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Monocytic leukemia-associated antigen-42 (MLAA-42) is associated with excessive cell division and progression of leukemia.
*us, human MLAA-42 is considered as a promising target for designing of new lead molecules for leukemia treatment. Herein,
the 3D model of the target was generated by homology modeling technique. *e model was then evaluated using various
cheminformatics servers. Moreover, the virtual screening studies were performed to explore the possible binding patterns of
ligand molecules to MLAA’s active site pocket. *irteen ligand molecules from the ChemBank™ database were identified as they
showed good binding affinities, scaffold diversity, and preferential ADME properties which may act as potent drug candidates
against leukemia. *e study provides the way to identify novel therapeutics with optimal efficacy, targeting MLAA-42.

1. Introduction

Cancer is a result of a progressive accumulation of epigenetic
changes and genetic aberrations, which lead to uncontrolled
accumulation of blood cells [1]. Leukemia is an incurable
disease, characterized by the unrestrained proliferation of
abnormal white blood cells, readily spread to the entire body
through blood stream and lymphatic system [2]. It starts in
blood-forming organs and directs the formation of abnor-
mal blood cells which can divide to produce copies of
themselves [3]. Acute monocytic leukemia (AMoL) is an
irremediable disease in older adults [4]. *e present need is
to identify novel and more effective therapies for AMoL to
alleviate the suffering of patients.

MLAA-42 is one of immunogenic antigens and a novel-
identified monocytic leukemia-associated antigen which is
overexpressed in acute monocytic leukemia. In an attempt to
uncover the mechanism of MLAA-42 overexpression, it
significantly works as an elongation factor which plays an

important role in polypeptide elongation in leukemia as
shown in the biochemical pathway (Figure 1) [5]. Fur-
thermore, MLAA-42 plays a critical role in the transfor-
mation of normal cells to malignant phenotype through
binding with GTP bound protein leading to unrestrained
proliferation of the abnormal white blood cells which lead to
AMoL. In the meantime, inhibition of proliferation of bone
marrow cells, which takes place if there is no binding be-
tween MLAA-42 and GTP, is caused directly to prevent
formation of AMoL [5].

Heterocyclic compounds have been found to gain ex-
tensive interest due to their considerable wide range
applications in medicinal, pharmaceutical, and pharmaco-
logical activities especially as anticancer agents [6, 7]. In the
present study, computer aided virtual screening studies were
carried out using ChemBank™ database to report new
molecular entities which can be used as potent inhibitors
against MLAA-42 protein. *is study warrants further in-
vestigations to indicate that MLAA-42 is a novel target for
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designing newer drug-like molecules for leukemia treat-
ment, using in silico approaches.

2. Results and Discussion

2.1. Generation of the/ree-Dimensional Structure ofMLAA-
42. For the case where the target MLAA-42 is not experi-
mentally determined by means of X-ray crystallography and
nuclear magnetic resonance (NMR), the computational-
based techniques are used for 3D structure prediction [8].
*e FASTA sequence of the target protein (ID :Q6W6M8)
with 151 amino acid residues was identified from Universal
Protein Resource “UniProtKB” database (https://www.
uniprot.org/uniprot/Q6W6M8) [9]. *e template was rec-
ognized by subjecting the obtained sequence to BLAST,
Jpred3, and Domain Fishing servers, and Table 1 represents
the resulted maximum E-value.*e 1N0V “Crystal structure
of elongation factor 2” was selected as a template protein, on
the basis of parameters such as query cover (77%), maxi-
mum identity (63%), and statistical E-value (8×10−47) with
the target [10]. ClustalW server was used to perform the
alignment of both elongation factor proteins MLAA-42 and
1N0V (541-720 aa), as shown in Figure 2. *e conserved
amino acid residues are elucidated as (∗) (39.3%), highly
similar residues as (:), and weakly similar residues as (.)
(51.7%). *e individual percentages, resulted from the
server, refer to the identity and similarity of the target
residue sequence with its template sequence, respectively.

