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Glioma is a frequently seen primary malignant intracranial tumor, characterized by poor prognosis. The study is aimed at
constructing a prognostic model for risk stratification in patients suffering from glioma. Weighted gene coexpression network
analysis (WGCNA), integrated transcriptome analysis, and combining immune-related genes (IRGs) were used to identify core
differentially expressed IRGs (DE IRGs). Subsequently, univariate and multivariate Cox regression analyses were utilized to
establish an immune-related risk score (IRRS) model for risk stratification for glioma patients. Furthermore, a nomogram was
developed for predicting glioma patients’ overall survival (OS). The turquoise module (cor = 0:67; P < 0:001) and its genes
(n = 1092) were significantly pertinent to glioma progression. Ultimately, multivariate Cox regression analysis constructed an
IRRS model based on VEGFA, SOCS3, SPP1, and TGFB2 core DE IRGs, with a C-index of 0.811 (95% CI: 0.786-0.836). Then,
Kaplan-Meier (KM) survival curves revealed that patients presenting high risk had a dismal outcome (P < 0:0001). Also, this
IRRS model was found to be an independent prognostic indicator of gliomas’ survival prediction, with HR of 1.89 (95% CI:
1.252-2.85) and 2.17 (95% CI: 1.493-3.14) in the Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA)
datasets, respectively. We established the IRRS prognostic model, capable of effectively stratifying glioma population, convenient
for decision-making in clinical practice.

1. Introduction

Glioma is a common primary malignant brain tumor [1],
with the average incidence of approximately six cases per
100,000 people in the world [2]. According to the WHO
classification, glioma can be divided into four grades, includ-
ing grades I, II, III, and IV, where grades I and II are low-
grade glioma (LGG), including astrocytoma, oligodendro-
glioma, and mixed oligodendrogliomas, whereas grades III
and IV are high-grade gliomas (HGG), such as glioblastoma
(GBM), anaplastic astrocytoma, and anaplastic oligodendro-
glioma [3]. However, as time goes by, LGG will progress to
invasive HGG [4–6]. On the basis of the statistical data of
the Chinese Glioma Genome Atlas (CGGA), the overall sur-
vival (OS) of LGG is 78.1 months, with a 5-year survival rate
of 67% [7] . Nevertheless, once patients progress to HGG,
their OS will shorten to 14.4 months and the 5-year survival
rate is roughly 9%. Even though they adopt positive treat-

ments, such as surgery and chemotherapy, as well as
radiotherapy, their 2-year survival rate is merely 43% [8].

Immunotherapeutic strategies in glioma arouse unprece-
dented attention in the public, where long-term tumor
remission can be achieved with minimal side-effects [9].
The immune therapeutic methods included immune check-
point inhibitors (ICI), peptide vaccines, dendritic cell vac-
cines, chimeric antigen receptor T cells, and oncolytic
viruses [10]. The ICIs contain the programmed cell death
protein (PD-1) and its ligand (PD-L1), considered as the
main factors hindering immune response [11]. However,
due to low and variable levels of PD-L1 in glioma cells [12,
13], most patients showed no significant increase in OS for
anti-PD-1 therapy [14]. Thus, it is imperative to develop
some potential consistently expressed immune-related bio-
markers of the glioma. In recent years, some researchers
propose that immune-related gene (IRG) signatures are
involved in tumor prognosis, including pancreatic ductal
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adenocarcinoma [15], lung adenocarcinoma [16], neuroblas-
toma [17], and head and neck squamous cell carcinoma
[18], as well as LGG [19]. In a previous study, Wang et al.
have identified an immune-related lncRNA signature via
construction of immune-lncRNAs and an immune-gene
coexpression network, for predicting its prognostic value in
the anaplastic gliomas [20]. Moreover, another previous
study has established an immune-related risk signature for
GBM, which can independently distinguish high-risk
patients, and they also elucidated the relationship between
local immune response and prognosis in GBM [21]. In addi-
tion, Zhang et al. constructed an IRG signature for risk strat-
ification and developed a prognostic nomogram for survival
prediction in LGG patients [19]. However, most researches
established prognostic models based on IRG signatures [19,
21–23], but they have yet to illuminate whether
progression-related differentially expressed IRGs (DE IRGs)
can effectively perform risk stratification for patients sub-
jected to glioma.

Hence, this present study was undertaken to develop a
prognostic model via screening progression-related core
DE IRGs [24], for stratifying glioma patients by risk score
and providing potential immunotherapeutic targets for inhi-
bition of glioma progression and improvement of patients’
prognosis.

