Appendix: L,EM and Statistical Properties
L,EM Algorithm:

The proposed approach for Lo regularized regression method can be extended to
solve a general L, p € (0,2] problem naturally, which includes the well known
elastic net with p € [1,2] (Zou & Zhang 2009) and the combination of Ly and Lo
with p € (0,1] (Liu & Wu, 2007). Mathematically, the general L, problem can be
defined as:
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let D, = diag(nf_p, ..., m27P), similar ideas in the manuscript can be used to get

the following equation for the general L,EM method:

”roe aa—g =\ — DpX'(y — X0) = A0 — D, X' (y — X0)

Solving above equation, we have the following explicit solution.

I
e

0= (D, X'X+ )" 'D,X"y
n==0,

The general L,EM algorithm is as follows:
L,EM Algorithm:
Given a 0 < A < Amax,and p € [0,2], e = le — 6 and € = le — 6,
and training data {X,y},
Initializing § = (X'X 4+ X\) "' X'y,
While 1,
E-step: n = 0, and D, = diag(n}?,...,n%P)
M-step: 0 = (DpX'X + XI)"'D, X"y
if ||0 — n|| < €, Break; End
End

Statistical Properties for Exact Lo Regularized Regression:

Consistency and Oracle Property: Let 6y be the true parameter value. The fol-
lowing conditions will be used later for theoretical properties of the Lo-regularized
estimator of 6.
CONDITIONS

(C1) In(m) = o(n) as n — oo.
(C2) There exists a constant K > 0 such that )\mam(XtTX) < K < oo for large n,
where for any matrix B, Amaez(B) denotes the largest eigenvalue of B.
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03)““&’97“"1“ O(y/In(mn)) or O(1) as n,m — cc.

C4) There exists a constant c > O such that

05) :u( ) maXj<i<j<m ||x1|| ||xJ|| = O \/ ln(m )
C6) [16llo = O(1).
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> ¢ > 0 for large n, m.

The above conditions are very mild. Condition (C1) trivially holds for m < n.
In particular, (C1) is satisfied even for ultra-high dimensional case such as m =
exp(n®) for 0 < a < 1. (C2) is a standard condition for linear regression. Chi
(2013, Section 3.2) gives examples satisfying(C3)-(C4). For example, (C3) and
(C4) trivially hold if ||x;|| = v/n for all j = 1,...,m. (C5) is referred to as the
coherence condition under which the covariates are not highly colinear; see Bunea
et al. (2007), Candes and Plan (2009), and Chi (2013). (C6) implies that the model
is sparse.

The following theorem is a direct consequence of Chi (2013).

Theorem 1 (Consistency) Assume that conditions (C1)-(C6) hold. Let
n(v) = (1 = v)[1 + 1/u(X)] for some 0 < v < 1. For any 0 < q < 3
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Then, with probability tending to 1,
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Proof Note that the normal linear model in this paper is a special case of the
exponential model of Chi (2009): p:(y) = exp(ty — A(t)) with t = *? and At) =

o2

- tz . Then, (??) follows immediately from Theorem 3.1 of Chi (2009).

Model Recovery: Next we show that with large probability Lo-regularized re-
gression recovers the true model under mild conditions.

Theorem 2 (Oracle Property) Assume that conditions (C1)-(C6) hold. Let A
={1<j<m:0p; #0}, and A° ={1,2,...,m}\A. Then, the minimizer 0 in
Theorem 77 must satisfy 0; = 0 for j € A with probability tending to 1 as n goes
to oo.

Proof Let ay, = 4/ W For any 6 such that ||0 —60|| < Cou, for some constant
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Then,
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Because ||§ — 6o]] < || — 6o||, we have § — § = O(a,). Thus, I; = O(a2) and
= O(a?). Moreover,
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where k = rank(X) < n. Hence,
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By conditions (C3)-C(5), A = O(In(m) - In(nm)). Therefore, the first three terms
I, I and I3 are dominated by A in probability as n — oo. Therefore, with
probability tending to 1,

En(6) — En(0) > 0. 2)

This completes the proof of Theorem 77.



