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Appendix: LpEM and Statistical Properties

LpEM Algorithm:

The proposed approach for L0 regularized regression method can be extended to
solve a general Lp p ∈ (0, 2] problem naturally, which includes the well known
elastic net with p ∈ [1, 2] (Zou & Zhang 2009) and the combination of L1 and L0

with p ∈ (0, 1] (Liu & Wu, 2007). Mathematically, the general Lp problem can be
defined as:

E =
1

2
||y−Xθ||2 + λ

2

m
∑

j=1

|θ|p,

which is equivalent to

E =
1

2
||y−Xθ||2 + λ

2

∑

j∈m

θ2j

η2−p
j

η = θ.

let Dp = diag(η2−p
1 , . . . , η2−p

m ), similar ideas in the manuscript can be used to get
the following equation for the general LpEM method:

η2−p ⊙ ∂E

∂θ
= λθ −DpX

t(y−Xθ) = λθ −DpX
t(y−Xθ) = 0.

Solving above equation, we have the following explicit solution.

θ = (DpX
tX + λI)−1DpX

ty

η = θ,

The general LpEM algorithm is as follows:
LpEM Algorithm:

Given a 0 < λ ≤ λmax,and p ∈ [0, 2], ǫ = 1e− 6 and ε = 1e− 6,
and training data {X,y},
Initializing θ = (XtX + λI)−1Xty,
While 1,

E-step: η = θ, and Dp = diag(η2−p
1 , . . . , η2−p

m )
M-step: θ = (DpX

tX + λI)−1DpX
ty

if ||θ − η|| < ε, Break; End
End

Statistical Properties for Exact L0 Regularized Regression:

Consistency and Oracle Property: Let θ0 be the true parameter value. The fol-
lowing conditions will be used later for theoretical properties of the L0-regularized
estimator of θ0.
CONDITIONS

(C1) ln(m) = o(n) as n → ∞.

(C2) There exists a constant K > 0 such that λmax(
XtX
n ) ≤ K < ∞ for large n,

where for any matrix B, λmax(B) denotes the largest eigenvalue of B.
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(C3)
maxj ||xj ||√

n
= O(

√

ln(mn)) or O(1) as n,m → ∞.

(C4) There exists a constant c > 0 such that
minj ||xj ||2

n ≥ c > 0 for large n,m.

(C5) µ(X) ≡ max1≤i<j≤m
|xt

i
xj |

||xi||·||xj || = O(
√

ln(m)
n ).

(C6) ||θ||0 = O(1).

The above conditions are very mild. Condition (C1) trivially holds for m ≤ n.
In particular, (C1) is satisfied even for ultra-high dimensional case such as m =
exp(nα) for 0 < α < 1. (C2) is a standard condition for linear regression. Chi
(2013, Section 3.2) gives examples satisfying(C3)-(C4). For example, (C3) and
(C4) trivially hold if ||xi|| =

√
n for all j = 1, . . . ,m. (C5) is referred to as the

coherence condition under which the covariates are not highly colinear; see Bunea
et al. (2007), Candes and Plan (2009), and Chi (2013). (C6) implies that the model
is sparse.

The following theorem is a direct consequence of Chi (2013).

Theorem 1 (Consistency) Assume that conditions (C1)-(C6) hold. Let
n(ν) = (1 − ν)[1 + 1/µ(X)] for some 0 < ν < 1. For any 0 < q < 1

2 , let λ

= 3ln(m/q)
ν[1+µ(X)]

maxj ||xj ||2
minj ||xj||2 , and

θ̂ = arg min
||θ||0≤n(ν)

En(θ).

Then, with probability tending to 1,

||θ̂ − θ0|| = Op(

√

ln(nm)

n
) (1)

Proof Note that the normal linear model in this paper is a special case of the

exponential model of Chi (2009): pt(y) = exp(ty − Λ(t)) with t =
x

t
i
θ

σ2 and Λ(t) =
σ2t2

2 . Then, (??) follows immediately from Theorem 3.1 of Chi (2009).

Model Recovery: Next we show that with large probability L0-regularized re-
gression recovers the true model under mild conditions.

Theorem 2 (Oracle Property) Assume that conditions (C1)-(C6) hold. Let A
= {1 ≤ j ≤ m : θ0j 6= 0}, and Ac = {1, 2, . . . ,m}\A. Then, the minimizer θ̂ in

Theorem ?? must satisfy θ̂j = 0 for j ∈ Ac with probability tending to 1 as n goes
to ∞.

Proof Let αn =
√

ln(nm)
n . For any θ such that ||θ−θ0|| < Cαn for some constant

C > 0 and
∑

j∈Ac

I(θj 6= 0) ≥ 1, let

θ̃j =

{

θj if j ∈ A
0 if j ∈ Ac
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Then,

En(θ)− En(θ̃)

=
1

2n
(θ − θ̃)TXTX(θ − θ̃)− 1

n
(θ − θ̃)TXT (y −Xθ̃) +

λ

2
(||θ||0 − ||θ̃||0)

=
1

2n
(θ − θ̃)TXTX(θ − θ̃)− 1

n
(θ − θ̃)TXT (Xθ0 + ǫ−Xθ̃) +

λ

2
(||θ||0 − ||θ̃||0)

=
1

2
(θ − θ̃)T

(

XTX

n

)

(θ − θ̃)− (θ − θ̃)T
(

XTX

n

)

(θ0 − θ̃)+

+
1√
n
(θ − θ̃)T · 1√

n
XT ǫ+

λ

2
(||θ||0 − ||θ̃||0)

= I1 + I2 + I3 + I4

Because ||θ̃ − θ0|| ≤ ||θ − θ0||, we have θ − θ̃ = O(αn). Thus, I1 = O(α2
n) and

I2 = O(α2
n). Moreover,
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∣

∣

∣

∣

∣

∣

∣

1√
n
ǫtX

∣

∣

∣

∣

∣

∣

∣

∣

= Op(
√
kσ2), as n → ∞

where k = rank(X) ≤ n. Hence,

|I3| ≤
1√
n
||θ − θ̃|| ·

∣

∣

∣

∣

∣

∣

∣

∣

1√
n
XT ǫ

∣

∣

∣

∣

∣

∣

∣

∣

= O(αn) · Op(
√

k/n) = Op(αn).

Furthermore,

I4 =
λ

2
(||θ||0 − ||θ̃||0)

=
λ

2

m
∑

j=1

[I(θj 6= 0)− I(θ̃j 6= 0)]

=
λ

2





∑

j∈A

0



+
λ

2

∑

j∈Ac

[I(θj 6= 0)− 0]

=
λ

2

∑

j∈Ac

I(θj 6= 0) ≥ λ

2
· 1 > 0.

By conditions (C3)-C(5), λ = O(ln(m) · ln(nm)). Therefore, the first three terms
I1, I2 and I3 are dominated by λ in probability as n → ∞. Therefore, with
probability tending to 1,

En(θ)− En(θ̃) > 0. (2)

This completes the proof of Theorem ??.