2. Materials and Methods

2.1. Data Downloading and Processing. By searching the
GEO database (http://www.ncbi.nlm.nih.gov/geo/), original
data (CEL format) of GSE4290 were downloaded and
decompressed to perform weighted gene coexpression net-
work analysis (WGCNA). The LGG and HGG samples from
GSE45921 [25], GSE15824 [26], GSE43378 [27], and
GSE4290 [28] datasets were also selected for differential
expression analysis, all of which have same annotation plat-
form, namely, GPL570 (HG-U133_Plus_2, Affymetrix
Human Genome U133 Plus 2.0 Array), with 54,675 probes.
Besides, transcriptome and clinical data (including sample
id, age, gender, status, survival time, tumor grade, isocitrate
dehydrogenase (IDH) status, and O-6-methylguanine-DNA
methyltransferase (MGMT) status) of all glioma samples
from the TCGA-LGG (level 3) and TCGA-GBM (level 3)
were downloaded from the TCGA database (https://portal
.gdc.cancer.gov/) and cBioPortal for Cancer Genomics data-
base (http://www.cbioportal.org/), respectively. Next, we
attained a total of 2498 IRGs from the Immunology Data-
base and Analysis Portal (ImmPort) (https://www.immport
.org/shared/home) [18, 29]. Subsequently, we collected
RNA-seq data and corresponding clinical information from
the CGGA database (http://www.cgga.org.cn/) [30, 31] for
further verification.

2.2. Weighted Gene Coexpression Network Analysis. Genes
with top-ranking 5000 expression data of the GSE4290 data-
set were used to implement WGCNA. Then, coexpression
modules were constructed using the “WGCNA” package in
the RStudio software (Version 3.5.0). To eliminate outliers,
the parameters of height and minsize were set to 110 and

30, respectively. Using the power function amn = jcmnjβ
(amn: adjacency between gene m and gene n, cmn: Pearson
correlation, β: the soft threshold), a weighted adjacency
matrix was constructed [32, 33]. Then, the topological over-
lap matrix (TOM) was converted to the adjacency matrix to
measure the network connectivity of these genes [32]. Subse-
quently, genes with absolute high correlation were classified
into gene modules according to the TOM-based dissimilar-
ity metric [33]. In addition, coexpression modules were
uncovered using the blockwiseModules function of the
“WGCNA” package [34, 35]. Through establishment of a
hierarchical clustering tree diagram of selected gene expres-
sion values and analysis of adaptive branch cutting [36],
functional modules were visualized with different colors
[37], where genes without being enriched in any module
were assigned to the gray module [38]. Module eigengene
(ME) is defined as the main component of the first standard-
ized expression profile [39] and also is thought as the repre-
sentative gene expression profile in modules [33, 40].
Furthermore, module significance tends to be highly corre-
lated with the correlations between ME and clinical traits
[41]. And gene significance (GS) is considered to be the
absolute values of the correlation coefficients between genes
and traits, and module membership (MM) is defined as the
correlations between the eigengene modules and gene
expression profile [34, 42]. Accordingly, a preliminary
correlation between modules and clinical traits was revealed
via the WGCNA method.

2.3. Identification of Differentially Expressed Genes (DEGs)
and Their IRGs (DE IRGs). The original data from four
GEO datasets (including GSE45921, GSE15824, GSE43378
and GSE4290) were decompressed and implemented nor-
malization, background correction, and log2 transformation
via the “affy” package [43, 44]. And missing values were
filled using the impute.knn function [45]. Additionally, the
ComBat algorithm in the “sva” package was adopted for
removing batch-batch difference [46]. Subsequently, differ-
ential expression analysis between HGG and LGG samples
was performed using the “limma” package. If multiple
probes matched to the same gene symbol, the median
expression values were selected as the expression levels of
these genes. Besides, cutoff values of DEGs were set to ∣
log2FoldChange ðlog2FCÞ ∣ ≥1:0 and adjusted P < 0:05. To
further discover glioma progression-related DE IRGs, a
Venn diagram was used based on an overlapping region of
DEGs and IRGs, as well as genes in the significant
progression-related modules.

2.4. Functional Enrichment Analyses for DE IRGs. The Gene
Ontology (GO) term and Kyoto Encyclopedia of Genes and
Genomes (KEGG) functional enrichment analyses were per-
formed for DE IRGs via the “ClusterProfiler” [47] package.
GO term enrichment analysis contained three categories,
namely, molecular function (MF), cellular component
(CC), and biological processes (BP) [48]. Additionally,
KEGG (http://www.genome.jp/kegg/) is a bioinformatics
resource that links genome or molecular datasets to
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networks [49]. The P value less than 0.05 was regarded as the
threshold.

2.5. Construction of a PPI Network and Identification of
Clusters. A protein-protein interaction (PPI) network of
DE IRGs was constructed using the STRING (https://
string-db.org/) [50] website via setting the minimum
required interaction score to 0.900 and the max number of
interactors to show to no more than 50, and visualized in
the Cytoscape software [51]. Furthermore, the median
degree was calculated by the CentiScaPe 2.0 plug-in, a tool
for determining the most significant nodes [52]. And the
molecular complex detection (MCODE) [53] plug-in was
capable of visualizing the highly connected clusters of the
PPI network. Thus, significant nodes were selected as core
genes for the next analysis. A GOChord function in the
“GOplot” package was employed to display the relationships
that genes were coupled with GO terms through rib-
bons [54].

2.6. Survival Analysis. To disclose the predictive value of
expression levels of DE IRGs for glioma survival, we adopted
a log rank test to perform Kaplan-Meier (KM) survival
analyses.

