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Gastric cancer (GC) is one of the most widely occurring malignancies worldwide. Although the diagnosis and treatment strategies
of GC have been greatly improved in the past few decades, the morbidity and lethality rates of GC are still rising due to lacking
early diagnosis strategies and powerful treatments. In this study, a total of 37 differentially expressed genes were identified in GC
by analyzing TCGA, GSE118897, GSE19826, and GSE54129. Using the PPI database, we identified 17 hub genes in GC. By
analyzing the expression of hub genes and OS, MFAP2, BGN, and TREM1 were related to the prognosis of GC. In addition,
our results showed that higher levels of BGN exhibited a significant correlation with shorter OS time in GC. Nomogram
analysis showed that the dysregulation of BGN could predict the prognosis of GC. Moreover, we revealed that BGN had a
markedly negative correlation with B cells but had positive correlations with CD8+ T cells, CD4+ T cells, macrophages,
neutrophils, and dendritic cells in GC samples. The pan-cancer analysis demonstrated that BGN was differentially expressed
and related to tumor-infiltrating immune cells across human cancers. This study for the first time comprehensively revealed
that BGN was a potential biomarker for the prediction of GC prognosis and tumor immune infiltration.

1. Introduction

Gastric cancer (GC) ranks fifth amid the widely occurring
malignancies worldwide and is the third primary inducer
of carcinoma-related mortality [1]. GC belongs to a disease
involving environmental and genetic factors, which both
exert an effect on GC occurrence and development [1, 2].
High intake of traditional salt-preserved foods and salt and
low intake of fresh fruits and vegetables are likely to be
related to tumorigenesis of GC [1–3]. Smoking is also one
external risk factor easily contributing to GC. Additionally,
Helicobacter pylori (H. pylori) and Epstein-Barr virus
(EBV) are the main risk factors for GC development [1, 2].
Nevertheless, the distribution of histological subtypes of
GC and the frequencies of H. pylori- and EBV-related GC
vary worldwide [4–6]. The genetic diffuse GC accounts for
approximately 1-3% of GC cases [7]. Host factors such as

cytokine gene polymorphisms and bacterial factors are
related to the increase in inflammation intensity and pro-
gression risk [8, 9]. Present GC treatments are composed
of surgery [10], radiotherapy [11], neoadjuvant chemother-
apy [12], and immunotherapy [13]. Early GC patients’ sur-
vival rate attains 90%. Detection and diagnosis of GC at
the early stage, however, is not easy, leading to an obvious
decline in the survival rate after diagnosis [14]. Herein, it is
of great significance to uncover potential biomarkers for
GC diagnosis and prognosis and to explore treatment targets
for early GC.

BGN is an essential constituent of the extracellular
matrix (ECM) that exhibited an association with several
human carcinomas [15], including GC [16], esophageal
squamous cell carcinoma [17], pancreatic carcinoma [18],
colon carcinoma [19], and neoplasms in blood vessels. In
terms of mechanism, it has been proved that proteoglycans
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could facilitate cell proliferation, affect migration, and
weaken cell adhesion via interacting with proteins in the
intracellular matrix and extracellular matrix. Hu et al. [16]
found that BGN was greatly upregulated in the tissues of
GC compared to the adjacent nontumor gastric tissues and
was related to the metastasis of axillary lymph nodes, the
depth of tumor invasion, and the metastasis (TNM) stage
of tumor nodes. What is more, BGN boosted the invasion
ability of GC cells via motivating the FAK signaling pathway.
Subsequently, it was suggested that the mechanism of BGN-
induced GC angiogenesis was that BGN interacted with
TLR2/4 via the NF-κB-dependent activation to promote
the formation, migration, and proliferation of endothelial
cell tubes [15]. However, the expression pattern and poten-
tial roles of BGN in GC remained to be unknown.

Recently, some studies have implied that integrating sev-
eral biomarkers into a single model presented a relatively
higher prediction accuracy in comparison with a single bio-
marker [19]. In our study, we extracted RNA-Seq data from
TCGA and multiple microarray-based datasets to identify
the differentially expressed genes (DEGs) between GC tissues
and adjacent nontumor tissues. By using multiple bioinfor-
matics methods, we identified that BGN was a potential bio-
marker for GC.

