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Variable selection and penalized regression models in high-dimension settings have become an increasingly important topic in
many disciplines. For instance, omics data are generated in biomedical researches that may be associated with survival of
patients and suggest insights into disease dynamics to identify patients with worse prognosis and to improve the therapy.
Analysis of high-dimensional time-to-event data in the presence of competing risks requires special modeling techniques. So
far, some attempts have been made to variable selection in low- and high-dimension competing risk setting using partial
likelihood-based procedures. In this paper, a weighted likelihood-based penalized approach is extended for direct variable
selection under the subdistribution hazards model for high-dimensional competing risk data. The proposed method which
considers a larger class of semiparametric regression models for the subdistribution allows for taking into account time-varying
effects and is of particular importance, because the proportional hazards assumption may not be valid in general, especially in
the high-dimension setting. Also, this model relaxes from the constraint of the ability to simultaneously model multiple
cumulative incidence functions using the Fine and Gray approach. The performance/effectiveness of several penalties including
minimax concave penalty (MCP); adaptive LASSO and smoothly clipped absolute deviation (SCAD) as well as their L2
counterparts were investigated through simulation studies in terms of sensitivity/specificity. The results revealed that sensitivity
of all penalties were comparable, but the MCP and MCP-L2 penalties outperformed the other methods in term of selecting less
noninformative variables. The practical use of the model was investigated through the analysis of genomic competing risk data
obtained from patients with bladder cancer and six genes of CDC20, NCF2, SMARCAD1, RTN4, ETFDH, and SON were
identified using all the methods and were significantly correlated with the subdistribution.

1. Introduction

The recent development of high-throughput biology pro-
vides powerful information about various phenotypic data
including patients’ survival times. One important task is to
select a small subset of genes that are most relevant to sur-

vival outcomes [1, 2]. By uncovering the relationship
between time to an event such as cancer and the expression
profiles, one hopes to achieve more accurate prognoses and
improved treatment strategies [3]. This issue is challenging
for two main reasons. First, the number of covariates in
microarray gene expression analysis or DNA sequencing
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data obtained from next-generation sequencing technology
commonly far exceeds sample size (p > >n). Second, the
availability and feasibility of standard analyses are severely
affected by the high possibility of potential collinearity
among different gene levels [2].

Variable selection techniques are powerful tools for
sparse modeling in high-dimensional regression problems
and finding the transcripts that most associate with the sur-
vival outcome, which aim to improve the predictive power
and interpretability of the resulting model [4]. They are well
developed in linear regression settings, and in recent years,
many of them have been extended to the context of censored
survival data [5]. For example, Cox-based methods utilizing
the LASSO penalization [6–9], the elastic net (ENET) [1, 10],
the nonconcave penalized likelihood approach [11], and
smoothly clipped absolute deviation (SCAD) [12] have been
proposed.

When data on patient survival time contains competing
events, such as ‘progression’ versus ‘death from noncancer
cause,’ often the standard analysis involves modeling the
cause-specific hazards functions of the different failure types
[13–15]. Nevertheless, “while the cause specific hazards is
useful for investigating the disease dynamics to get insights
in disease mechanisms and biological processes, it is less
appropriate for clinical decision support for which it is pref-
erable to consider the cumulative incidence probability, the
marginal probability of failure for a specific cause” [16].
Moreover, the effect of a gene signature on the cause-
specific hazards function of a particular failure type may be
very different from its effect on the corresponding cumula-
tive incidence function [13, 17, 18]. The synthesis interpreta-
tion of two cause-specific model fits is even more difficult in
a high-dimensional setting, as the list of selected genes
obtained from high-dimensional models are usually rather
unstable [19]. So, under the cause-specific hazards formula-
tion, it is not plausible to test the gene effects on the subdis-
tribution, and the issues of model selection and efficient
prediction cannot be directly addressed [13]. Some
approaches have been proposed to deal with this situation.
Fine and Gray [13] proposed a methodological framework
for a formal direct synthesis model, which is the hazards
attached to the cumulative incidence function. Their model
adapts the semiparametric Cox proportional hazards model
for the subdistribution hazard. “The method accommodates
time-varying covariate effects on the subdistribution hazards
and yields the usual nonparametric estimators in the absence
of z” [20]. As the subdistribution hazards relates directly to
the cumulative incidence function, only one model has to
be fitted for describing the cumulative incidence function
of the event of interest [19]. The estimation procedure in
the proportional subdistribution hazards regression pro-
posed by Fine and Gray [13] is based on a weighted partial
likelihood function. Scheike et al. [21] introduced another
approach to predict and model cumulative incidence proba-
bility by the direct binomial regression technique. They
showed that this model is comparable with the Fine and
Gray approach and can be fitted by standard packages.
Other approaches include Andersen and Klein [22], Klein
and Andersen [23], Fine [24], and Gerds et al. [25]. “None

of the above methods adapt easily to time-varying covariates,
which are most naturally accommodated in models for the
hazards function, as with survival data without competing
risks. Moreover, these methods do not reduce to the usual
nonparametric estimators without covariates” [20].

Recently, some efforts have been made related to variable
selection and direct modeling of cumulative incidence func-
tion for high-dimensional competing risk data including
[19], Ambrogi and Scheike [16], Hou et al. [26], Hou et al.
[27], Tapak et al. [28], Tapak et al. [29], Saadati et al. [30],
Gilhodes et al. [31], and Fu et al. [32] based on different set-
tings. None of the above approaches was likelihood-based
procedures. In this regard, Bellach et al. [20] introduced “a
weighted likelihood function that allows for a direct exten-
sion of the Fine and Gray model to a broad class of semi-
parametric regression models.” Considering this larger
class of semiparametric regression models for the subdistri-
bution is of particular importance, because the proportional
hazards assumption may not be valid in general [20], espe-
cially in the high-dimension setting. Also, by considering
this class of semiparametric regression models, the con-
straint of the ability to simultaneously model multiple
cumulative incidence functions using the Fine and Gray
approach is relaxed [20]. This model allows for time-
dependent covariate effects on the subdistribution hazards
as well [20]. Moreover, likelihood-based inference is permit-
ted [20]. On the other hand, the available packages include
“crrp” and “glmnet.” The current version 1.0 of “crrp” is
designed for low-dimensional competing risk data and the
“glmnet” provides only LASSO and elastic net penalties,
and it is not possible to use other sparse penalties like the
SCAD and the minimax concave penalty (MCP). Recently,
Kawaguchi et al. [33] provided a R package named
“fastcmprsk” for penalized variable selection with MCP,
SCAD, LASSO, and elastic net penalties for competing risks
based on the Fine and Gray model using subdistribution
hazards model. They studied the performance of their model
with p = 100 covariates and n = 1000 to 4000 sample sizes.
The aim of the present study is to propose a penalized
weighted nonparametric likelihood approach to
regularized-based variable selection for competing risk data
with high-dimensional covariates. This is the extension of
the [20] to the high-dimension setting. We consider three
popular penalties for individual variable selection: adaptive
LASSO (ALASSO), SCAD, and minimax concave penalty
(MCP). We also propose a group variable selection via elas-
tic net (ENET), SCAD-L2, and MCP-L2. The proposed
method, including the model, penalized likelihood approach,
and estimation procedure, are described in Section 2. In Sec-
tion 3, simulation studies are presented. An illustrative
example using bladder cancer data is provided in Section 4.
Some discussions are provided in Section 5.