2.7. Establishment of an Immune-Related Risk Score (IRRS)
Model. We screened out the most significant nodes via the
previous methods. The TCGA samples were used to con-
struct and assess the IRRS model. Firstly, univariate Cox
regression analysis was performed to screen those genes with
P < 0:05. Subsequently, the IRRS model was established by
multivariate Cox regression analysis based on the Akaike
Information Criterion (AIC) algorithm [55]. The risk score
formula was erected via the coefficients (β) of each gene
from the multivariate Cox regression analysis and their
expression levels. The calculation formula of the risk score
was as follows: risk score = expression level of mRNA1 × β
1mRNA1 + expression level of mRNA2 × β2mRNA2 +⋯ +
expression level of mRNAn × βnmRNAn. Then, the time-
dependent receiver operating characteristic (ROC) curves
for predicting the 1-year, 3-year, and 5-year OS showed
the predictive performance of this IRRS model via the “sur-
vivalROC” package [56]. In addition, the concordance index
(C-index), ranging from 0.5 to 1.0, is an indicator for evalu-
ating this model’s predictive ability. The closer to 1.0 the C-
index, the better the discriminatory ability of the IRRS
model [57]. Next, considering that 5 years is a key time point
for evaluating the prognosis of glioma patients, we have
stratified patients into high- and low-risk groups via adopt-
ing the optimal cutoff value of the risk score at the 5-year
time point in ROC curves [58]. Subsequently, survival anal-
ysis was implemented using the “survival” and “survminer”
packages via log rank test, and the 5-year survival rate also
was acquired.

2.8. Evaluation of the Independent Prognostic Value of the
IRRS Model.We have performed univariate and multivariate
Cox regression analyses for the IRRS model and clinical
characteristics, that is, a combination of age (<60 and
≥60), gender (male and female), tumor grade (low grade

and high grade), risk score (low risk and high risk), IDH sta-
tus (mutant and wild-type), and MGMT status (methylated
and unmethylated). Subsequently, the nomogram with 1-
year, 3-year, and 5-year OS rates was developed for clinical
use [59]. Moreover, calibration curves were utilized to eval-
uate the agreement of predictive and observed probabilities
of 1-year, 3-year, and 5-year OS from the nomogram.

2.9. Statistical Analysis. Statistical analysis was conducted in
the RStudio software (Version 3.5.0) and GraphPad Prism
software (Version 5.0). Survival curves were established via
the KM method and log-rank test. Calculation of the area
under ROC curves of 1-year, 3-year, and 5-year survival
rates was implemented based on the “survivalROC” package
[56]. The “rms” package was applied to perform nomogram
analysis. P < 0:05 denoted the presence of statistically signif-
icant difference.

3. Results

3.1. Data Processing. The flowchart of the present study
design is presented in Figure 1. First, we selected the top-
ranking 5000 gene expression values of the GSE4290 dataset
based on the median absolute derivation (MAD) algorithm
for performing WGCNA. Second, integrated transcriptome
analysis was conducted in a total of 251 samples, including
179 HGG and 72 LGG samples, derived from four GEO
datasets, among which 7 HGG and 15 LGG in the
GSE45921 dataset, 19 HGG and 7 LGG in the GSE15824
dataset, 45 HGG and 5 LGG in the GSE43378 dataset, and
108 HGG and 45 LGG in the GSE4290 dataset. In addition,
687 duplicate IRGs were removed from IRG group. Then,
fragments per kilobase per million normalized expressions
of RNA-seq data (level 3) of 529 LGG and 169 GBM samples
in the TCGA database were used for construction of the
prognostic model. Due to 10 samples lacking information
of survival time and status, we ultimately used 688 glioma
samples to construct the prognostic model and validate its
predictive performance. Additionally, 422 primary glioma
patients from the CGGA database were selected as the exter-
nal validation set.

3.2. Construction of a Weight Gene Coexpression Network
and Identification of Grade Progression-Related Modules.
First, we used a hierarchical clustering method to detect
the outliers, enabling two samples to be eliminated
(“GSM97895” and “GSM97932”). The soft threshold value
was equal to 12 via the pickSoftThreshold function, shown
in Figure 2(a). Second, we employed the blockwiseModules
function of the “WGCNA” package to acquire six modules,
including brown, turquoise, green, blue, yellow and gray
modules, with genes ranging from 149 to 1552, where the
gray module represented genes without being enriched,
which is visualized in Figure 2(b). Third, we analyzed the
relationship between samples and clinical traits (such as
grade and subtype of glioma) and obtained the correlation
of modules with traits. And Figure 2(c) showed that the tur-
quoise module was significantly positively associated with
glioma grade (cor = 0:67, P < 0:0001). Then, a scatter plot
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of MM vs. GS in the turquoise module was drawn, with a
correlation coefficient of 0.76 (P < 0:0001) (Figure 2(d)).
Additionally, 1092 genes in the turquoise module were iden-
tified (Supplementary Table 1).

3.3. Differentially Expressed Genes (DEGs) and Their IRGs
(DE IRGs), as well as Functional Enrichment Analyses. Dif-
ferential expression analysis between HGG (n = 179) and
LGG (n = 72) samples was completed via the “limma” pack-
age. According to the presetting cutoff value, 389 DEGs
(Supplementary Table 2) were obtained for further
analysis, with upregulation of 213 and downregulation of
176 DEGs. Figure 3(a) shows a clustering heat map that
reveals the expression levels of five core DE IRGs. We
selected the 41 overlapping genes in the DEG and IRG
groups via Venn plot as DE IRGs. Thus, as shown in
Figure 3(b), 26 progression-related DE IRGs located in the
intersection region among the DEG, IRG, and turquoise
module’s gene groups. Subsequently, Figures 3(c) and 3(d)
present the results of GO term and KEGG pathway
enrichment analyses, respectively, which clarified that these
DE IRGs were mainly enriched in receptor ligand activity,
growth factor activity, extracellular matrix binding, etc.
(GO term), as well as focal adhesion (KEGG pathway).