Twenty-five models of MLAA-42 were generated by
usingModeller 9.11 software, depending on satisfying spatial
restraints in terms of probability density function [11]. *e
3D model with fewest restraint violations, lowest probability
density function (855.33), and acceptable geometry was
selected for further validation [12]. Figure 3 represents the
3D model of the target, which consists of five alpha-helices
and six beta-strands.*e secondary structures of both 1N0V

and MLAA-42, which represent the amino acid sequences
of helices and strands in both proteins, are represented in
Figures 4 and 5 and (Figure S1 and Tables S1 and S2) in the
supplementary data section, using PDBsum server [13]. To
obtain a stable confirmation, energy minimization and
protein loop modeling were performed by GROMOS96
Force-Field set, using Swiss-Pdb Viewer [14]. To get insight
of the superimposition between the proteins MLAA-42 and
1N0V, the root-mean-square deviation RMSD for the
backbone of MLAA-42 and 1N0V is 0.51 Å (within the
permissible range i.e. ≤2 Å), which indicates close ho-
mology and ensures reliability of the model, as declared in
Figure 6.

2.2. Physicochemical Properties and the Abundance of Amino
Acids in MLAA-42. *e physicochemical properties of
MLAA-42 were predicted using ProtParam tool [15]. *e
protein sequence has 151 amino acid residues with molec-
ular weight of 16.871 kDa. Furthermore, the most abundant
amino acid residues are LEU, SER, GLU, ALA, VAL, LYS,
GLY, and ASP, respectively, in high percentages in the target
protein, as shown in Figure 7. Lucine has the highest
abundance (9.9%), and methionine has the lowest abun-
dance (0.7%). *e physicochemical parameters predicted a
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Figure 1: Biochemical pathway of MLAA-42 protein involves transformation of normal cells to malignant phenotype through binding with
GTP bound protein leading to unrestrained proliferation of the abnormal white blood cells which lead to AMoL.

Table 1: *e template protein selection.

Server name Parameters for template
selection E-values PDB

code
NCBI-Blast Sequence similarity 9e−47 1N0V

Jpred3 Secondary structure
prediction 6e−40 1N0V

Domain
fishing Domain similarity 3e−40 1N0V

1N0V was selected as a template protein using different servers, based on
query cover, maximum identity, and statistical E-value.
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negatively charged protein as the result of the high number
of negatively charged residues (aspartic acid 6.0% and
glutamic acid 8.6%) in contrast with positively charged ones
(arginine 5.3% and lysine 7.3%). *e atomic composition of
MLAA-42 is 2364, with 747 carbon (C), 1176 hydrogen (H),
204 nitrogen (N), 233 oxygen (O), and 4 sulfur (S). In
addition, the protein is acidic, with an isoelectric point (pI)

of 5.47. *e estimated half-life of the target showed that it
can remain intact without being degraded for 3.5 h in
humans, 10min in yeast, and less than 10 h in E. coli, and its
extinction coefficient is 24075M−1 cm−1. Finally, the gen-
erated aliphatic index was 82.65, with grand average of
hydrophobicity (GRAVY) of −0.426 and an instability index
of 34.55.

N-terminal

C-terminal

Figure 3: 3D structure of MLAA-42 protein. It consists of five α-helices and six β-strands.

Figure 2: Pairwise sequence alignment of MLAA-42 with 1N0V. *e conserved amino acid residues are elucidated as (∗), highly similar
residues as (:), and weakly similar residues as (.).

Figure 4: *e secondary structure of the target MLAA-42 obtained by the PDBsum server.
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2.3. Validation of theModel and Active Site Analysis. *e 3D
model was validated by different tools such as PROCHECK
(Ramachandran plot) and ProSA to check its structural
integrity. Ramachandran plot (Figure 8) of the modeled
protein represents 87.3% (117 aa) of the total residues in the
most favored regions and 11.9% (16 aa) in additionally
allowed regions, indicating a good quality model.

