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Background. Thyroid cancer (TC) is one of the most common type of endocrine tumors. Long noncoding RNAs had been
demonstrated to play key roles in TC. Material and Methods. The lncRNA expression data were downloaded from Co-lncRNA
database. The raw data was normalized using the limma package in R software version 3.3.0. The differentially expressed mRNA
and lncRNAs were identified by the linear models for the microarray analysis (Limma) method. The DEGs were obtained with
thresholds of ∣logFC∣ > 1:5 and P < 0:001. The hierarchical cluster analysis of differentially expressed mRNAs and lncRNAs was
performed using CLUSTER 3.0, and the hierarchical clustering heat map was visualized by Tree View. Results. In the present
study, we identified 6 upregulated and 85 downregulated lncRNAs in TC samples. Moreover, we for the first time identified 16
downregulated lncRNAs was correlated to longer disease-free survival time in patients with TC, including ATP1A1-AS1,
CATIP-AS1, FAM13A-AS1, LINC00641, LINC00924, MIR22HG, NDUFA6-AS1, RP11-175K6.1, RP11-727A23.5, RP11-
774O3.3, RP13-895J2.2, SDCBP2-AS1, SLC26A4-AS1, SNHG15, SRP14-AS1, and ZNF674-AS1. Conclusions. Bioinformatics
analysis revealed these lncRNAs were involved in regulating the RNA metabolic process, cell migration, organelle assembly,
tRNA modification, and hormone levels. This study will provide useful information to explore the potential candidate
biomarkers for diagnosis, prognosis, and drug targets for TC.

1. Introduction

Thyroid cancer (TC) is one of the most common type of
endocrine tumors [1]. A recent study showed the incidence
of TC increased rapidly worldwide, especially in female.
However, there was still lacking of effective biomarkers for
the prognosis of TC. Over the past decades, several genes
were identified to be related to the progression of TC and
could serve as potential biomarkers for TC, such as RAS [2]
and BRAF (V600E) [3] gene mutations. Moreover, with the
development of the next-generation sequencing method, a
series of public datasets were developed to explore the poten-
tial biomarkers and mechanisms underlying tumor progres-
sion in human cancers. For example, Wang et al. analyzed
TCGA dataset and found lncRNA UNC5B-AS1 promoted
TC growth and metastasis [4]. Identification of novel bio-
markers is still an urgent need for the TC.

Long noncoding RNAs (lncRNAs) were reported to play
important roles in tumorigenesis and cancer progression [5].

LncRNAs bound to chromatin, proteins, and RNAs to mod-
ulate cancer proliferation, apoptosis, autophagy, epithelial-
mesenchymal transition (EMT), and metastasis [6]. In TC,
ENST00000539653 promoted cancer progression via MAPK
signaling. TUG1 regulated TC cell proliferation and EMT
through targeting miR-145 [7]. A recent study showed anti-
sense lncRNA COMET repression inhibited cell viability
and invasiveness and induced sensitivity to vemurafenib in
BRAF- and RET-driven TC [8]. Interestingly, emerging stud-
ies demonstrated lncRNAs could serve as potential prognos-
tic or diagnostic biomarkers for human cancers. For instance,
Zhang et al. reported that downregulation of DANCR is a
biomarker for TC diagnosis [9]. Decreased EMX2OS expres-
sion was associated with unfavorable recurrence-free survival
(RFS) in classical PTC [10].

In this study, we identified differently expressed lncRNAs
using two public datasets, including Co-lncRNA database
and GEPIA database [11]. Then, coexpression network anal-
ysis, gene ontology (GO) analysis, and Kyoto Encyclopedia of
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Genes and Genomes (KEGG) pathway analysis were used to
evaluate the potential functions of these lncRNAs in TC. We
thought this study could provide novel biomarkers for TC.

2. Materials and Methods

2.1. Public Dataset Analysis. The lncRNA expression data
were downloaded from Co-lncRNA database. Co-lncRNA
database included 12 normal samples and 83 TC samples.
The raw data was normalized using the limma package in R
software version 3.3.0 (https://www.r-project.org/). The dif-
ferentially expressed mRNA and lncRNAs were identified
by the linear models for microarray analysis (Limma)

method [12]. The DEGs were obtained with thresholds
of ∣logFC∣ > 1:5 and P < 0:001. The hierarchical cluster
analysis of differentially expressed mRNAs and lncRNAs
was performed using CLUSTER 3.0 [13], and the hierarchical
clustering heat map was visualized by Tree View [14].