3.4. Construction of a PPI Network and Identification of
Clusters. A PPI network of 26 progression-related DE IRGs
was constructed by the STRING tool and was visualized
via the Cytoscape software, with 118 nodes and 705 edges
(Figure 4(a)). The median degree, as the threshold of PPI
network, was 11.94 calculated by the CentiScaPe 2.2 plug-
in. Subsequently, a total of four closely connected clusters
were discovered (Table 1), with a score more than 6.0 using
the MCODE algorithm, where the parameters of degree cut-
off, node score cutoff, k-score, and max. depth were set to
2.0, 0.2, 2.0, and 100, respectively (Figures 4(b)–4(e)). Ulti-

mately, we have identified five core DE IRGs (including
VEGFA, SOCS3, THBS1, SPP1, and TGFB2 genes) with a
degree more than 12 in clusters A and B, which met the
requirements mentioned above. Additionally, GOChord dia-
grams disclosed that most of core DE IRGs were enriched in
the positive regulation of epithelial cell migration (BP,
Figure 4(f)) and extracellular matrix binding and cytokine
activity, as well as receptor ligand activity (MF, Figure 4(g)).

3.5. Evaluation of the Impact of Core DE IRGs on Glioma
Prognosis. Survival curves of five core DE IRGs indicated
that high levels of core DE IRGs were associated with shorter
OS of glioma patients (Table 2, Figure 5, P < 0:0001). Addi-
tionally, the 5-year survival rates of patients with overex-
pressed VEGFA, SOCS3, THBS1, SPP1, and TGFB2 genes
in KM survival curves separately were 20.38%, 23.85%,
29.61%, 24.27%, and 21.93% based on the TCGA cohort,
whereas in the CGGA dataset, for patients with high expres-
sion levels of VEGFA, SOCS3, THBS1, SPP1, and TGFB2
genes, the 5-year survival rates were 33.70%, 30.20%,
36.70%, 38.30%, and 37.60%, respectively (Table 2).

3.6. Establishment of the IRRS Model. These core DE IRGs
were used to perform univariate Cox regression analysis,
screening genes with a P value less than 0.05, which were
included for conducting multivariate Cox regression analysis
via the AIC algorithm (the smallest value of 2753.8) for
establishment of a prognostic model. Finally, we constructed
an IRRS model composed of four DE IRGs via the following
formula: risk score = 0:20365 ×VEGFA + 0:12448 × SOCS3
+ 0:26231 × SPP1 + 0:12930 × TGFB2. And C-index was
0.811 (95% CI: 0.786-0.836) for the IRRS model, showing
the superiority of this model for predicting the probability
of OS in glioma population (Table 3). Subsequently, we used
diagrams of survival status’ distribution and risk score of
each glioma patient, as well as four gene expression heat
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Figure 1: The flow chart of the present study.
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maps to illuminate the IRRS model’s role in glioma patients
(Figure 6(a)). Further evidence implied that the areas under
ROC curves for evaluating 1-year, 3-year, and 5-year OS
were 0.86, 0.855, and 0.812, respectively (Figure 6(b)). The
optimal cutoff value of the risk score for forecasting the 5-
year survival in ROC curves was 0.87894, which was used
to classify glioma patients into high- and low-risk popula-
tions and then generate a survival curve, revealing that the
5-year survival rate was merely 14.30% in the high-risk
group (Figure 6(c)). As is shown in Table 4, the correlations
between the risk score and clinicopathological characteristics
were described. Also, univariate and multivariate Cox
regression analyses based on the risk score and clinical char-
acteristics indicated that this IRRS model was able to be an
independent prognostic factor (Figure 6(d)), with an HR
value of 1.89 (95% CI: 1.252-2.85, P = 0:0024) (Table 5).
Due to the trait of gender showing no statistical difference
in univariate Cox regression analysis (HR = 1:26, 95% CI:

0.986-1.61, P = 0:0645), we excluded the factor of gender;
then, we included the rest of the indicators to perform mul-
tivariate Cox regression analysis. Furthermore, gliomas’
grade was found to be a risk factor of glioma patients
(HR = 2:54, 95% CI: 1.750-3.69, P < 0:001). Also, IDH
wild-type also was characterized by an independent prog-
nostic value for glioma patients (HR = 2:70, 95% CI: 1.700-
4.28, P < 0:001).

