (17.9)</td>
<td>0.003</td>
</tr>
<tr>
<td>Clindamycin</td>
<td>57 (80.3)</td>
<td>25 (64.1)</td>
<td>0.062</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>64 (90.1)</td>
<td>14 (35.9)</td>
<td>0.000</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>37 (52.1)</td>
<td>9 (23.1)</td>
<td>0.003</td>
</tr>
<tr>
<td>Chloramphenicol</td>
<td>70 (98.6)</td>
<td>39 (100)</td>
<td>0.457</td>
</tr>
<tr>
<td>Cotrimoxazole</td>
<td>30 (42.2)</td>
<td>12 (30.8)</td>
<td>0.236</td>
</tr>
<tr>
<td>Mupirocin</td>
<td>70 (98.6)</td>
<td>38 (97.4)</td>
<td>0.664</td>
</tr>
<tr>
<td>Rifampin</td>
<td>71 (100)</td>
<td>35 (89.7)</td>
<td>0.006</td>
</tr>
<tr>
<td>Tetracycline</td>
<td>71 (100)</td>
<td>34 (87.2)</td>
<td>0.002</td>
</tr>
<tr>
<td>Penicillin G</td>
<td>19 (26.8)</td>
<td>0 (0)</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Figure 1: Gel electrophoresis showing the PCR products (lane 1 and lane 9: DNA ladder, lane 2: positive control, lane 3: negative control, lane 4: P18, lane 5: P36, lane 6: P53, lane 7: P78, and lane 8: P104).

In our study 35.50% of the isolates were found to be MRSA by cefoxitin disc diffusion method, which was comparable with the findings by Kshetry et al. (37.6%) [8] and Sanjana et al. 3.5. Detection of mecA Gene. A total of 32 (29.1%) S. aureus isolates were found to contain mecA gene. All of the mecA containing strains of S. aureus were MRSA by both phenotypic methods, that is, cefoxitin disc diffusion method and oxacillin broth microdilution method. Four out of 39 MRSA screened by cefoxitin disc diffusion method, which were found to be susceptible to oxacillin by broth microdilution method, were not found to contain mecA gene. Further, the gene was found absent on MSSA detected by any of two phenotypic methods.

3.6. Evaluation of Cefoxitin Disc Diffusion and Oxacillin Broth Microdilution Methods in Reference to Presence of mecA Gene. MecA gene was found to be absent in 7 of the MRSA detected by cefoxitin disc diffusion method and 3 of the MRSA detected by oxacillin broth microdilution method. The sensitivity of both methods was 100% but the specificity of oxacillin broth microdilution method was greater (96.15%) than that of cefoxitin disc diffusion method (91.03%).

4. Discussion

In our study 35.50% of the isolates were found to be MRSA by cefoxitin disc diffusion method, which was comparable with the findings by Kshetry et al. (37.6%) [8] and Sanjana et al.
methicillin resistant secondary to beta-lactamase production and high level Staphylococcus aureus lactamase in dilution method was found to be better. However, cefoxitin was found to be 100% but specificity of oxacillin broth microdilution method. But CLSI guidelines regard the isolates as MRSA if they are found resistant to either cefoxitin or oxacillin or both regardless of the presence of mecA gene.

Interestingly, isolates (n = 7) which had no mecA gene but were found to be methicillin resistant by phenotypic methods were observed to be beta-lactamase producers. Those isolates (n = 4) which were MRSA by cefoxitin method, but MSSA by oxacillin MIC method, had MIC value of 2 µg/mL. However, the oxacillin MIC value of isolates (n = 3) which were MRSA by both phenotypic methods but had no mecA gene was 4 µg/mL. The possible reason for methicillin resistance in absence of mecA gene may be hyper-production of beta-lactamase. Besides, in a recent study by Ballhausen et al., mecC, a mecA homologue, has also been found to confer methicillin resistance in Staphylococcus aureus in which mecA gene was absent. Though more research is needed, questions can be raised in considering mecA as sole genetic marker for methicillin resistance. But we could not check the presence of mecC as a possible reason for the phenotypic expression of methicillin resistance in absence of mecA gene. The presence of mecA gene in plasmid of Staphylococcus aureus isolates has also been reported. Since our study was completely dependent on the detection of mecA on chromosomal DNA, plasmid encoded mecA may have contributed for methicillin resistance in phenotypic tests. Therefore, all the genotypic possibilities should be analyzed for the phenotypic expression of methicillin resistance in Staphylococcus aureus in order to discover appropriate epidemiological marker of methicillin resistance.