2.2. Coexpression Network Construction and Analysis. In this
study, as Hu et al. [15] described, the Pearson correlation
coefficient of DEG-lncRNA pairs was calculated according
to the expression value of them. The coexpressed DEG-
lncRNA pairs with the absolute value of Pearson correlation
coefficient ≥ 0:75 were selected, and the coexpression net-
work was established by using cytoscape software. Cytoscape
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Figure 1: Identification of differently expressed lncRNAs in TC. (a) Chromosomal distribution of differently expressed genes in TC tissues
using GEPIA database. (b) Hierarchical clustering analysis shows differential lncRNA expression between normal and TC samples by using
Co-lncRNA database. (c, d) Venn diagrams display differently expressed lncRNAs in both databases.
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Figure 2: Continued.
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MCODE plug-in (version 3.4.0, available online: http://www
.cytoscape.org/) was applied for visualization of the coexpres-
sion networks.

Gene coexpression analysis could be applied to related
genes of unknown function with GO or to analysis candidate
disease genes or to predict transcriptional regulatory mecha-
nism [16].

2.3. GO and KEGG Pathway Analyses. To identify functions
of DEGs in smoking-related lung cancer, we performed GO
function enrichment analysis in 3 functional ontologies:
biological process (BP), cellular component (CC), and
molecular function (MF). KEGG pathway enrichment analy-
sis was also performed to identify pathways enriched in
smoking-related lung cancer using the DAVID system
(https://david.ncifcrf.gov/). The P value less than 0.05 was
considered significant.

2.4. Survival Analysis. GEPIA database (http://gepia.cancer-
pku.cn/index.html) was used to predict the correlation
between candidate gene expression and overall survival
(OS) time or disease-free survival (DFS) time. The median
expression of target was selected as cutoff to divide all TC
samples as high and low groups. The probability of survival
was estimated using the Kaplan-Meier method. The log-
rank test was used to compare differences in survival times.

2.5. Statistical Analysis. The numerical data were presented
as mean ± standard deviation (SD) of at least three determi-
nations. Statistical comparisons between groups of normal-
ized data were performed using T-test or Mann–Whitney
U test according to the test condition. A P < 0:05 was consid-
ered statistical significance with a 95% confidence level.

3. Results

3.1. Identification of Differently Expressed lncRNAs in TC.
GEPIA database was first analyzed. Our results identified
177 upregulated lncRNAs and 1359 downregulated lncRNAs
in TC samples compared to normal tissues (Figure 1(a) and

Supplementary Table 1). By analyzing Co-lncRNA database,
399 lncRNAs were found to be dysregulated in TC. Among
these lncRNAs, 33 lncRNAs were overexpressed and 366
lncRNAs were suppressed in TC tissues compared to normal
tissues (Figure 1(b)).

By performing integrated analysis of Co-lncRNA and
GEPIA databases, a total of 6 lncRNAs were found to be
upregulated and 85 lncRNAs were found to be downregu-
lated in TC samples (Figure 1(c)). CATIP-AS1 is the most
significantly downregulated lncRNA, and RP11-280O1.2 is
the most significantly upregulated lncRNA in TC.

3.2. Downregulated lncRNAs Were Correlated to Longer
Disease-Free Survival Time in TC. Then, the GEPIA dataset
was used to explore the correlation between lncRNA expres-
sion and overall survival time in TC. The median expression
level of target gene was selected as the cutoff to divide all
TC samples into high and low groups. Our analyses
showed dysregulated lncRNAs were significantly correlated
to the disease-free survival time in TC. Higher expression
levels of ATP1A1-AS1, CATIP-AS1, FAM13A-AS1,
LINC00641, LINC00924, MIR22HG, NDUFA6-AS1, RP11-
175K6.1, RP11-727A23.5, RP11-774O3.3, RP13-895J2.2,
SDCBP2-AS1, SLC26A4-AS1, SNHG15, SRP14-AS1, and
ZNF674-AS1 were significantly correlated to longer disease-
free survival time in patients with TC (Figures 2(a)-2(p)).

Of note, we found that ATP1A1-AS1, CATIP-AS1,
FAM13A-AS1, LINC00641, LINC00924, MIR22HG,
NDUFA6-AS1, RP11-175K6.1, RP11-727A23.5, RP11-
774O3.3, RP13-895J2.2, SDCBP2-AS1, SLC26A4-AS1,
SNHG15, SRP14-AS1, and ZNF674-AS1 were significantly
downregulated in TC samples compared to normal tissues
(Figures 3(a)-3(p)). These results suggested these lncRNAs
may serve as tumor suppressors in TC.