3.7. Validation of the IRRS Model. The CGGA cohort was
selected as an external validation set. The survival status of
each patient, their risk scores’ distribution, and the heat
map of four genes are shown in Figure 7(a). Similarly, the
areas under the curve (AUC) of the risk score at 1-year, 3-
year, and 5-year time points of ROC curves were 0.715,
0.772, and 0.759, respectively (Figure 7(b)). Also, the opti-
mal cutoff value of 1.27, calculated by the “survivalROC”
package, divided patients into high- and low-risk groups;
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Figure 2: Weighted gene coexpression network analysis. (a) Identification of the soft threshold power on the basis of the criteria of the scale-
free network. The left panel shows the relationship between the scale-free fit index (y-axis) and soft threshold power (x-axis). And the right
panel shows the impact of soft threshold power (x-axis) on the mean connectivity (degree, y-axis). (b) Cluster dendrogram of gene
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then, the survival curve elucidated that the 5-year survival
rate was merely 29.80% in high-risk glioma patients
(Figure 7(c)). Meanwhile, the IRRS model was demonstrated
that it can become an independent prognostic indicator
(HR: 2.17, 95% CI: 1.493-3.14, P < 0:0001, Figure 7(d)).

3.8. Development of a Nomogram. A nomogram was erected
to predict 1-year, 3-year, and 5-year OS of glioma patients
via combing the IRRS prognostic model and significant clin-
ical characteristics (Figure 8(a)), which appeared to be con-
ducive to clinical use. Furthermore, calibration curves

substantiated a superior consistency between predicted and
observed values at probabilities of 1-year, 3-year, and 5-
year OS of the nomogram, as described in Figure 8(b).

3.9. Comparison with Other Prognostic Models of Glioma.
Via searching related literature about glioma’s prognostic
models, we compared these models with this IRRS model
(Table 6). Our model had moderate accuracy with AUC of
1 year, 3 years, and 5 years more than 0.70 both in the
TCGA and CGGA databases. Despite the presence of higher
accuracy in other models, their models were composed of
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Figure 3: Identification of DE IRGs and functional enrichment analyses. (a) The clustering heat map of five DE IRGs. The row and column
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TGFB2: transforming growth factor beta 2; VEGFA: vascular endothelial growth factor A; SPP1: secreted phosphoprotein 1; GO: Gene
Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes.
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Figure 4: Continued.
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Figure 4: Construction of a PPI network, identification of clusters, and GOChord plot for core DE IRGs. (a) PPI network with 118 nodes
and 705 edges, with the red and green representations of upregulated and downregulated DEGs, respectively. (b) Cluster A, (c) cluster B, (d)
cluster C, and (e) cluster D. GOChord plot for five core DE IRGs in the (f) “BP” category and (g) “MF” category. PPI: protein-protein
interaction; DEGs: differentially expressed genes; DE IRGs: differentially expressed immune-related genes; BP: biological process; MF:
molecular function.

Table 1: Clusters of PPI network using the MCODE algorithm.

Cluster Nodes Edges Score Gene symbol

A 18 153 18
F8, FIGF, TGFB1, VEGFB, TIMP1, EGF, TGFB2, TGFB3, IGF1, VEGFC, HGF, THBS1, ALB, FN1, AHSG,

VEGFA, PDGFB, and VWF

B 16 58 7.733
CYR61, CUL5, SOCS3, IL6, TCEB1, IGFBP1, IGFBP3, IGFBP5, RBX, SPP1, CUL2, IGFBP4, VHL, TCEB2,

SOCS2, and RNF7

C 15 52 7.429
PLCG1, PDGFRB, STAT5B, SYK, FLT1, VAV1, PGF, KDR, LCP2, FYN, STAT5A, GAB1, STAT1, PTPN11,

and EGFR

D 6 15 6 RAMP1, RAMP2, ADM, CALCRL, RAMP3, and CALCA

PPI: protein-protein interaction; MCODE: molecular complex detection; bold texts indicate differentially expressed genes in the PPI network.

Table 2: The hazard ratio of the five DE IRGs for evaluating the impact on gliomas’ survival.

TCGA cohort CGGA cohort

Genes HR (95% CI)
5-year survival rates (%)

HR (95% CI)
5-year survival rates (%)

Low High P value Low High P value

VEGFA 4.03 (3.16-5.15) 67.20 20.38 <0.0001 2.62 (1.99-3.45) 67.40 33.70 2.383E -12

SOCS3 4.26 (3.35-5.43) 65.60 23.85 <0.0001 3.70 (2.80-4.89) 71.40 30.20 <0.0001
THBS1 2.93 (2.31-3.72) 59.80 29.61 <0.0001 2.25 (1.71-2.97) 64.70 36.70 3.727E -09

SPP1 3.80 (2.98-4.85) 65.50 24.27 <0.0001 2.21 (1.68-2.90) 63.50 38.30 1.421E -08

TGFB2 4.64 (3.64-5.92) 67.60 21.93 <0.0001 2.26 (1.72-2.97) 65.00 37.60 6.757E -09

TCGA: The Cancer Genome Atlas; CGGA: Chinese Glioma Genome Atlas; HR: hazard ratio; VEGFA: vascular endothelial growth factor A; SOCS3:
suppressor of cytokine signaling 3; THBS1: thrombospondin 1; SPP1: secreted phosphoprotein 1; TGFB2: transforming growth factor beta 2; bold texts
indicate statistically significant difference.
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Figure 5: Survival curves uncover the relationships between five core DE IRGs and glioma patients’ survival in the TCGA cohort: (a)
VEGFA (HR = 4:03, 95% CI: 3.16-5.15, P < 0:0001), (b) SOCS3 (HR = 4:26, 95% CI: 3.35-5.43, P < 0:0001), (c) THBS1 (HR = 2:93, 95%
CI: 2.31-3.72, P < 0:0001), (d) SPP1 (HR = 3:80, 95% CI: 2.98-4.85, P < 0:0001), and (e) TGFB2 (HR = 4:64, 95% CI: 3.64-5.92, P < 0:0001
). DE IRGs: differentially expressed immune-related genes; TCGA: The Cancer Genome Atlas; VEGFA: vascular endothelial growth
factor A; SOCS3: suppressor of cytokine signaling 3; THBS1: thrombospondin 1; SPP1: secreted phosphoprotein 1; TGFB2: transforming
growth factor beta 2.