2. Proposed Method

2.1. General Subdistribution Hazards Model. Following nota-
tions used by Fine and Gray [13], let Ti and Ci denote the
failure time and the censoring time of the ith individual,
respectively, with Xi = Ti ∧ Ci as the observed time, and Δi
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= IfTi ≤ Ci ∧ τg is the noncensoring indicator (τ is the max-
imum time of the study). Furthermore, εi ∈ f1,⋯, Kg spec-
ifies the potential type of the failure, and ZiðtÞ is a d × 1
possibly time-dependent covariate vector of bounded varia-
tion [13].

The focus of the present study is on modeling the cumu-
lative incidence function for failure from cause 1, F1ðt ; zÞ
= PðT ≤ t, ε = 1 ∣ zÞ. To estimate F1, the modeling of the
subdistribution hazards for the event of interest was pro-
posed by Fine and Gray [13] which leads to direct estimating
of F1 without simultaneous estimating subdistribution func-
tions corresponding to other failure types [34]. Specifically,
the subdistribution hazards of the first event type are defined
as follows:

α1 t ; zð Þ = lim
Δt⟶0

1
Δt

P t < T ≤ t + Δt, ε = 1 Tj ≥ t ∪ T ≤ t ∩ ε ≠ 1ð Þ, zð Þ:
ð1Þ

Considering AðtÞ as the cumulative subdistribution haz-
ard, Bellach et al. [20] proposed the following general model
for it:

A tð Þ = g
ðt
0
eβ

TZ sð ÞdA0 sð Þ
� �

, ð2Þ

where β ∈ Rd stands for the regression parameters and A0
stands for an unspecified increasing function. Also, g is a
thrice differentiable function which is strictly increasing
and continuous with gð0Þ = 0, g′ð0Þ > 0, and gð∞Þ =∞.
For other regularity conditions, see [20]. These conditions
guarantee the existence of the weighted nonparametric max-
imum likelihood estimations. The gð:Þ can have different
forms including gðxÞ = fð1 + xÞρ − 1g/ρ for ρ ≥ 0 (the class
of Box-Cox transformation models) and gðxÞ = log ð1 + rxÞ
/r for r ≥ 0 (the class of logarithmic transformation models)
[20]. Both links result in the Fine and Gray model as a spe-
cial case (let ρ = 1 in the first one and r⟶ 0 in the second
link function).

2.2. Penalized Weighted Nonparametric Maximum
Likelihood Estimation. Assume that there are no tied event
times. With NðtÞ =∑n

i=1NiðtÞ (whereNiðtÞ = IfTi ≤ t, εi = 1g
) as the counting process of the event of interest and YðtÞ
=∑n

i=1YiðtÞ as the at risk indicator, the weighted log-
likelihood function under the general semiparametric
regression model is as follows:

l β, A0ð Þ = 〠
n

i=1

ðτ
0
log eβ

TZi tð Þα0 tð Þg′
ðt
0
eβ

TZi uð ÞdA0 uð Þ
� �� �

I Ci ≥ tð ÞYi tð ÞdNi tð Þ
�

−
ðτ
0
wi tð ÞYi tð Þeβ

TZi tð Þg′
ðt
0
eβ

TZi uð ÞdA0 uð Þ
� �

dA0 tð Þ
�
,

ð3Þ

where wiðtÞ is obtained by using inverse probability of cen-
soring weighting (IPCW) technique with wiðtÞ = IfCi ≥ Ti

∧ tg:ĜCðtÞ/ĜCðTi ∧ tÞ (where ĜC is the product limit esti-
mator of GCðtÞ = PðC > tÞ).

We now define the regularized estimator bβ as a solution
to the regularization problem:

bβ = arg max
β∈Rd

lpen β,A0ð Þ = l β, A0ð Þ + 〠
d

j=1
pλ βj

��� ���� �( )
, ð4Þ

where pλð:Þ is a penalty function that depends on the
regularization parameter λ ≥ 0. The cumulative baseline haz-
ards A0 is approximated by a sequence of step functions (A0

n)
with jumps at the observed events of interest. By considering
the 0 < ~T j < τ ; 0 < j < kðnÞ as the ordered times with kðnÞ be
the number of the events of interest and replacing A0 by A

0
n,

a modified penalized likelihood function, lpen,nðβ, A0
nÞ, is

obtained which is maximized to yield the regularized estima-
tors of the regression coefficients. In the maximization pro-
cess, the estimators of A0

n are obtained as A0
nf~T jg, where

A0
nf~T jg = A0

nð~T jÞ − A0
nð~T j−1Þ [20].

In the absence of covariates, a Nelson-Aalen type estima-
tor of the subdistribution hazards is obtained by using the
weighted likelihood function [20] which is derived from
the weighted Doob decomposition wiðtÞdNiðtÞ =wiðtÞYiðtÞ
αðtÞdt +wiðtÞdMiðtÞ, with

〠
n

i=1
wi tð ÞYi tð Þ = 〠

n

i=1
I Xi ≥ tf g + 〠

n

i=1
I Xi < t, Δi = 1, εi ≠ 1f g ĜC tð Þ

ĜC Ti ∧ tð Þ ,

ð5Þ

which is the expected #subjects in the pseudorisk set [20].
Also, by considering the jump sizes of the baseline as a
parameter, maximization of the following discretized log-
likelihood:

l = 〠
n

i:Δiεi=1
log An Xif g + βTZi Xið Þ + log g′ 〠

j : Xj≤Xi

Δjεj=1

eβ
TZi X jð ÞAn Xj

	 

0
BBBBB@

1
CCCCCA

0
BBBBB@

1
CCCCCA

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

− 〠
n

i=1
g 〠

k:Δkεk=1
I Xi ∧ τð Þ ≥ Xkð ÞeβTZi Xkð ÞAn Xkf g

 !
〠

i:Δiεi=2

� 〠
k:Δkεk=1

w∗
i Xkð ÞI Xi ≥ Xkð ÞeβTZi Xkð ÞAn Xkf gg′ 〠

j : Xj≤Xk

Δjεj=1

eβ
TZi X jð ÞAn Xj

	 

0
BBBBB@

1
CCCCCA

0
BBBBB@

1
CCCCCA,

ð6Þ

will yield the estimator of the parameters.
In this study, we only considered gðxÞ = x and gðxÞ =

log ð1 + xÞ which corresponds to the proportional subdistri-
bution hazards model and proportional odds model (never-
theless, the method can be extended to other link functions).
Then, the weighted log-likelihood function takes the
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following form:

l β, A0ð Þ = 〠
n

i=1

ðτ
0
log eβ

TZi tð Þα0 tð Þ
� �

I Ci ≥ tð ÞYi tð ÞdNi tð Þ
�

−
ðτ
0
wi tð ÞYi tð Þeβ

TZi tð ÞdA0 tð Þ
�
:

ð7Þ

This can be factorized into two parts including the Fine
and Gray partial likelihood function and a second term:

Ln =
Y

i:Δiεi=1

wi Xið ÞYi Xið ÞeβTZi Xið Þ

∑n
j=1wi Xið ÞYi Xið ÞeβTZi Xið Þ

" #

: 〠
n

j=1
wi Xið ÞYi Xið ÞeβTZi Xið ÞA0 Xif g

 !