3.3. Construction of Differently Expressed lncRNAs Regulating
Coexpression Network in TC. Furthermore, we constructed
differently expressed lncRNAs regulating coexpression net-
work in TC. The Pearson correlation coefficients between
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Figure 2: Identification of disease-free survival time related lncRNAs in TC. (a-p) Higher expression levels of ATP1A1-AS1 (a), CATIP-AS1
(b), FAM13A-AS1 (c), LINC00641 (d), LINC00924 (e), MIR22HG (f), NDUFA6-AS1 (g), RP11-175K6.1 (h), RP11-727A23.5 (i), RP11-
774O3.3 (j), RP13-895J2.2 (k), SDCBP2-AS1 (l), SLC26A4-AS1 (m), SNHG15 (n), SRP14-AS1 (o), and ZNF674-AS1 (p) were significantly
correlated to longer disease-free survival time in patients with TC.
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Figure 3: Continued.
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lncRNA and mRNA was downloaded from GEPIA datasets.
We selected the top 200 correlated genes as the potential tar-
gets of differently expressed lncRNAs. As shown in Figure 4,
we found that this coexpression network contained 16
lncRNAs and 2698 mRNAs.

3.4. Bioinformatics Analysis of Differently Expressed lncRNAs
in TC. Furthermore, we performed bioinformatics analysis
for differentially expressed lncRNAs in TC (Figure 5). GO
analysis showed that ATP1A1-AS1 [17] was involved in reg-
ulating the RNA metabolic process, the nucleic acid meta-
bolic process, regulation of gene expression, transcription,
DNA-templated, and cellular macromolecule metabolic pro-
cess. FAM13A-AS1 [18] was involved in regulating RNA
splicing and mRNA processing. LINC00641 was involved
in regulating the RNA metabolic process; gene expression;
mRNA processing; regulation of gene expression; RNA splic-
ing; and mRNA splicing, via spliceosome, and transcription
[19]. LINC00924 was associated with the regulation of cell
migration, regulation of cellular component movement, reg-
ulation of locomotion, cell adhesion, circulatory system
development, and locomotion. MIR22HG was involved in
regulating organelle assembly, positive regulation of the
RNA metabolic process, cilium organization, axoneme
assembly, and regulation of gene expression [20]. RP11-
175K6.1 was involved in regulating vasculature development,
blood vessel development, circulatory system development,
blood vessel morphogenesis, angiogenesis, and tube morpho-
genesis. RP11-727A23.5 was involved in regulating mRNA
processing, RNA splicing, inner dynein arm assembly, cilium
assembly, and gene expression. SDCBP2-AS1 was involved
in regulating the tRNA process, tRNA methylation, methyla-
tion, macromolecule methylation, and tRNA modification
[21]. SLC26A4-AS1 was involved in regulating regulation of
hormone levels, the oxidation-reduction process, thyroid
hormone generation, the hormone metabolic process, and
the alpha-amino acid metabolic process [22]. SRP14-AS1
was involved in regulating cilium movement, determination
of left/right symmetry, photoreceptor cell outer segment

organization, inner dynein arm assembly, and organelle
assembly (Figure 5(a)-5(j)).

4. Discussion

Thyroid cancer is a rare but a highly lethal form of thyroid
cancer, which needs more attention. And lncRNAs had been
demonstrated to play key roles in the progression of most
human cancers, including thyroid cancer. For instance,
DGCR5 played as a tumor suppressor in TC though binding
to miR-2861 [23]. SNHG16 promoted TC proliferation and
invasion through modulation of miR-497 [24]. GAS8-AS1
inhibited TC growth through miR-135b-5p/CCND2 axis.
Of note, lncRNAs were also found to be dysregulated in
TC, suggesting the potential prognostic value of lncRNAs.
For example, a bioinformatics analysis study showed that
FAM95B1 and UCA1 were correlated with cervical lymph
node metastasis, tumor staging, and TC prognosis. Lu et al.
reported that the dysregulation of RUNDC3A-AS1, FOXD-
AS1, RUNDC3A-AS1 and FOXD-AS1 was correlated to a
shorter overall survival time in patients with TC [25]. How-
ever, only a small part of lncRNAs were reported in TC.
The expression pattern and molecular functions of most
lncRNAs in TC remained unknown.