Table 3: Multivariate Cox regression analysis.

Gene symbol Description Coefficient HR 95% CI P value

VEGFA Vascular endothelial growth factor A 0.20365 1.23 1.12-1.34 1:02E − 05∗∗∗

SOCS3 Suppressor of cytokine signaling 3 0.12448 1.13 1.02-1.25 0:0165∗

SPP1 Secreted phosphoprotein 1 0.26231 1.30 1.20-1.41 1:10E − 09∗∗∗

TGFB2 Transforming growth factor beta 2 0.1293 1.14 1.02-1.27 0:0168∗

HR: hazard ratio; ∗∗∗ and ∗ shows P value less than 0.01 and 0.05, respectively; bold texts indicate statistically significant difference.
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more than ten genes, which restricted their widespread
application.

4. Discussion

With the increasing significance of IRG signatures on
tumors’ prognosis [29, 77, 78], it is imperative to throw light

on their prognostic value for tumors. In our present study,
four progression-related DE IRG (including VEGFA, SOCS3,
SPP1, and TGFB2 genes)constituting a signature can per-
form risk stratification for glioma patients and disclosed that
patients with high risk seemed to have an approximate
14.3%-29.8% 5-year survival rate. Besides, we speculated that
these overexpressed core genes might participate in the
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Figure 6: Establishment of an IRRS model in the TCGA cohort. (a) The distribution of risk score in glioma patients based on the IRRS
model and survival status of each glioma patient, as well as a heat map of four DE IRG expressions in high- and low-risk groups. (b)
ROC curves at 1-year (AUC: 0.86), 3-year (AUC: 0.855), and 5-year (AUC: 0.812) time points for predicting its prognostic performance
in patients with glioma. (c) Survival curve reveals high-risk score patients associated with unfavorable outcome, with a 5-year survival
rate of roughly 14.3%. (d) Multivariate Cox regression analysis discovers the potentiality of this IRRS model as an independent
prognostic factor (HR = 1:89, 95% CI: 1.252-2.85, P = 0:0024). IRRS: immune-related risk score; TCGA: The Cancer Genome Atlas; DE
IRGs: differentially expressed immune-related genes; AUC: area under the curve; OS: overall survival; ROC: receiver operating characteristic.

10 Computational and Mathematical Methods in Medicine



dismal prognosis of patients suffering from glioma via the
extracellular matrix (ECM) binding’s molecular function.
ECM functions as a pivotal role in communicating with a vari-
ety of cell types, such as fibroblasts, immune cells, endothelial

cells, epithelial cells, and pericytes, via all sorts of cell surface
receptors, for regulating their functions and behaviors [79].

VEGFA, called vascular endothelial growth factor A,
belongs to the PDGF/VEGF growth factor family and plays

Table 4: The correlations between the risk score and clinicopathological characteristics.

Characteristics
TCGA cohort (n = 688) CGGA cohort (n = 422)

High risk Low risk P value High risk Low risk P value

Age P < 0:0001 P < 0:0001
<60 189 342 159 203

≥60 120 37 46 13

NA — — 1 —

Gender 0.8164 0.4308

Female 131 165 83 96

Male 178 214 123 120

Tumor grade P < 0:0001 P < 0:0001
Low 149 374 93 189

High 160 5 113 27

IDH status P < 0:0001 P < 0:0001
Mutation 78 356 66 142

Wild-type 223 21 137 38

NA 8 2 3 36

MGMT promoter status P < 0:0001 0.2748

Methylation 148 339 90 107

Unmethylation 124 39 76 70

NA 37 1 40 39

TCGA: The Cancer Genome Atlas; CGGA: Chinese Glioma Genome Atlas; IDH: isocitrate dehydrogenase; MGMT: O-6-methylguanine-DNA
methyltransferase; NA: not available; bold texts indicate statistically significant difference.

Table 5: Univariate and multivariate Cox regression analyses for the IRRS model and clinical traits.