In the global scenario, 13 VRSA isolates have been isolated since its first detection in 2002 in USA with scanty reports from India and Iran. The vanA gene responsible for reduced susceptibility of Staphylococcus aureus toward vancomycin has been found to be transferred from Enterococcus faecalis and E. faecium.

In Nepal, there are limited literatures regarding MIC of vancomycin for Staphylococcus aureus isolated from clinical samples. We reported the MICs of vancomycin for Staphylococcus aureus to be 0.016 µg/mL to 1 µg/mL. Similarly, Kshetry et al. reported the MICs of vancomycin to MRSA to be 0.125 µg/mL to 1 µg/mL. Slightly higher MICs were reported by Amaty et al. (i.e., 0.5 µg/mL to 2 µg/mL). Till now no strains of Staphylococcus aureus resistant to vancomycin have been reported from Nepal. However, four VISA isolates have been reported by Pahadi et al. with MICs of vancomycin to MRSA ranging from 0.5 µg/mL to 4 µg/mL. VISA and VRSAs have been reported by many other authors from different countries.

Exposure of the Staphylococcus aureus to vancomycin may be responsible for its reduced susceptibility to the reserve drug and it is attributed to the selective pressure. It is difficult to treat the infections caused by VRSAs due to limited antibiotics available for its treatment and it is emerging as a serious public health problem.

5. Conclusions

On the basis of our findings, both phenotypic methods (cefoxitin disc diffusion and oxacillin broth microdilution)
could be used for routine diagnosis of MRSA; however, cefoxitin disc diffusion might be preferred over MIC method considering time and labour factor. MRSA and inducible clindamycin resistant S. aureus are emerging as a serious threat to public health in Nepal. Vancomycin can still be used as the drug of choice for treatment of infections caused by MRSA.

**Abbreviations**

MRSA: Methicillin resistant S. aureus  
MIC: Minimum inhibitory concentration  
VRSA: Vancomycin resistant S. aureus  
VISA: Vancomycin intermediate sensitive S. aureus  
PBP2a: Low-affinity penicillin binding protein  
SCCmec: Staphylococcal cassette chromosome mec  
PCR: Polymerase chain reaction  
CLSI: Clinical and Laboratory Standards Institute  
ATCC: American type culture collection  
MSSA: Methicillin sensitive S. aureus  
DNA: Deoxyribonucleic acid.

**Competing Interests**

The authors declare that there is no conflict of interests regarding the publication of this paper.

**Acknowledgments**

The authors would like to thank the Goldengate International College, Kathmandu, Nepal, and Shree Birendra Hospital, Kathmandu, Nepal, for providing opportunity to conduct this study. The authors would also like to thank all the technical staff and the patients for their help during the study. Finally, the authors would like to extend their gratitude to Microbiology Department of Dhulikhel Hospital for providing needed primer for the study.

**References**


B. Shrestha and S. Rana, "Comparative study of three

S. Subedi and K. N. Brahmadathan, "Antimicrobial suscepti-

L. K. McDougal and C. Thornsberry, "The role of β-lactamase in

A. R. Kumar, "Antimicrobial sensitivity pattern of

B. A. Mir and Srikanth, "Prevalence and antimicrobial suscep-

H. M. Abu Shady, A. K. El-Essawy, M. S. Salama, and A. M.


S. Subedi and K. N. Brahmadathan, "Antimicrobial suscepti-

S. Ansari, H. P. Nepal, R. Gautam et al., "Threat of drug resistant

S. A. Ansari, H. P. Nepal, R. Gautam et al., "Threat of drug resistant

K. R. Fiebelkorn, S. A. Crawford, M. L. McElmeel, and J. H.


V. D. Bennimath, C. C. Gavimath, P. B. Kalburgi, and C. Kel-

K. R. Fiebelkorn, S. A. Crawford, M. L. McElmeel, and J. H.


V. D. Bennimath, C. C. Gavimath, P. B. Kalburgi, and C. Kel-

K. R. Fiebelkorn, S. A. Crawford, M. L. McElmeel, and J. H.