× exp −
ðτ
0
wi tð ÞYi tð Þeβ

TZi tð ÞdA0 uð Þ
� �

:

ð8Þ

Without penalty term, for gðxÞ = x, estimation of param-
eters derived from the weighted log-likelihood function is
identical to the estimations derived from the Fine and Gray
model [20].

In this study, we considered the following penalties:

(1) The adaptive LASSO (Zou 2006): pλðjβjjÞ = λυjjβjj
(υj = 1/jbβ jj is a data-driven weight)

(2) The SCAD [11]: pλ′ðjβjjÞ = λIðjβjj ≤ λÞ + ð
ðαλ − jβjjÞ+/ðα − 1ÞÞIðjβjj > λÞ, where α > 2 is a tun-

ing parameter

(3) The MCP [35], pλ′ðjβjjÞ = ðλ − jβjj/γÞ+, where γ > 1 is
a tuning parameter

(4) The adaptive elastic net (AENET) (Zou 2006): pλðj
βjjÞ = λ1υjjβjj + λ2jβjj2 (υj = 1/jbβ jj is a data-driven
weight).

(5) The SCAD-L2 Zeng and Xie 2020 [36] and MCP-L2
penalties, where a L2 penalty is appended to the
SCAD and MCP penalties to induce grouping effect
in variable selection

Asymptotic properties of penalized estimators in differ-
ent contexts have been investigated by different studies,
and all the above penalties have been shown to enjoy the
oracle property [26, 27, 32], i.e., these penalties are consis-
tent in variable selection, and their estimators are asymp-
totically normal and unbiased. More explicitly, they work
as well as knowing the true model in advance. Fan and
Li [11] established the oracle property and the asymptotic
normality of a general class of nonconcave penalized max-
imum likelihood estimators with diverging number of
parameters and increasing sample size and provided con-
ditions to establish oracle property. In the framework of

the subdistribution hazards model, Fu et al. [32] showed
that ALASSO, SCAD, and MCP penalized estimators
obtained from the Fine and Gray model (as a special case
of model (2)) possess the oracle properties and the asymp-
totic normality. They established a theorem that if a pen-
alty term (say, pλnðjβjÞ) simultaneously satisfies the two

following conditions for an =max fpλn′ðjβj0jÞ: βj0 ≠ 0g and

bn =max fpλn″ðjβj0jÞ: βj0 ≠ 0g: (1) an =Opðn−1/2Þ and bn
⟶ 0 and (2) for any C > 0, lim

n⟶∞

ffiffiffi
n

p
inf

jβj≤Cn−1/2
pλn
′ðjβjÞ

⟶∞; then, the estimator enjoys the consistency in var-
iable selection and asymptotical normality and unbiased-
ness. As Bellach et al. [20] showed that the Fine and
Gray model is a special case of model provided in equa-
tion (2) (weighted NPMLE method), so the same results
hold here under regularity conditions for the weighted
likelihood.

2.3. Computational Algorithm. To compute the coefficients,
several algorithms have been suggested by different authors
to optimize equation (3), including the path algorithm [7]
and LARS [37]. However, the maximization in this paper
was utilized through the efficient algorithm proposed by
Goeman [38], which is a combination of gradient ascent
optimization with the Newton-Raphson algorithm. This
algorithm, a full gradient algorithm, follows the gradient of
the likelihood from a given starting value of β. But, unlike
the coordinatewise gradient approach, it uses the full gradi-
ent at each step instead of updating a single coordinate at a
time. Moreover, the algorithm automatically switches to a
Newton-Raphson algorithm when it gets close to the opti-
mum to avoid slow convergence.

The weighted log-likelihood function in equation (3) and
the ℓ2 penalty term in equation (4) are highly regular func-
tions in terms of being concave and at least twice differentia-
ble everywhere. The L1 penalty is less well-behaved as it is
concave and continuous but is only differentiable at points
with βi ≠ 0 for all i. Therefore, the conditions needed to
apply the gradient ascent algorithm with Newton-Raphson
steps need to be verified. Let us consider lpen′ ðβ ; νÞ = lim

t↓0
ð1/

tÞflpenðβ + tνÞ − lpenðβÞg and lpen″ ðβ ; νÞ = lim
t↓0

ð1/tÞflpen′ ðβ +

tνÞ − lpen′ ðβÞg be the directional derivative and directional
second derivative of the penalized likelihood defined in
equation (3) for every β in every direction ν ∈ Rd , respec-
tively. Then, the gradient can be defined for any β as the
scaled direction of the steepest ascent. Also, let νopt (opt

stands for optimum) be the direction that maximizes lpen′ ðβ
; νÞ among all v with kvk = 1, lpen′ is the derivative of penal-
ized log-likelihood.

We utilized the following algorithm, proposed by Goe-
man [38], to compute coefficients:

(1) Start with some β0 (e.g., obtained from fitting the
univariate Fine and gray model) and A0ðtÞ = n−1

(2) For steps m = 0, 1, 2,⋯, iterate
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Â
m+1ð Þ
0 Xj

	 

=
1
n

:Φn Ti,A∧0
n, β∧

mð Þ
� �h i−1

, ð9Þ

where

Φn X j, Â
0
n, β∧

mð Þ
� �

=
1
n
〠
n

k=1
I Xk ∧ τð Þ ≥ Xj

� 
eβ∧

mð ÞTZk X jð Þg

� ′
ðXk

0
eβ∧

mð ÞTZk uð ÞdÂ0
n uð Þ

� �

� − 1
n
〠
n

k=1
I Xk ≥ Xj

� 
eβ∧

mð ÞTZk X jð Þ
ðτ
Xj

�
g″ Ð Xk

0 eβ∧
mð ÞTZk uð ÞdÂ0

n uð Þ
n o

g′ Ð Xk
0 eβ∧

mð ÞTZk uð ÞdÂ0
n uð Þ

n o I Ck ≥ tð ÞdNk tð Þ

+
1
n

〠
n

k:Δkεk=1
I Xk ≤ Xj

� 
w∗

k Xj

� 
eβ∧

mð ÞTZk X jð Þg′

�
ðXj

0
eβ∧

mð ÞTZk uð ÞdÂ0
n uð Þ

� �

+
1
n

〠
n

k:Δkεk=1
I Xk ≤ Xj

� 
eβ∧

mð ÞTZk X jð Þ
ðτ
Xk

w∗
k tð Þeβ∧ mð ÞTZk tð Þg″

�
ðt
0
eβ∧

mð ÞTZk uð ÞdÂ0
n uð Þ

� �
dÂ

0
n tð Þ,

β m+1ð Þ =

β mð Þ + tedgeκ β mð Þ
� �

,

β
mð Þ
NR ,

β mð Þ + toptκ β mð Þ
� �

,

if topt ≥ tedge,

if topt ≤ tedge and sign β
m+1ð Þ
NR

� �
= − sign β mð Þ

+

� �
,

o:w,

8>>>><
>>>>:

ð10Þ

until convergence.
In the above algorithm κðβÞ = ðκ1ðβÞ,⋯, κdðβÞÞ′ is the

gradient vector and is calculated as

κ β mð Þ
� �

=
lpen′ β ; vopt
� 

⋅ vopt, if lpen′ β ; vopt
� 

≥ 0,

0, otherwise,

(

ð11Þ

and tedge = min
i
f−ðβi/κiðβÞÞ: sign ðβiÞ = − sign fκiðβÞg ≠ 0g

, topt = −ðlpen′ ðβ ; κðβÞÞ/lpen″ ðβ ; κðβÞÞÞ, βNR is the Newton-
Raphson estimator and sign ðβ+Þ = limψ↓0 sign ðβ + ψκðβÞÞ.