Moreover, ProSA Z-score (dark spot) is −2.85, which
falls within the values range of the known proteins deter-
mined by X-ray (light blue) and NMR (dark blue) (see
Figure S2, in the supplementary data section), predicting a
reasonable quality model. Figure S3, in the supplementary
data section, shows the 3D model quality by plotting en-
ergies (X-axis) as a function against residue sequence

position (Y-axis). *e figure shows that most of residues of
MLAA-42 have negative energies, which indicates an ac-
ceptable model. In view of the facts mentioned above about
the unavailability of 3D structure of MLAA-42 in protein
data bank PDB, thus, there are no previous data obtained for
the binding regions of the target. *erefore, to overcome the
lack of experimental data, herein, CASTp and SiteMap
cheminformatics tools were used to identify the binding site
cavities of the target (Figures S4 and S5 and Tables S3 and
S4), in the supplementary data section, respectively. CASTp
server gives information about hydrophobic pocket regions;
in addition, it measures cavity volume and area. *e results
declared four sites, site 1 has volume of 40.9 Å3, site 2 with
volume of 28.2 Å3, site 3 with volume of 50.7 Å3, and site 4
has volume of 105.4 Å3. Among the four different cavities
obtained from CASTp, the amino acids from PHE44 to
ILE96 are consistently present in all sites. SiteMap gives
information about the hydrophilic and hydrophobic regions
present on the protein surface. It identified two binding
cavities on MLAA-42 protein. *e site 1 with volume
1222.79 Å3 and size of 4.38 Å and site 2 has volume of
46.30 Å3 and size of 32 Å. *e active sites predicted by
SiteMap are from TYR38 to ILE100. In conclusion, these
computational prediction techniques give information about
the binding site regions that are composed of TYR38 to
ILE100 residues are responsible for MLAA-42 docking with
ligand molecules. *e docking interactions show that the
residues TYR38, LYS40, THR89, ILE96, ASP99, and ILE100
are observed to be crucial to identify the antagonists against
MLAA-42 protein. Figure S6, in the supplementary data
section, represents the grid with dimensions 80 Å× 80 Å× 80 Å
around the binding site, to perform further studies.

2.4. Molecular Docking Analysis and ADMET Profile. *e
compounds with heterocyclic core structures are pharma-
ceutically important class of compounds because of their
diverse range of biological importance such as anticancer

Figure 5: *e secondary structure of the template 1N0V (541-720 aa) using the PDBsum server.

Figure 6: Superimposition of MLAA-42 (red) on template 1N0V
(green) in the Swiss- PDB viewer.
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activity against cancer cell lines [6, 7]. In view of the facts
mentioned above and as a part of our efforts to identify new
anticancer drug candidates [16], a ChemBank™ library of
2344 small molecules with an anticancer activity was
downloaded [17] for specific docking. Computer-aided
screening protocol at the binding regions of the target was
performed using virtual screening workflow docking pro-
gram of Glide, Schrodinger suite.*e glide docking program
identifies specific structural motifs and provides excep-
tionally large contribution to enhance binding affinity [18].
*e docking approach was run in a flexible docking mode
which automatically generates different confirmations for
each ligand molecule. *e total isomeric structures (13,354)
obtained after ligand preparation was subjected to high
throughput virtual screening (HTVS) mode and 10% hit
structures (1335) obtained as output, followed by 10% of
them, 133, screened in standard precision (SP) mode, and

finally the 10% of the resultant were screened in the Extra
precision (XP) mode to obtain 13 hits. *e docked com-
pounds were prioritized according to their binding energies
(in range of −12.19 to −9.22 Kcal/mol) after docking to the
active site pocket of the target protein, as tabulated in
Table 2.