2. Materials and Methods

2.1. Microarray Data Information. The gene expression data,
clinicopathological characteristics, and prognosis informa-
tion of GC patients were obtained from TCGA database.
We extracted clinicopathological characteristics from 358
GC cases and 51 adjacent normal samples. Ten GC and 10
normal samples were contained in the GSE118897 [20] data-
set, 12 GC and 15 normal samples were included in the
GSE19826 [21] dataset, and 111 GC and 23 normal samples
were involved in the GSE54129 dataset.

2.2. DEG Identification. Software R (version 3.6.3, https://
www.r-project.org) and “limma” packages (http://www
.bioconductor.org/) were applied to select the DEGs, with
adjusted p value < 0.05 and ∣log 2 fold change ðFCÞ ∣ ≥2.
The DEGs with p < 0:1 and FC > 1:5 (∣log 2FC ∣ >0:585)
were considered to be differentially expressed [22].

2.3. GO and KEGG Pathway Enrichment Analyses. Gene
Ontology (GO) and KEGG pathway enrichment analyses
were utilized to evaluate molecular interaction and relation
pathways by DAVID (https://david.ncifcrf.gov/home.jsp)
and GSEA software (version 3.0). p < 0:05 and gene counts
≥ 5were thought to be the cutoff criteria.

2.4. Protein-Protein Interaction (PPI) Network Construction.
The PPI network was established by the STRING database.
Significant interaction meant the combined score > 0:4.

2.5. Establishing and Validating the Nomogram. In order to
predict STAD patients’ clinical outcomes, we made use of
the R package “rms” to establish a nomogram consisting of
clinical factors and risk signatures. In addition, the perfor-

mance and prediction accuracy of the nomogram was mea-
sured to plot calibration curves.

For the establishment of the nomogram, we carried out
univariate and multivariate Cox regression analyses to deter-
mine the proper terms. The forest displayed the p value, HR,
and 95% CI of individual variables by the “forestplot” R
package. In light of the data of multivariate Cox propor-
tional hazards analysis, we generated a nomogram to fore-
cast the X-year overall recurrence rate. The nomogram
offered a graphical representation regarding these factors,
which could be utilized to reckon the recurrence risk for
individual patients by means of each risk factor-associated
point.

2.6. Survival Analysis. The survival and survminer packages
in R were employed to compare the OS between groups by
Kaplan-Meier analysis. The risk model’s accuracy that was
used for predicting the OS of patients was exploited to form
a ROC curve via the survival ROC R package.

2.7. Analysis of the Correlation of Tumor-Infiltrating
Immune Cells (TIICs) with the BGN Genes. The relationship
of TIICs with the BGN genes in GC was investigated by the
TIMER dataset (https://cistrome.shinyapps.io/timer/) [23].
Additionally, the relative ratio of different TIICs in each car-
cinoma sample was calculated by the xCell algorithm [24].
xCell performs cell type enrichment analysis from gene
expression data for 64 immune and stromal cell types, which
is a gene signature-based method learned from thousands of
pure cell types from various sources [24]. The data was pre-
sented by R packages “immunedeconv” and “pheatmap.”

3. Results

3.1. Screening the DEGs in GC. A total of 4397 DEGs in GC
samples after comparison with normal samples were iden-
tified by analyzing TCGA dataset (Figure 1(a)), with the
criteria of p < 0:1 and FC > 1:5 (∣log 2FC ∣ >0:585). Then,
the same cutoff criteria were applied for GEO datasets
GSE118897 (Figure 1(b)), GSE19826 (Figure 1(c)), and
GSE54129 (Figure 1(d)). And 372, 1313, and 1752 DEGs
were identified in GC samples compared to normal sam-
ples. The selected DEGs were subjected to the heatmap
clustering analysis, and the data are illustrated in Figure 1.