For the general form shown in equation (3),

2.4. Tuning Parameters. There are various ways to find opti-
mal penalized estimators including cross-validation (CV;
which requires randomly splitting the data), generalized
cross-validation (GCV), and Bayesian information criterion
(BIC). As the random nature of splitting the data in CV
makes the tuning parameters unstable [39] and the GCV
may lead to the overfitting effect on the resulting model
[35], we used the BIC, which has been shown to be consis-
tent in identifying the true model [39]:

BIC = −2l ~β, A0

� �
+ log nð Þs λð Þ, ð13Þ

where l is the weighted log-likelihood function, ~β maximizes
the weighted log-likelihood function (the penalized estima-
tor), and sðλÞ is the size of the model (the number of non-
zero coefficients) [35].

3. Simulation Study

The proposed variable selection method was investigated
through different simulation scenarios. Competing risk data

with two possible events (causes of failure) were simulated,
where the event of type 1 was the one of interest (I) and
the event of type 2 was the competing risk (C). To construct
a high-dimension setting, d = 5000 covariates were consid-
ered with n = f200, 400g observations. Among covariates,
similar to other studies, 5 informative covariates with effects
on the subdistribution hazards for events of type 1 and/or 2
were considered; the vector of regression parameters for
cause 1 was considered β1 = ð0:5, 0:5,−:05, 0:5,−0:5|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

5

,

0,⋯, 0|fflfflffl{zfflfflffl}
4995

Þ, and for cause 2, it was β2 = −β1. The values of

0.5 and -0.5 were considered for increasing and decreasing
effects, and for the covariates with no direct effect on the
hazards, the value of 0 was considered. In all scenarios,
covariates were generated from a multivariate normal distri-

bution with mean zero and covariance matrix ðρji−jjÞdi,j=1. We
considered ρ = f0:1, 0:5g as in Lin and Lv [4].

Following the strategy used by Fine and Gray [13], event
times were generated based on proportional subdistribution
hazards. To this end, after generating covariates, considering

∂lpen β, A0ð Þ
∂β

= 〠
n

i=1

ðτ
0
Zi tð Þg′

ðt
0
eβ

TZi uð ÞdA0 uð Þ
� �

+ βTZi tð Þg″
ðt
0
eβ

TZi uð ÞdA0 uð Þ
� �

I Ci ≥ tð ÞYi tð ÞdNi tð Þ
�

−
ðτ
0

wi tð ÞYi tð ÞZi tð Þeβ
TZi tð Þg′

Ð t
0e

βTZi uð ÞdA0 uð Þ
� �

+wi tð ÞYi tð Þeβ
TZi tð Þg″

Ð t
0e

βTZi uð ÞdA0 uð Þ
� �

wi tð ÞYi tð Þeβ
TZi tð Þg′ Ð t0eβTZi uð ÞdA0 uð Þ

� � dA0 tð Þ + pλn′ βj jð Þ:

ð12Þ
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k as the ratio of I/C, the subdistribution for the first event
(type 1) was generated as follows:

Pr Ti ≤ t, εi = 1 z ijð Þ = 1 − 1 − k 1 − exp −tð Þf g½ �
exp 〠

d

i=1
βi1z i

 !
,

ð14Þ

which is a unit exponential mixture, with mass 1 − k at ∞
when all covariates are zero. The subdistribution for the sec-
ond event type was generated using an exponential distribu-
tion with rate exp ð∑d

i=1βi1z iÞ by taking
Pr ðεi = 2 ∣ z iÞ = 1 − Pr ðεi = 1 ∣ z iÞ. Moreover, we considered
proportional odds model. So, in this setting, the subdistribu-

tion for the events was defined by F1ðt ∣ ZiÞ = exp ½k + log f
1 − exp ð−1Þg +∑d

i=1βi1z i�
ð1 + exp ½k + log f1 − exp ð−1Þg +∑d

i=1βi1z i�Þ
−1
. Censoring

times were generated from a uniform Uð0, aÞ distribution.
The value of a = 3 was selected to yield average censoring
rate for 40% of the observations. We also considered k = f
0:2, 0:5, 0:8g. Because the calculated estimations for the
coefficients were biased toward zero, we focused on the accu-
racy of variable selection (relevant covariates). Therefore,
variable selection was expressed in terms of the sensitivity
or the true positive rate (TPR; the number of correctly iden-
tified informative/relevant variables (true positives; variables
that associated with to the cumulative incidence function of
the event of interest, say event (1) divided by the total num-
ber of informative variables) and the false positive rate (FPR;
the number of unrelated variables chosen divided by the
total number of irrelevant variables) with respect to the
event of interest (e.g., event 1). For the sake of comparison,
the boosted subdistribution hazards regression model [19]
was considered and implemented in R package CoxBoost
[40]. The constant a in the SCAD and SCAD-L2 penalty
functions was fixed as a = 3:7.

Table 1: Results of the simulation studies for the Fine and Gray model with 5 informative variables (d = 5000) for ρ = 0:1 scenario. Values
shown are means (standard deviations) of each performance measure over 500 replicates (~40% censoring).

n
k = I/C 0.2 0.5 0.8

Method
No. selected
variables

TPR FPR
No. selected
variables

TPR FPR
No. selected
variables

TPR FPR

200

ALASSO 36.913 (5.119)
0.816
(0.161)

0.007
(0.005)

33.682 (2.255)
0.969
(0.075)

0.006
(0.004)

26.242 (1.796)
0.988
(0.047)

0.004
(0.003)

AENET 36.532 (4.503)
0.830
(0.174)

0.006
(0.004)

33.571 (1.909)
0.958
(0.089)

0.006
(0.004)

26.636 (1.808)
0.989
(0.046)

0.004
(0.004)

SCAD 37.684 (4.484)
0.858
(0.162)

0.007
(0.003)

35.414 (2.691)
0.972
(0.073)

0.006
(0.006)

25.054 (2.136)
0.993
(0.042)

0.004
(0.005)

SCAD-L2 37.190 (3.171)
0.867
(0.156)

0.006
(0.003)

35.960 (2.742)
0.960
(0.092)

0.006
(0.006)

25.935 (2.232)
0.994
(0.034)

0.004
(0.005)

MCP 27.401 (2.996)
0.860
(0.142)

0.004
(0.002)

25.125 (2.308)
0.975
(0.068)