A sample of six best docking interactions between the
ligands and protein, arranged rankwise based on their
binding energies, is depicted in Figure 9 and Table 2.*e top
six ligand-protein complexes were visually checked in
Discovery Studio Visualizer (for 3D representation) and
Maestro (for 2D representation), which exhibited the
noncovalent interactions such as hydrogen bonding and pi-
pi stacking [19, 20]. In 3D representation, the binding
residues of MLAA-42 are shown in yellow-colored stick
model, the ligands in purple one, H-bonds are in black
dotted lines, and pi-pi interactions are in orange lines

Plot statistics

Residues in most favoured region 117
16
1

134

2
9
6

100%

87.3%
11.9%

0.7%
Residues in additional allowed region
Residues in generously allowed region

Number of end residues (excluding Gly and Pro)
Number of end glycene residues (shown in triangles)
Number of proline residues

Total number of residues

–180 –135 –90 –45
Phi (degrees)

Ps
i (

de
gr

ee
s)

0 45 90 135 18

–135

–90

–45

0

45

90

135

180

151

Figure 8: Stereochemical analysis of MLAAA-42. *e red region declares the most favorable area of residues; the yellow region is ad-
ditionally allowed; and generously allowed residues in the light-yellow region. *e RC plot declares 99.2% of residues falling in the allowed
region.

0

M
ET H
IS

TR
P

CY
S

TY
R

G
LN IL

E

PR
O

A
SN

TH
R

A
RG A
SP

G
LY LY

S

V
A

L

A
LA

G
LU SE

R

LE
U

2

4

6

8

10

12

14

16

Abundance (%)
Number

Figure 7: *e abundance of amino acids in MLAA-42. Graphical representation of the abundance of 20 amino acids present in the target.
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Table 2: *e chemical structures of top six scoring ligand molecules against MLAA-42 protein.

S.
no. Structure and IUPAC name of molecule

Glide
energy
(KJ/Mol)

Binding
energy

(Kcal/mol)

*e interacting
amino acid
residues

Bond
distance
(Å)

1
O

N
H

N
H

H
N

H
N

O

O
Cl

O

O

O
Cl

6-{N′-[2-(4-Chloro-phenoxy)-acetyl]-hydrazino}-6-oxo-hexanoic acid N′-
[2-(4-chloro-phenoxy)-acetyl]-hydrazide

−63.59 −12.19

H-bonds
LYS40 :N – L1 2.91
THR98 :N – L1 2.50
ILE100 : N – L1 2.67
LYS40 :O – L1 2.32
ILE96 :O – L1 2.18

THR98 :O – L1 2.15

2

S
NH

O
NH

O O

O

2-[2-(1-Methyl-buta-1,3-dienyloxy)-acetylamino]-5,6-dihydro-4H-
cyclopenta[b]thiophene-3-carboxylic acid (2-ethoxy-phenyl)-amide

−50.27 −11.83

H-bonds
TYR38 :N – L2 2.89
ILE100 : N – L2 2.99
TYR38 : O – L2 1.94
π-π interactions

TRP85-L2 4.95

3

NH
O

S

H
N

O

O

OH

N-[3-(Naphthalen-1-ylcarbamoyl)-4,5,6,7-tetrahydro-benzo[b]thiophen-2-
yl]-succinamic acid

−42.22 −11.61

H-bonds
ILE100 : H – L3 1.68
THR98 :O – L3 2.36

TYR38 :O – L3 2.00

4

O

Cl

N
H

O

N
S

O

O

1-(Naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid [2-(2-chloro-
phenoxy)-ethyl]-amid

−47.52 −11.30

H-bonds
LYS40 :N – L4 2.95
THR98 : N – L4 2.65

THR98 :O – L4 2.26

5
N

+HN S N
H

O F

F

FCl

2-[(2-Chloro-5-trifluoromethyl-phenylcarbamoyl)-methylsulfanyl]-3-
methyl-3H-imidazol-1-ium