Variables
Univariate cox analysis Multivariate cox analysis

TCGA CGGA TCGA CGGA
HR

(95% CI)
P value

C-index
(95% CI)

HR
(95% CI)

P value
C-index
(95% CI)

HR
(95% CI)

P
value

C-index
(95% CI)

HR
(95% CI)

P value
C-index
(95% CI)

Age
4.89

(3.772-
6.33)

<0.0001
0.671
(0.640-
0.702)

3.15
(2.269-
4.39)

8.25E
-12

0.581
(0.554-
0.608)

2.02
(1.450-
2.81)

3.20E
-05

0.847
(0.823-
0.871)

1.21
(0.821-
1.79)

0.3349

0.765
(0.732-
0.798)

Gender
1.26

(0.986-
1.61)

0.0645
0.533
(0.500-
0.566)

1.16
(0.875-
1.53)

0.309
0.506
(0.471-
0.541)

— — — —

Grade
9.23

(7.095-
12.01)

<0.0001
0.736
(0.709-
0.763)

4.20
(2.851-
6.17)

3.43E
-13

0.638
(0.609-
0.667)

2.54
(1.750-
3.69)

9.50E
-07

3.05
(1.916-
4.86)

2.61E -06

Risk
score

6.53
(4.960-
8.59)

<0.0001
0.743
(0.719-
0.767)

3.85
(2.857-
5.19)

<0.0001
0.661
(0.630-
0.692)

1.89
(1.252-
2.85)

2.40E
-03

2.17
(1.493-
3.14)

4.63E -05

IDH_
status

8.76
(6.708-
11.43)

<0.0001
0.782
(0.758-
0.806)

4.42
(3.278-
5.96)

<0.0001
0.699
(0.672-
0.726)

2.70
(1.700-
4.28)

2.51E
-05

2.85
(1.966-
4.14)

3.46E -08

MGMT_
status

3.17
(2.430-
4.13)

<0.0001
0.654
(0.619-
0.689)

1.36
(1.009-
1.82)

0.0434
0.528
(0.489-
0.567)

1.29
(0.938-
2.78)

0.1168
1.20

(0.884-
1.64)

0.2389

HR: hazard ratio; IRRS: immune-related risk score; TCGA: The Cancer Genome Atlas; CGGA: Chinese Glioma Genome Atlas; IDH: isocitrate dehydrogenase;
MGMT: O-6-methylguanine-DNA methyltransferase; bold texts indicate statistically significant difference.
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an essential part in inducing neovascularization [80] and
promoting endothelial cell proliferation and migration. For
example, the enzyme for degrading ECM can release active
fragments from the matrix substance and activate growth
factors, including the heparin-binding epidermal growth
factor, insulin-like growth factor, epidermal growth factor,
VEGF, and fibroblast growth factor-2, not only promoting
the growth but also propelling invasion and neovasculariza-
tion of tumors [81, 82]. Also, VEGFA can act as a crucial

regulator of the cancer-immune circulation via generating
considerable modifications, inducing immune tolerance
and causing tumor immune evasion. Furthermore, soluble
proteins coded by the VEGFA gene were involved in the
mechanism of inducing angiogenesis and immunosuppres-
sive responses in gastric cancer [83]. In addition, Hatva
et al. [84] measured the expression of VEGF in both the nor-
mal brain vessel system and glioma cells; then, they con-
cluded that VEGF was manifestly overexpressed in
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Figure 7: Validation of the IRRS model in the CGGA dataset. (a) The distribution of risk score, survival status of every patient with glioma,
and heat map of four DE IRGs. (b) ROC curves of this IRRS prognostic model for evaluating the predictive probability for gliomas’ 1-year
(AUC: 0.715), 3-year (AUC: 0.772), and 5-year (AUC: 0.759) OS. (c) KM curve indicates glioma patients with high risk has dismal
prognosis, with 5-year survival rate of nearly 29.8%. (d) Multivariate Cox regression analysis for the risk score and clinical characteristics
denotes a superior prognostic value of the IRRS model for glioma patients (HR = 2:17, 95% CI: 1.493-3.14, P < 0:0001). IRRS: immune-
related risk score; CGGA: Chinese Glioma Genome Atlas; DE IRGs: differentially expressed immune-related genes; AUC: area under the
curve; OS: overall survival; KM: Kaplan-Meier; ROC: receiver operating characteristic.
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malignant glioma cells and their corresponding receptors
were induced, which played a cardinal role in the angiogen-
esis of tumors. Besides, Zhang et al. [85] found that escala-
tion of VEGFA participated in the progression of glioma
and lowered patients’ OS. Additionally, a high level of
VEGFA was relevant to hypoxia, angiogenesis, and immune
suppression of the tumor microenvironment (TME) [86],
which elaborated the mechanism of tumors’ innate resis-
tance to ICIs and uncovered that upregulated VEGFA
enhanced the malignancy of tumor cells [87]. Some evidence
indicated that a high level of VEGFA had the potentiality of
facilitating treatment efficacy based on target therapy. Com-
pared to monotherapy, in the bearing-tumor mice without
high expression of VEGFA, combination treatment showed
no synergistic effect in antitumor efficacy. Surprisingly, in
treatment of tumors with overexpressed VEGFA, antiangio-
genesis therapies have transformed the immunosuppressive
TME and enhanced the effects of ICIs [87]. Thus, VEGFA
can serve as not only a prognostic biomarker for predicting
gliomas’ prognosis but also a potential immunotherapeutic
target in the near future.