0.004
(0.005)

23.634 (1.889)
0.994
(0.034)

0.004
(0.004)

MCP-L2 27.030 (3.103)
0.849
(0.149)

0.004
(0.003)

25.881 (2.115)
0.971
(0.079)

0.004
(0.004)

23.328 (1.643)
0.995
(0.031)

0.004
(0.004)

Boosting
(Binder)

41.750 (4.874)
0.899
(0.140)

0.007
(0.005)

39.940 (4.890)
0.987
(0.052)

0.007
(0.005)

38.272 (4.731)
1.000
(0.000)

0.007
(0.006)

Oracle 5.000 1.000 0.000 5.000 1.000 0.000 5.000 1.0000 0.000

400

ALASSO 34.871 (1.430)
0.963
(0.820)

0.006
(0.005)

31.846 (1.196)
1.000
(0.000)

0.005
(0.003)

24.572 (0.891)
1.000
(0.000)

0.004
(0.002)

AENET 34.181 (1.649)
0.972
(0.075)

0.006
(0.003)

31.701 (1.041)
0.999
(0.014)

0.005
(0.002)

24.631 (0.925)
1.000
(0.000)

0.004
(0.002)

SCAD 35.192 (1.821)
0.987
(0.053)

0.006
(0.003)

29.942 (1.679)
1.000
(0.000)

0.004
(0.004)

25.304 (1.260)
1.000
(0.000)

0.004
(0.003)

SCAD-L2 35.736 (1.805)
0.980
(0.067)

0.006
(0.005)

29.672 (1.470)
0.998
(0.020)

0.004
(0.003)

25.150 (1.164)
1.00

(0.000)
0.004
(0.003)

MCP 24.140 (1.580)
0.968
(0.073)

0.004
(0.003)

20.761 (1.227)
0.999
(0.014)

0.003
(0.002)

18.572 (1.228)
1.000
(0.000)

0.003
(0.002)

MCP-L2 24.162 (1.468)
0.972
(0.072)

0.004
(0.003)

20.661 (1.105)
0.998
(0.020)

0.003
(0.002)

18.381 (0.916)
0.999
(0.014)

0.003
(0.002)

Boosting
(Binder)

39.911 (5.256)
0.995
(0.031)

0.007
(0.005)

39.280 (4.874)
1.000
(0.000)

0.007
(0.005)

38.695 (4.965)
1.000
(0.000)

0.007
(0.004)

Oracle 5.000 1.000 0.000 5.000 1.000 0.000 5.000 1.00 0.00

TPR: true positive rate; FPR: false positive rate; n: sample size.
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The mean and standard deviation of different scenarios
(twelve scenarios) over 500 replicates were summarized in
Tables 1 and 2, respectively.

Table 1 shows the results for independent covariate
scenarios. As seen, ALASSO and AENET had a very close
performance in this setting and MCP and MCP-L2 out-
performed ALASSO and AENET in that they selected
sparser models with a better sensitivity and a greater
specificity or a lower FPR (a better ability in eliminating
irrelevant variables). Moreover, as expected due to the
similarity, SCAD, SCAD-L2, MCP, and MCP-L2 had
comparable performance, of which MCP and MCP-L2
selected a slightly sparser model than the SCAD and
SCAD-L2. Generally, all penalized estimators get at least
three out of the five relevant nonzero variables. For k =
0:2 and n = 200, the sensitivities are the lowest compared
with other scenarios. Considering TPR, Boosting outper-
formed the penalized methods, especially in the settings
k = 0:2. As the k increases from 0.2 to 0.8, the TPR of

the penalized methods became closer to TPR of the
Boosting method. On the other hand, considering FPR,
Boosting showed similar performance with the penalized
methods for the k = 0:2 setting. Nevertheless, as the k
increases from 0.2 to 0.8, the FPR of the penalized
methods decreases, while there was no change in the
FPR of Boosting. Simulation studies of other studies
[16] showed that the results of Boosting method is in line
with the nonconcave penalty of LASSO which tends to
include more irrelevant variables. Moreover, the “Cox-
Boost” package uses cross-validation method to choose
tuning parameters (a prediction-based criterion), which
predispose the method to include too many irrelevant
variables in LASSO type procedures [41, 42]. Moreover,
in general, for both n = 200 and n = 400 settings, it was
observed that the performance the MCP and MCP-L2 per-
formed best among the others, with a performance very close
to that of the oracle estimator especially when the ratio of I/C
is 0.8 (the lower rate of competing event). This finding was in

Table 2: Results of the simulation studies for the Fine and Gray model with 5 informative variables (d = 5000) for ρ = 0:5 scenario. Values
shown are means (standard deviations) of each performance measure over 500 replicates (b = 3: ~40% average censoring).

n
k = I/C 0.2 0.5 0.8

Method
No. selected
variables

TPR FDR
No. selected
variables

TPR FDR
No. selected
variables

TPR FDR

200

ALASSO 35.702 (1.969)
0.779
(0.136)

0.006
(0.004)

36.054 (2.027)
0.900
(0.116)

0.006
(0.004)

30.261 (2.202)
0.953
(0.085)

0.005
(0.005)

AENET 35.651 (1.766)
0.775
(0.163)

0.006
(0.003)

35.791 (1.745)
0.891
(0.124)

0.006
(0.004)

30.092 (1.584)
0.937
(0.101)

0.005
(0.003)

SCAD 36.763 (3.429)
0.740
(0.166)

0.007
(0.006)

36.723 (2.717)
0.908
(0.108)

0.006
(0.006)

27.101 (2.831)
0.940
(0.101)

0.004
(0.003)

SCAD-L2 35.742 (2.458)
0.795
(0.148)

0.006
(0.005)

36.783 (3.299)
0.896
(0.120)

0.006
(0.005)

26.511 (2.062)
0.946
(0.094)

0.004
(0.003)

MCP 26.234 (4.008)
0.690
(0.139)

0.004
(0.005)

25.870 (1.983)
0.847
(0.124)

0.004
(0.004)

24.384 (1.805)
0.922
(0.102)

0.004
(0.004)

MCP-L2 25.691 (2.124)
0.738
(0.133)

0.004
(0.005)

25.921 (2.146)
0.857
(0.137)

0.004
(0.004)

23.531 (2.654)
0.942
(0.099)

0.004
(0.004)

Boosting
(Binder)

40.524 (4.171)
0.966
(0.076)

0.007
(0.006)

39.447 (3.187)
0.994
(0.034)

0.007
(0.007)

38.602 (4.211)
0.990
(0.044)

0.007
(0.006)

Oracle 5.000 1.000 0.000 5.000 1.000 0.000 5.000 1.000 0.000

400

ALASSO 37.795 (1.436)
0.942
(0.108)

0.007
(0.003)

35.522 (0.999)
0.990
(0.031)

0.006
(0.002)

29.581 (0.923)
1.000
(0.020)

0.005
(0.002)

AENET 36.764 (1.534)
0.946
(0.093)

0.006
(0.003)

35.864 (1.137)
0.990
(0.044)

0.006
(0.003)

29.833 (1.234)
1.000
(0.000)

0.005
(0.002)

SCAD 36.510 (1.956)
0.908
(0.117)