−39.53 −11.12

H-bonds
LYS40 :N – L5 2.67
THR98 :O – L5 2.13
ASP99 :OD1-

L5 2.79

π-π interactions

TRP85-L5 4.87

6 H3C N
H

S
H
N

O

N
H

O
ClCl

N-(2,4-Dichloro-phenyl)-3-(N′-thioacetylhydrazine-carbonyl)-
propionamide

−40.65 −11.10

H-bonds
ILE100 : N – L6 2.69
TYR38 :O – L6 2.30

THR98 :OG1-
L6 2.29

Table represents top six ligand molecules with binding energies in range of −12.19 to −9.22Kcal/mol, hydrogen bonds, and pi-interactions to MLAA-42’s
active site pocket.
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Figure 9: Continued.
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Figure 9: Interactions between MLAA-42 with ligand molecules (a)–(f). (A) *ree-dimensional docked poses: the binding residues of
MAA-42 are represented in yellow stick, the ligand molecules are shown in the purple stick model, the hydrogen bonds are shown in black
dotted lines, and pi-pi interactions in orange lines. (B) Two-dimensional docked poses: the residues are shown in a 3-letter code, hydrogen
bonds in pink lines, and pi-pi interactions in green lines.
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(Figure 9).While in 2D representation, the residues are shown
in a 3-letter code, the hydrogen bonds are represented in pink
lines, and pi-interactions are shown in green lines. *e ligand
molecules with heterocyclic moieties such as thiophene,
pyrazole, and pyrolidine and amide groups such as carbox-
amide (-CONH-) and sulphonamide (-SO2NH-) in ligands
L1-L6 are observed to be common pharmacophore groups
which interact with the active site region (TYR38, LYS40, TRP
85, ILE96, THR98, ASP99, and ILE100) of MLAA-42 through
a network of hydrogen bonds and pi-interactions, as repre-
sented in Table 2. *e carboxamide group, which is present in
all ligand molecules, formed intermolecular hydrogen bonds
with the residues TYR38, LYS40, TRP 85, ILE96, THR98,
ASP99, and ILE100. In addition, the sulphonamide group,
which is present in ligand L4, formed a hydrogen bond in-
teraction (N---H---O) with the residue THR98 at the distance
of 2.65 Å. Furthermore, the tryptophan (TRP85) formed π-π
interactions (face to face) with the benzene ring of ligand L2
on its side chain plus the pyrazole ring of ligand L5, at the
distance of 4.95 and 4.87 Å, respectively. *e intermolecular
hydrogen bonds and pi-interactions add more stability to the
docked complexes [21]. *e other docked compounds to the
target are included in supplementary data section as Figure S7.

SASA values of MLAA-42, before and after docking, were
analysed using Discovery Studio Visualizer (see Figure S8, in
the supplementary data section).*e decrease in SASA values
confirms that the amino acid residues (TYR38 to ILE100) are
involved in bonds formation with ligand molecules (a)–(f).

*e ADMET properties for the resulted ligand
molecules were determined in silico by using the Qik-
Prop module of the Schrödinger suite. *e molecules
with agreeable ADME properties are considered as new
novel drug candidates, as shown in Table 3. Interestingly,
all the compounds have a molecular weight in the ac-
ceptable range of 349.7 to 511.3 Daltons (less than 725
Dalton). BBB+ value describes the ability of the com-
pounds to cross the blood-brain barrier, which is in the
permissible ranges for all compounds. *ey had <10
hydrogen bond acceptors and <5 hydrogen bond donors,
and log P values of <5. *ese properties are in the
reasonable range of Lipinski’s rule of five (LORF) [22].
*e human oral absorption, partition coefficient
(QPlogPo/w), and water solubility (QPlogS) values are in
the agreeable range defined for human use, which in-
dicates their possible ability to be drug candidates, as
shown in Table 3. Also, the values show that the com-
pounds can be absorbed by the human intestines. Fur-
thermore, all molecules (a)–(f ) displayed negative AMES
toxicity test which means that the ligands are non-
mutagenic. Also, they displayed negative carcinogenicity
test. *ese ligands can be considered as highly potent
inhibitors against leukemia.