In our study, silico analyses were performed to identify
TC-related important lncRNA. Co-lncRNA and GEPIA
databases were used to identify differently expressed
lncRNAs in TC. There are a total of 6 upregulated and 85
downregulated lncRNAs in TC samples compared to normal
tissues. Among these lncRNAs, only few lncRNAs were
reported in previous studies. For example, NR2F1-AS1 was
found to be upregulated in TC samples. In hepatocellular
carcinoma, knockdown of NR2F1-AS1 significantly sup-
pressed cancer invasion, migration, and in vivo tumor
growth [26]. Moreover, we for the first time identified 16
downregulated lncRNAs was correlated to a longer
disease-free survival time in patients with TC, including
ATP1A1-AS1, CATIP-AS1, FAM13A-AS1, LINC00641,
LINC00924, MIR22HG, NDUFA6-AS1, RP11-175K6.1,
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Figure 3: We identified downregulated lncRNAs in TC. (a-p) The expression levels of ATP1A1-AS1 (a), CATIP-AS1 (b), FAM13A-AS1 (c),
LINC00641 (d), LINC00924 (e), MIR22HG (f), NDUFA6-AS1 (g), RP11-175K6.1 (h), RP11-727A23.5 (i), RP11-774O3.3 (j), RP13-895J2.2
(k), SDCBP2-AS1 (l), SLC26A4-AS1 (m), SNHG15 (n), SRP14-AS1 (o), and ZNF674-AS1 (p) were downregulated in TC samples compared
to normal tissues.
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Figure 4: Coexpression network analysis of lncRNAs in TC. Coexpression network analysis of lncRNAs in TC. Red nodes: lncRNA; green
nodes: mRNA.
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RP11-727A23.5, RP11-774O3.3, RP13-895J2.2, SDCBP2-
AS1, SLC26A4-AS1, SNHG15, SRP14-AS1, and ZNF674-
AS1. The functions of these lncRNAs remained unclear.

ATP1A1-AS1 is a novel lncRNA. A previous study showed
ATP1A1-AS1 is a negative regulator of Na/K-ATPase α1
and involved in regulating cell proliferation in human
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Figure 5: Bioinformatics analysis of differently expressed lncRNAs. (a-j) Bioinformatics analysis of ATP1A1-AS1 (a), FAM13A-AS1 (b),
LINC00641 (c), LINC00924 (d), MIR22HG (e), RP11-175K6.1 (f), RP11-727A23.5 (g), SDCBP2-AS1 (h), SLC26A4-AS1 (i), and SRP14-
AS1 (j) in TC.
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kidney cells. LINC00641 was reported as a tumor suppres-
sor in bladder cancer via sponging miR-197 [19].
SLC26A4-AS1was found to be associated with overall sur-
vival in gastric cancer. SNHG15 was reported to be downreg-
ulated in thyroid cancer and acted as a tumor suppressor in
TC [27].

LncRNA coexpression network was widely used to
explore the potential roles of novel lncRNAs in TC. For
example, Zhang et al. revealed that HCG11 was involved in
regulating the MAPK signaling pathway and gene tran-
scription though coexpression analysis [28]. In this study,
we constructed a network including 19 downregulated
lncRNAs and 2698 mRNAs. Bioinformatics analysis
showed these lncRNAs played crucial roles in TC progres-
sion. For example, ATP1A1-AS1, RP11-727A23.5, and
LINC00641 were involved in regulating the RNA metabolic
process. FAM13A-AS1 was involved in regulating RNA
splicing. LINC00924 was associated with the regulation of
cell migration and cell adhesion. MIR22HG was involved in
regulating organelle assembly. RP11-175K6.1 was involved
in regulating vasculature development. SDCBP2-AS1 was
involved in regulating tRNA modification. SLC26A4-AS1
was involved in regulating hormone levels.

In conclusion, we identified 6 upregulated and 85
downregulated lncRNAs in TC samples. Moreover, we for
the first time identified 16 downregulated lncRNAs was
correlated to a longer disease-free survival time in patients
with TC, including ATP1A1-AS1, CATIP-AS1, FAM13A-
AS1, LINC00641, LINC00924, MIR22HG, NDUFA6-AS1,
RP11-175K6.1, RP11-727A23.5, RP11-774O3.3, RP13-
895J2.2, SDCBP2-AS1, SLC26A4-AS1, SNHG15, SRP14-
AS1, and ZNF674-AS1. Bioinformatics analysis revealed
these lncRNAs were involved in regulating the RNA
metabolic process, cell migration, organelle assembly,
tRNA modification, and hormone levels. This study will
provide useful information to explore the potential can-
didate biomarkers for diagnosis, prognosis, and drug
targets for TC.
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