0.006
(0.004)

31.754 (1.774)
0.979
(0.061)

0.005
(0.003)

26.813 (1.523)
0.999
(0.034)

0.004
(0.003)

SCAD-L2 35.722 (1.590)
0.902
(0.113)

0.006
(0.003)

31.122 (1.297)
0.988
(0.048)

0.005
(0.003)

26.181 (1.296)
0.999
(0.034)

0.004
(0.003)

MCP 25.553 (1.517)
0.874
(0.121)

0.004
(0.003)

22.701 (1.364)
0.963
(0.083)

0.004
(0.003)

20.455 (0.869)
0.992
(0.039)

0.003
(0.002)

MCP-L2 25.382 (1.388)
0.897
(0.115)

0.004
(0.003)

22.571 (0.987)
0.982
(0.057)

0.004
(0.003)

20.482 (1.020)
0.998
(0.020)

0.003
(0.002)

Boosting
(Binder)

39.452 (3.770)
0.994
(0.034)

0.007
(0.008)

37.752 (3.066)
1.000
(0.000)

0.006
(0.006)

38.330 (3.714)
1.00

(0.000)
0.007
(0.006)

Oracle 5.000 1.000 0.000 5.000 1.000 0.000 5.000 1.000 0.000

TPR: true positive rate; FPR: false positive rate; n: sample size.
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concordance with the results of Lin and Lv [4] where they pro-
posed penalized additive hazards models for survival data
analysis with one failure cause.

Table 2 shows the results for moderate correlation
between covariates (ρ = 0:5). Again, MCP and MCP-L2 out-
performed other methods in almost all scenarios and its per-
formance was closer to that of the oracle estimator,
especially when n = 400 and k = 0:8. As there was moderate
correlation between covariates, the AENET, SCAD-L2, and
MCP-L2 penalties showed a greater TPR compared with
the L1 penalties including ALASSO, SCAD, and MCP. For
all methods, the sensitivities increase and FPRs decrease as
k increases from 0.2 to 0.5 and 0.8. For n = 400, the average
number of selected variables decreases slightly and better
sensitivities were resulted in compared with n = 200. Com-
paring the results provided in Tables 1 and 2, it was revealed
that in the presence of moderate correlation compared with
low correlation, the TPRs diminish for all penalized models.
However, the Boosting method is almost robust to moderate
correlation.

We also conducted simulations with various regression
coefficients. So, β1 = ð0:2,−0:4, 0:5,−0:8, 0:6|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

5

, 0,⋯, 0|fflfflffl{zfflfflffl}
4995

Þ and

the place of nonzero elements of β2 was selected randomly,
while holding censoring rates and correlations constant.
Results were shown in supplementary file (Table S1).
According to the results, the selection results were robust.
These results were in accordance with the findings in Fu
et al. [32] and Zhang and Lu [43].

We also designed some scenarios for proportional odds
method with gðxÞ = log ð1 + xÞ. Table 3 shows the results of
the simulation studies for proportional odds model ðgðxÞ =
log ð1 + xÞÞ with 5 informative variables for ρ = 0:1 and ρ =
0:5, about 40% average censoring and k = I/C = 0:5. According
to the results, the performance of different penalties in the pro-
portional odds model was similar to those of the proportional
hazards and again the MCP and MCP-L2 outperformed the
ALASSO and AENET in terms of greater TPR and lower FPR.

To investigate the grouping effect or the performance
of the models in the presence of high correlations in

Table 3: Results of the simulation studies for proportional odds model (gðxÞ = log ð1 + xÞ) with 5 informative variables (d = 5000) for ρ
= 0:1 and ρ = 0:5 scenario. Values shown are means (standard deviations) of each performance measure over 500 replicates (b = 3: ~40%
average censoring; I/C = 0:5).

ρ = 0:1

No. selected
variables

ρ = 0:5

FDR
n = 200 n = 400 n = 200 n = 400

No. selected
variables

TPR FDR
No. selected
variables

TPR FDR TPR FDR
No.

selected
variables

TPR

ALASSO
37.233
(3.143)

0.972
(0.073)

0.006
(0.003)

32.445
(2.341)

1.000
(0.000)

0.005
(0.004)

38.113
(2.027)

0.903
(0.087)

0.006
(0.004)

33.271
(2.271)

0.996
(0.033)

0.006
(0.003)

AENET
37.523
(2.881)

0.970
(0.077)

0.006
(0.005)

32.611
(2.254)

1.000
(0.000)

0.005
(0.002)

35.792
(1.745)

0.902
(0.124)

0.006
(0.003)

34.215
(2.421)

0.995
(0.041)

0.006
(0.003)

SCAD
31.231
(2.779)

0.978
(0.067)

0.005
(0.004)

30.472
(2.471)

1.000
(0.000)

0.005
(0.002)

36.723
(2.717)

0.901
(0.108)

0.006
(0.005)

32.344
(2.622)

0.982
(0.031)

0.005
(0.003)

SCAD-
L2

32.485
(2.812)

0.979
(0.063)

0.005
(0.005)

30.285
(2.345)

0.999
(0.002)

0.005
(0.002)

36.785
(3.299)

0.903
(0.120)

0.006
(0.005)

33.426
(2.312)

0.990
(0.027)

0.006
(0.003)

MCP
27.131
(3.110)

0.980
(0.061)

0.004
(0.005)

24.634
(2.331)

1.000
(0.000)

0.004
(0.002)

25.872
(1.983)

0.907
(0.124)

0.004
(0.004)

25.121
(2.107)

0.990
(0.033)

0.004
(0.003)

MCP-L2
27.743
(3.103)

0.982
(0.060)

0.004
(0.005)

24.411
(2.262)

1.000
(0.000)

0.004
(0.002)

25.921
(2.146)

0.912
(0.137)

0.004
(0.004)

25.423
(1.998)

0.996
(0.024)

0.004
(0.003)

Table 4: Variable selection results (relative frequency of selection) for different methods for independent variables (~40% censoring) over
500 repetitions.

n = 200 n = 400
f = I/C Method X1 X2 X3 X4 X5 X6 FPR∗ X1 X2 X3 X4 X5 X6 FPR∗

0.5

ALASSO 500 500 0 400 500 0 0.006 500 500 0 450 500 0 0.006

AENET 500 500 500 500 500 500 0.006 500 500 500 500 500 500 0.006

SCAD 500 500 0 500 450 0 0.006 500 500 0 500 500 0 0.005

SCAD-L2 500 500 500 500 500 500 0.006 500 500 500 500 500 500 0.005

MCP 500 500 0 450 500 0 0.004 500 500 0 500 500 0 0.004

MCP-L2 500 500 500 500 500 500 0.004 500 500 500 500 500 500 0.004

Boosting (Binder) 500 500 0 500 500 0 0.007 500 500 0 500 500 0 0.006
∗Average false positive rate (FPR) across all simulations of selection of βj = 0, averaged across all j ∈ f7,⋯, 5000g.
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Table 5: Selected genes data by ENET, AENET, and boosting (from Binder et al.’s study) methods for progression or death from bladder
cancer event in bladder cancer data.