3. Materials and Methods

3.1. 3D Homology Model of MLAA-42. *e protein’s three-
dimensional structure is required to understand its function
[23]. Herein, an in silico homology modeling generates a
three-dimensional (3D) for an unknown structure of protein

(target) depending on one or more proteins of known
structures (templates) as reported earlier by Aboubakr et al.
in 2016 [24, 25]. *e generation of (3D) structure of MLAA-
42 was carried out using comparative modeling techniques.
*e amino acid sequence of MLAA-42 is retrieved from the
UniProtKB database in FASTA format. *e resulted se-
quence is submitted to BLASTp, Jpred3, and Domain fishing
servers, to identify suitable templates [26–28]. E-value is
identified the similarity between the target and template
proteins [29]. *e template with maximum identity is se-
lected for generating the 3D structure of the target. *e
pairwise sequence alignment of MLAA-42 with its template
is performed using the ClustalW tool to recognize the
structurally conserved regions [30]. ClustalW server uses the
Gonnet matrix algorithm to make certain the presence of
conserved motifs and to minimize the atomic gaps. *e %
identity of alignment is measured as a ratio number of the
identical residues in the alignment and the total number of
residues of the target. *e % similarity is measured as a ratio
of the total number of identical and similar residues to the
total number of residues of the target. *e 3D structure of
the target is generated using Modeler 9.11. *en, the model
is energy minimized using SPDBV and Impref in
Schrödinger to obtain a stable conformation [31]. *e
RMSD value, which is calculated using the Swiss-Pdb viewer,
is used to find the best superimposition for protein struc-
tures. *e lower value (≤2 Å) means the best alignment
between the structures.

3.2. 3D Structure Validation. Subsequently, quality of the
generated model is evaluated by computational protocols
such as PROCHECK and Protein Structural Analysis
(ProSA) [32, 33]. PROCHECK, a program that relies on
Ramachandran plots for structure verification, figures out
the stereochemical quality of the model. Furthermore,
ProSA is applied to check for energy criteria in comparison
with a large set of known protein structures with similar
size [34].

3.3. Binding Site Prediction and Ligand Preparation. It is the
hydrophobic cavities on the surface of a protein, which is
responsible for its specificity [35]. It is theoretically deter-
mined by means of tools based on recent theoretical and
algorithmic results of computational geometry such as
CAST-p and SiteMap of Schrödinger suite [36, 37]. *ese
computational prediction tools analytically furnished the
area and volume of cavities. *e grid is created around the
binding cavity to perform further structure-based virtual
screening studies [38]. LigPrep module of Schrödinger suite
is used to generate various conformers of small molecule
depending upon its structural features [39].

3.4. In silico Molecular Docking, SASA, and ADME Analysis.
Molecular docking protocol is used to predict the preferred
orientation of a ligand molecule to the target protein to form
a stable complex [40, 41]. *e docking accuracy is deter-
mined by finding how closely the binding confirmation with
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the lowest energy of the cocrystalized ligand molecule
predicted by the object scoring function; G-score (Glide
score) resembles an experimental binding modes deter-
mined by X-ray crystallographic technique [42]. Once the
3D model of MLAA-42 is validated and the target binding
pockets are defined, the docking-based virtual screening
study is performed using the Glide docking tool incorpo-
rated in the Schrödinger package by Maestro [43]. *e
virtual screening approach is performed through hierarchal
flexible docking methods: High *roughput Virtual
Screening (HTVS), Standard Precision (SP), and Extra
Precision (XP). *e ligand molecules are prioritized on the
basis of the docking score, docking energy in each step, and
by default 10% of the molecules selected and considered for
the next hierarchical step [18]. Solvent Accessible Surface
Area (SASA) of the target, before and after docking, is
computed using Accelrys Discovery Studio Visualizer 3.5
software. Prediction of drug-like profiles, such as physico-
chemical, pharmacokinetic, and safety of the compounds, is
performed using the QikProp module [44].