Furthermore, the overlapped DEGs between RNA-Seq
profiles and GEO datasets were integrated (Figure 1(e)).
We found that 37 genes among these overlapped DEGs were
differentially expressed in 4 datasets, including MFSD4A,
ERO1B, DNER, CA9, TMED6, CPA2, GUCA2B, GKN1,
CAPN13, MAMDC2, ZBTB16, MFAP2, BGN, THY1,
THBS2, TIMP1, PRRX1, TMEM158, CLDN1, SALL4, SFRP4,
TEAD4, RARRES1, CEMIP, EPHB2, CD300LF, PLPPR4,
GREM1, FJX1, CHI3L1, IGF2BP3, WNT2, TREM1, CXCL9,
CXCL8, and TREM2 (Figure 1(e)).

3.2. PPI Analysis of Differentially Expressed Genes in GC.
Then, 36 DEGs were imported into the PPI network com-
plex consisting of 36 nodes and 134 edges in this network
(Figure 1(f)). Among them, 17 genes were identified as
hub nodes in the network by connecting to more than 2
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different genes, including PRRX1, THBS2, MFAP2, BGN,
TIMP1, CHI3L1, CXCL9, CXCL8, TREM1, CD300LF,
TREM2, and THY1.

3.3. The Dysregulation of Hub Genes Was Correlated to
Shorter Overall Survival (OS) Time in GC. By analyzing the
correlation between OS and gene expression of hub genes
using KM methods, we identified that MFAP2, BGN, and
TREM1 levels were obviously correlated with OS time in
GC. Then, we employed the “survminer” R package to
acquire the average cutoff point and classified GC patients
into high and low groups. Figure 2 shows that more dead

cases were identified in MFAP2 (Figure 2(a)), BGN
(Figure 2(b)), and TREM1 (Figure 2(c)) in highly expressed
groups compared to lowly expressed groups (Figures 2(a)–
2(c)). The KM survival curves showed that higher levels of
MFAP2 (Figure 2(d)), BGN (Figure 2(e)), and TREM1
(Figure 2(f)) exhibited a remarkable correlation with shorter
OS time in GC. Next, we applied 1-, 3-, and 5-year receiver
operating characteristic (ROC) curve analyses via comparing
individual AUC values. The 1-, 3-, and 5-year AUC values
for the MFAP2 were 0.538, 0.652, and 0.781 (Figure 2(g)).
The 1-, 3-, and 5-year AUC values for the BGN were 0.536,
0.614, and 0.761 (Figure 2(h)). The 1-, 3-, and 5-year AUC
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Figure 1: Screening the hub DEGs in GC. (a–d) A total of 4397, 372, 1313, and 1752 DEGs were identified in GC samples compared to
normal samples by analyzing TCGA (a), GSE118897 (b), GSE19826 (c), and GSE54129 (d) datasets. (e) Venn map analysis identified
common DEGs in 4 datasets. (f) PPI analysis identified the interaction among common DEGs.
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values for the TREM1were 0.542, 0.569, and 0.54 (Figure 2(i)).
Our data indicated that MFAP2, BGN, and TREM1 expres-
sion could precisely forecast GC patients’ prognosis. Among
them, BGN was selected for further analysis due to the fact
that it has the highest connection score in the PPI network.

3.4. Prognostic Nomogram Establishment and Validation of
BGN in GC. To explore the feasibility of utilizing the estab-
lishment of the prognostic nomogram as an independent
predictor of STAD patients’ prognosis, we performed
univariate and multivariate Cox regression analyses. Univar-
iate analysis data showed that BGN (p = 0:00699), age
(p = 0:00928), and pTNM stage (p = 0:00862) forecasted
the worse OS (Figure 3(a)). Additionally, our results revealed
that BGN was an independent prognostic index of GC
patients in TCGA (Figure 3(b)). Next, we constructed a
nomogram to predict the 1-year, 3-year, and 5-year OS rates
based on univariate and multivariate analyses of BGN
(Figure 3(c)). Moreover, the calibration curve indicated good
performance in the estimation of 1-year, 3-year, and 5-year
OS of the nomogram compared with the estimation of
Kaplan-Meier (Figure 3(d)).