Gene ID
GenBank

accession no.
Symbol ALASSO AENET SCAD

SCAD-
L2

MCP
MCP-
L2

Boosting
Related to
cancer

SEQ162 XM_088569 PTGR1 ✓ ✓ ✓ ✓ Yes

SEQ164 XM_088569 PTGR1 ✓ ✓ Yes

SEQ213 NM_004358 CDC25B ✓ Yes

SEQ227 NM_007008 RTN4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ Yes

SEQ240 NM_016252 BIRC6 ✓ ✓ Yes

SEQ248 NM_032333 PRXL2A ✓ ✓ ✓ Yes

SEQ249 NM_053056 CCND1 ✓ Yes

SEQ264 NM_001168 BIRC5 ✓ Yes

SEQ265 NM_001168 BIRC5 ✓ Yes

SEQ279 XM_027898 PIF1 ✓ ✓ ✓ Yes

SEQ287 AK026169 SLC5A3 ✓ ✓ Yes

SEQ34 NM_000433 NCF2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ Yes

SEQ343 XM_085721 IL6STP1 ✓

SEQ347 NM_001129 AEBP1 ✓ ✓ ✓ ✓ ✓ Yes

SEQ377 NM_002664 PLEK ✓ ✓ ✓ ✓ ✓ ✓ Yes

SEQ392 NM_001752 CAT ✓ Yes

SEQ497 NM_004735 LRRFIP1 ✓ ✓ ✓ ✓ Yes

SEQ522 M55643 NFKB1 ✓ Yes

SEQ634 NM_004453 ETFDH ✓ ✓ ✓ ✓ ✓ ✓ ✓ Yes

SEQ648 NM_006225 PLCD1 ✓ ✓ Yes

SEQ650 NM_021173 POLD4 ✓ Yes

SEQ681 NM_001607 ACAA1 ✓ ✓ ✓ Yes

SEQ709 NM_000089 COL1A2 ✓ Yes

SEQ715 AA827892
cDNA clone

IMAGE:1367358 3′ ✓

SEQ776 NM_018695.1 ERBIN ✓ ✓ ✓ ✓

SEQ820 NM_005916 MCM7 ✓ ✓ ✓ Yes

SEQ833 NM_001255.1 CDC20 ✓ ✓ ✓ ✓ ✓ ✓ ✓ Yes

SEQ843 NM_000698.1 ALOX5 ✓ Yes

SEQ847 NM_018229.2 MUDENG ✓ Yes

SEQ919 NM_024665.2 IRA1 ✓ ✓ ✓

SEQ921 BE382685.1
cDNA clone

IMAGE:3627276 5′ ✓ ✓ ✓ ✓

SEQ940 NM_020159.1 SMARCAD1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ Yes

SEQ991 NM_007373.1 SHOC2 ✓ ✓ ✓

SEQ1028 NM_000228.1 LAMB3 ✓ Yes

SEQ1036 NM_012164.2 FBXW2 ✓ ✓ ✓ ✓ ✓ Yes

SEQ1037 NM_005127.2 CLEC2B ✓ ✓ ✓ Yes

SEQ1197 NM_003103.5 SON ✓ ✓ ✓ ✓ ✓ ✓ ✓ Yes

SEQ1224 NM_004060.3 CCNG1 ✓ ✓ ✓ ✓ ✓ Yes

SEQ1226 NM_001921.1 DCTD ✓ Yes

SEQ1262 NM_000875.2 IGF1R ✓ ✓ ✓ ✓ ✓ ✓ Yes

SEQ1284 NM_002757.2 MAP2K5 ✓ ✓ ✓ ✓ ✓ ✓ Yes

SEQ1325 NM_001085.2 SERPINA3 ✓ ✓ ✓ ✓ Yes

No. 18 19 26 22 20 21 12
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high-dimensional settings, we also considered high correla-
tions. In this regard, following the strategy considered by
Zeng and Xie [36], two groups were considered for infor-
mative variables, each including 3 variables as follows:

z i = Z1′ + ei, Z1′ ~N 0, 1ð Þ, i = 1, 2, 3,

z i = Z2′ + ei, Z2′ ~N 0, 1ð Þ, i = 4, 5, 6,

z i ~N 0, 1ð Þ i = 7,⋯, 5000

ð15Þ

with ei ~ i:i:d: Nð0, 0:01Þ, i = 1,⋯, 6.
The results were reported in terms of selection accu-

racy illustrated by the number of nonzero coefficients cor-
rectly identified (TPR) and the number of zero coefficients
misspecified as nonzero coefficients (FPR). Table 4 illus-
trates variable selection accuracy of different methods.
For noninformative variables, we summarized the results
as the average of FPR over 500 repetitions. From
Table 4, we see that, in all settings, the variables X1, X2,
and X5 were selected by all methods. In the presence of
high correlations, the rate of model misspecification was
high, which was due to the fact that the MCP, SCAD,
and ALASSO penalties and Boosting tend to select only
one variable from a group of variables that are highly cor-
related and it is not important which one is selected.
However, the three penalties of SCAD-L2, MCP-L2, and
AENET selected X3, X4, and X6 in addition to X1, X2,
and X5 in all settings indicating that they enjoy the group-
ing effect which has been discussed by Zou and Hastie
[44] and Huang et al. [45]. These findings were in concor-
dance with those of other studies with other responses [1].

4. Application to Bladder Cancer Data

We used a publicly available time-to-event dataset with
competing risks which corresponds to preprocessed 1381
custom platform microarray features (GEO with series
accession no.GSE5479) from patients with bladder cancer
to illustrate the proposed techniques. Bladder cancer is a
common malignant disease with two different forms includ-
ing non–muscle-invasive tumors (stages Ta and T1) and
muscle-invasive cancers (stages T2-T4) [46]. This dataset
includes information about a sample of n = 404 patients with
pTa and pT1 tumors, with no previous or synchronous
muscle-invasive tumors. In addition to gene expression mea-
surements, this dataset contains potentially important clini-
cal covariates including age, sex, stage (pTa versus pT1),
grade (PUNLMP/low versus high), and treatment. There
was complete information for only n = 301 patients, and
we limit our analysis to this subset. There were also two
competing events: time to progression or death from bladder
cancer (the event of interest) and death from other or
unknown causes. Progression or death from bladder cancer
and competing events were observed in 74 and 33 patients,
respectively. In addition, there was censoring for 194
patients [46].

The proposed method was applied to this microarray
bladder cancer data for ‘progression or death from bladder

cancer’ as the event of interest. Table 5 shows gene signa-
tures selected by each method. ALASSO, AENET, SCAD,
SCAD-L2, MCP, MCP-L2, and Boosting selected 18, 19,
26, 22, 20, 21, and 12 genes, respectively. As can be seen,
there are several genes that are related to bladder cancer bio-
logically. Among all genes selected, there were six genes of
CDC20, NCF2, SMARCAD1, RTN4, ETFDH, and SON
selected by all methods. Table 6 shows regression coefficients
of six common genes selected by all methods correlated with
bladder cancer patients’ subdistribution hazards. According
to the results, increasing the expression of CDC20 increases
the incidence of death from bladder cancer (or progression
of the disease) by 2.68 times. Moreover, increasing the
expressions of NCF2, ETFDH, and SON genes are positively
correlated with the incidence of death from bladder cancer.
On the other hand, increasing the expression of SMAR-
CAD1 and RTN4 decreases the incidence of death from
bladder cancer.