4. Conclusion

In this work, the computer-aided drug design protocols were
used to identify novel leads against MLAA-42 protein. *e
homology model of the target was evaluated by homology
modeling techniques. In silico molecular docking were also
adopted to identify the lead compounds. *e resulted
molecules with heteroscaffolds and amide groups (-CONH-
and–SO2NH-) exhibited better estimated binding energy
values and agreeable pharmacokinetic properties and were
ranked as potent drug-like candidates against the target
protein. Hence, MLAA-42 has emerged as a therapeutic
target for treatment of leukemia carcinoma.
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Supplementary Materials

Figure S1: the secondary structure of MLAA-42. *e 3D
model of the target protein consists of five helices as red
cylinders and six strands as pink arrows. Figure S2: *e 3D
model quality of MLAA-42.*e score (−2.85) is falling in the
range of PDB proteins identified by NMR (dark-blue region)
and X-ray crystallography (light-blue region). Figure S3:
ProSA of MLAA-42 protein. *e plot shows local model

Table 3: ADME properties of the top docked ligand molecules.

Molecule CNS M.
(Wt) SASA Volume Donor

HB
Accept
HB

QPlogPo
(w) QPPCaco QPlogBB

Percent
human oral
absorption

#NandO Rule
of five

Rule
of

three
L1 −2 511.3 905.7 1554.4 1 8 4.7 64.5 −2.8 74.0 10 1 1
L2 0 436.5 751.0 1348.2 1 5 5.5 2264.9 −0.5 100 6 1 2
L3 −2 422.4 740.5 1298.5 2 6 4.4 48.1 −1.7 83.1 6 0 1
L4 −1 458.9 755.6 1350.7 1 8 3.9 883.3 −0.6 100 6 0 0
L5 1 349.7 564.0 962.4 1 4 4.1 2206.4 −0.2 100 4 0 0
L6 −1 411.3 708.3 1210.2 3 7 3.9 538.7 −0.8 100 6 0 1
*e agreeable ranges are as follows: CNS: −2 (inactive), +2 (active). Mol wt: (130–725). Volume: (500-2000). Donor HB: (0.0–6.0). Accept HB: (2.0–20.0).
QPlogPo/w: (-2.0 to 6.5). QPPCaco: <25 poor, >500 great. QPlogBB: (−3.0 to −1.2). % human oral absorption: >80% high, <25% low. Rule of three (3). Rule of
five (4).

10 Computational and Mathematical Methods in Medicine



quality by plotting energies as a function against amino acid
sequence position. Figure S4: binding site of MLAA-42 from
the CAST-p server. Figure S5: binding site of MLAA-42 by
SiteMap module. Figure S6: receptor grid generation by
Schrodinger Suite. *e grid generated with 80 Å× 80 Å× 80 Å
dimensions using receptor grid generation of Glide module.
Figure S7: two-dimensional interactions between MLAA-42
with other ligand molecules. Figure S8: the surface accessibility
of MLAA-42 and docked complex (L1). Red-colored peaks
represent SASA value of MLAA-42 (after docking), blue-col-
ored peaks represent before docking. X-axis represents the
amino acid residues and Y-axis represents SASA value. Tables
S1 and S2: the secondary structure details of MLAA-42 protein
(S1) the α-helices in MLAA-42 protein. (S2) the β-strands in
MLAA-42 protein. Table S3: binding site of the MLAA-42 by
CAST-p server. Table S4: binding site of MLAA-42 by SiteMap
module. (Supplementary Materials)
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