SOCS3, suppressor of cytokine signaling 3, is one of the
most potent members of the SOCS family and encodes a
group of STAT inhibitors induced by STAT, which contains
a motif of the kinase-inhibitory region (KIR) and directly
inhibits signal transduction via suppressing the Janus kinase
(JAK) catalytic activity [88, 89]. To our knowledge, suppres-
sive SOCS3 is a negative modulator of cytokine signaling via
directly inhibiting JAKs, functioning as a key regulator of the
immune system [90]. Besides, in the central nervous system,
the expressed process of IFN-β-induced SOCS3 in astrocytes
depended on the activation of STAT3. Destruction of the
expression of SOCS3 caused a great deal of inflammatory
responses and promoted the migration of microglial and T
cells [91]. Shi et al. [92] revealed that the signaling pathway
of ER-JAK2/STAT3/SOCS3 was activated by bisphenol F,
which propelled the polarization of macrophages to the pro-
inflammatory M1 subtype. Additionally, McFarland et al.
[93] found that myeloid cell population without SOCS3
delayed the growth of intracranial tumors and raised sur-
vival rates in the orthotopic glioma-bearing mice. Also, Sheu
et al. have found a novel transcriptional mechanism of ECM

accumulation induced by high glucose. Specifically, high glu-
cose enhanced SOCS3 expression via activating PI3K and
STAT1/3, which produced a multitude of cascade reactions
to form the ECM [94]. Therefore, we believe that SOCS3 will
be a promising prognostic biomarker of patients with
glioma.

SPP1, a secreted phosphoprotein 1, also called osteopon-
tin (OPN), encodes the chemokine-like, calcified ECM-
associated proteins. It plays a pivotal role in regulating
immune functions and participating in adhesion, remodel-
ing ECM, proliferation, and angiogenesis, as well as metasta-
sis of tumors [95, 96]. Saitoh et al. [97] demonstrated that
OPN had a close relation to glioma’s malignancy. OPN is
one of the most significant components of the ECM, which
is involved in the regulation of matrix interactions and cell
adhesion. Also, OPN was able to interact with ECM ele-
ments, such as collagen, fibronectin, and calcium ion [98].
Besides, Friedmann-Morvinski et al. [99] indicated that
silencing of OPN significantly exerted influence on the cell
cycle and WNT as well as focal adhesion signaling pathways
in GBM patients. At the same time, they have drawn a con-
clusion that OPN serves a crucial role in cell dedifferentia-
tion during the formation of tumors. As a consequence,
inhibition of OPN might be the potential target for the treat-
ment of GBM. Also, OPN was overexpressed in almost 90%
GBM patients, and a high level of OPN was associated with
tumor malignancy, where OPN recruited neutrophils and
macrophages, inducing tumor cell and leukocyte migration
[100]. Similarly, macrophages were recruited by OPN to
the site of GBM, implying that OPN acted as a crosstalk
between glioma cells and the innate immune system. Thus,
OPN could be considered to be an outstanding therapeutic
target [101].

TGFB2, transforming growth factor beta 2, encodes the
ligands of the TGF-beta super-family’s proteins. These
ligands bind a variety of TGF-beta receptors, leading to
recruiting SMAD transcription factors, which modulate gene
expressions. Chen et al. [102] found that malignant glioma
cells were able to regulate some adhesion molecules (such
as VCAM-1) via secreting TGF-beta2 and releasing the
tumor necrosis factor (TNF) receptor. Of note, Corbet
et al. [103] demonstrated that TGF-beta2 was the main
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driving force of the reconstruction of lipid metabolism pro-
moted by tumor acidosis and was essential to support energy
requirements of cancer cells’ invasion. Moreover, they also
found that acidosis-induced TGF-beta2 activation promoted
partial epithelial-to-mesenchymal transition (EMT) and
fatty acid metabolism in various original tumor cells, where
the latter supported the acetylation of Smad2. Similarly,
TGF-beta2 activated the autophagy of human glioma cell
lines via the Smad and non-Smad pathways, facilitating gli-
oma cell invasion, where epithelial-interstitial transforma-
tion and metabolic alterations were vital for glioma
progression [104]. Additionally, Xiao et al. [105] showed
that TGF-beta2 functioned as a key factor influencing
immune cell recruitment and infiltration to the gastric
tumors’ site. Therefore, TGF-beta2 may be regarded as a
valuable prognostic biomarker for tumors.

There were some advantages in the present study. First,
we adopted the top-ranking 5000 gene expression values
based on the MAD algorithm for performing WGCNA,
avoiding utilizing DEGs, which was not recommended by
the official website. Second, we also removed the batch-
batch difference and performed differential expression anal-
ysis using the integrated transcriptome analysis based on
four GEO datasets, which enabled our results to be more
reliable. However, the limitations also need to be given more
importance. Given that glioma tissues were difficult to col-
lect, it is challenging to perform experimental validation in
gene expressions. Furthermore, it is also rather restricted to
construct a model of glioma progression using glioma cell
lines for our laboratory. Finally, the specific mechanism
and interrelationship of core IRGs in the IRRS model
deserve to be further investigated.

5. Conclusions

Taken together, in the present study, we established an IRRS
prognostic model, composed of VEGFA, SOCS3, SPP1, and
TGFB2 core DE IRGs, for risk stratification and survival pre-
diction for glioma patients. Additionally, glioma patients
with high risk stratified by this IRRS prognostic model pre-
sented a short survival time, which might be attributed to
the ECM signal pathway where those genes participate in.
However, a multitude of prospective studies and experi-
ments will be needed to verify our findings in the near
future.
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