Electron transfer flavoprotein dehydrogenase (ETFDH),
a mitochondrial inner membrane protein, plays an essential
role in the electron transfer chain [47]. The expression level
of ETFDH correlates with overall survival in hepatocellular
carcinoma patients [48]. Reticulon-4 (RTN4) has an essen-
tial role in cancer development and progression. The expres-
sion level of RTN4 was associated with patients’ survival for
several cancers [49, 50]. Neutrophil cytosolic factor 2
(NCF2), as a novel target of P53, has a critical role in cancer
progression [51]. SON DNA-binding protein (SON) plays
role in mRNA transcription and pre-mRNA splicing.
Moreover, SON can control macrophage activities and cell
cycle progression [52]. A recent study by Furukawa et al.
indicated that SON has an essential role in pancreatic
cancer proliferation and tumorigenesis [53]. SMARCAD1
has a critical role in chromatin remodeling and control
gene expression. On the other hand, SMARCAD1 plays
an essential role in the homologous recombination (HR)
process for DNA double-strand break (DSB) repair.
Recent studies show that SMARCAD1 involve in the pro-
liferation and progression of pancreatic and breast cancers
[54, 55]. CDC20 (Cell Division Cycle 20) encodes a regu-
latory protein that is an essential cell cycle regulator.
Recent studies indicated that CDC20 dysregulation is cor-
related with tumor progression and prognosis in several
cancers [56].

Table 6: Regression coefficients of six common genes selected by
all methods correlated with bladder cancer patients’
subdistribution hazards.

Gene symbol Sequence Coefficient (SE) HR∗ P value

CDC20 SEQ833 0.986 (0.219) 2.680 <0.0001
NCF2 SEQ34 0.905 (0.194) 2.472 <0.0001
SMARCAD1 SEQ940 -0.808 (0.233) 0.446 <0.0001
RTN4 SEQ227 -0.823 (0.322) 0.439 0.011

ETFDH SEQ634 0.763 (0.321) 2.145 0.018

SON SEQ1197 0.734 (0.246) 2.083 0.003
∗HR: hazards ratio.
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5. Discussion and Conclusions

Unique challenges are created in statistics due to rapid accu-
mulation of massive information for patients in medical
researches. In this regard, the need for selecting informative
variables and eliminating noise variables (e.g., noninforma-
tive variables) as an important issue highlights the necessity
for novel robust data analysis methods. This study proposed
a penalized weighted nonparametric likelihood-based
approach for sparse variable selection in high-dimension
competing risk data setting. The proportional hazards model
may not be satisfied for some covariates, and it cannot be
assessed in high-dimension setting. The proposed model
allows for taking into account time-varying effects. Also, this
model relaxes the constraint of the ability to simultaneously
model multiple cumulative incidence function using the Fine
and Gray approach. As in nonpenalized setting [20], the reg-
ularized weighted nonparametric likelihood approach is
extendable to a general class of semiparametric transforma-
tion models even to nonproportional subdistribution haz-
ards setting.

We evaluated the performances of several penalties,
including ALASSO, AENET, SCAD, and MCP, and their
L2 counterparts called SCAD-L2 and MCP-L2 empirically
through comprehensive simulations in high-dimensional
settings with different covariate structures in terms of TPR
and FPR. Although, the penalized proportional subdistri-
bution hazards model have been proposed in previous
studies, this study considered more scenarios with more
penalties. Other works considered only low dimension
with different penalties [32] or high dimension with a
few L1 penalties with no more than 1000 variables [26,
27]. Our findings revealed that sensitivity of all penalties
were comparable, but the MCP and MCP-L2 penalties out-
performed the other methods in term of selecting less
noninformative variables. Also, the results of MCP and
MCP-L2 were closer to the oracle estimator compared with
other penalties. For correlated structures, the penalties
with L2 term including SCAD-L2, MCP-L2, and AENET
enjoyed the grouping effect and showed better perfor-
mance which was in concordance with similar studies with
other responses like count [57]. Moreover, Fu et al. [32]
established asymptotic properties of penalized estimators
obtained from the Fine and Gray model. In the framework
of the Cox model, Fan and Li [58] extended these proper-
ties to the Cox proportional hazards model [58] which is a
special case of NPMLE (nonweighted). While there are
special cases of the weighted NPMLE that the oracle prop-
erty of the penalized estimators has been established, there
is a need to investigate conditions for the general class of
models in equation (2) theoretically, especially for the
time-varying covariates framework. So, this would be a
subject for future studies.

One useful feature of the penalized weighted nonpara-
metric maximum likelihood approach is that the AIC and
BIC can easily be calculated as a simple tool for model selec-
tion, as it was used here. This resulted in a more stable var-
iable selection approach compared with the models that uses
cross-validation.

Variable selection in the survival setting, in general, is a
difficult issue and is even more challenging in the competing
risk setting. As a result, a relatively large sample size is
required to make reliable inference [4]. Strategies that com-
bine the strengths of a variety of approaches and regulariza-
tion methods, in situations where the proposed methods
may fail, could be used as building blocks in developing
more powerful procedures [4].

The proposed approaches were applied to a bladder can-
cer dataset with gene signature survival data and competing
risks. The fitted model based on the subdistribution hazards
was shown to identify genes that were related to cancer
events. Most of the genes found here have known functions
in cancer-related pathways, especially in bladder cancer
[59–64]. Although we applied the proposed method over a
gene expression data, it can be easily applied to other types
of high-dimension data like single-nucleotide
polymorphism.

The main objective of the present study was to explore
variable selection methods in high-dimensional competing
risk data based on the subdistribution hazards. Although,
we have focused on the multiplicative hazards model, the
techniques here can be adapted to other survival models
such as additive hazards approaches, which have promising
characteristics. This issue is an interesting topic for future
research. In simulations and data analysis of this study, we
only considered identical link function from Box-Cox trans-
formation class and one a link function for proportional
odds model from logarithmic transformation class, but,
comparing and considering other types of link functions
(gð:Þ) is another potential topic for future studies which
would be interesting with more scenarios. Extension of the
proposed model to the cure mixture models is another pos-
sible future work.

Data Availability

The used data is available from https://www.ncbi.nlm.nih
.gov/geo/query/acc.cgi?acc=GSE5479.

Additional Points

Key Points. (i) Analysis of high-dimensional competing risks
requires models that consider the event of interest and the
competing events simultaneously, while also dealing with
censoring. (ii) A likelihood-based penalized approach is
extended for direct variable selection under the subdistribu-
tion hazards model for high-dimensional competing risk
data. (iii) Some widely used penalties, including ALASSO,
AENET, SCAD, and MCP, and their L2 counterparts called
SCAD-L2 and MCP-L2 were considered. (iv) Simulation
studies showed that the proposed methods performed
effective in identifying important variables in high-
dimension competing risk data. (v) Analysis of a real
genomic competing risk dataset obtained from patients
with bladder cancer revealed a set of genes associated with
the incidence of death.
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