3.5. Confirmation of BGN by the KM Plotter. The associa-
tions of survival data and BGN expression in 5 different
datasets were confirmed by KM plotter analysis. Our results
showed that higher expression of BGN was correlated to
shorter OS than patients with lower BGN expression by ana-

lyzing GSE29272 (Figure 4(a)), GSE62254 (Figure 4(b)),
GSE14210 (Figure 4(c)), GSE15459 (Figure 4(d)), and
Kaplan-Meier plotter (Figure 4(e)) databases. These results
suggested that BGN may act as an oncogene in GC.

3.6. BGN Expression Was Largely Correlated with TIICs in
GC. Next, the correlations of BGN members and TIICs were
assessed and the TIMER database analysis data showed that
BGN had a markedly negative correlation with B cells but
had positive correlations with CD8+ T cells, CD4+ T cells,
macrophages, neutrophils, and dendritic cells in GC samples
(Figures 5(a)–5(f)).

In light of the average BGN mRNA expression value in
TCGA database, we separated GC samples into BGN highly
expressed and BGN lowly expressed groups. We exploited
the xCell algorithm to compute the proportion of different
TIICs in BGN highly expressed and lowly expressed GC
samples. Figure 5 presents different levels of immune cell
infiltration in the abovementioned two BGN groups. The
high level of BGN was tightly related to the infiltrating levels
of the activated myeloid dendritic cell, T cell CD4+ naïve, T
cell CD4+ central memory, T cell CD8+ naïve, common lym-
phoid progenitor, common myeloid progenitor, myeloid
dendritic cell, endothelial cell, macrophage, M1 macrophage,
M2 macrophage, mast cell, monocyte, B cell naive, neutro-
phil, T cell NK, B cell plasma, T cell gamma delta, T cell
CD4+ Th1, and T cell CD4+ Th2 in GC (Figures 5(g)–5(j)).
Moreover, we observed that the microenvironment score
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Figure 2: The dysregulation of hub genes was correlated to shorter overall survival (OS) time in GC. (a–c) More dead cases were identified
in MFAP2 (a), BGN (b), and TREM1 (c) in highly expressed groups compared to lowly expressed groups. (d–f) The KM survival curves
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and stroma score in GC were raised in the BGN high group
(Figure 5(j)). Our results implied that BGN probably played
as the regulators of the immune microenvironment in GC.

3.7. BGN Was Differentially Expressed and Related to
Tumor-Infiltrating Immune Cells across Human Cancers.
The above analysis demonstrated that BGN was upregulated
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Figure 3: Prognostic nomogram establishment and validation of BGN in GC. (a, b) Univariate and multivariate Cox regression analyses of
BGN in GC. (c) Nomogram to predict the 1-year, 3-year, and 5-year overall survival of GC cancer patients. (d) Calibration curve for the
overall survival nomogram model in the discovery group.
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in GC; however, its prognostic value across human cancers
remained largely unclear. For the pan-carcinoma compari-
sons, we utilized TCGA to explore BGN expression, and the
results showed that BGN was expressed in most cancer types,
including BLCA, BRCA, CHOL, COAD, DLBC, ESCA, GBM,
HNSC, KIRC, LGG, OV, PAAD, READ, SKCM, STAD,
TGCT, and UCS, in comparison with its corresponding tumor
tissues (Figures 6(a)–6(d)). However, we found that BGN was
suppressed in ACC, CESC, KICH, and THCA samples. Col-
lectively, these findings suggested that BGN was a probable
novel biomarker for multiple cancer diagnoses.

Next, we analyzed the association between BGN expres-
sion and TIICs across human cancers. Using the TIMER
database, we found out that the relationship between BGN
expression and TIICs was significantly related to B cells,
CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and
dendritic cells in multiple cancer types, such as BLCA,
BRCA, COAD, ESCA, HNSC, KICH, LGG, LIHC, LUAD,
LUSC, OV, PAAD, PCPG, PRAD, READ, SKCM, and
STAD (Figure 7(a)). We detected the correlation of the
BGN level with immune infiltration based on the xCell data-
set. Of interest, we found that BGN expression was signifi-
cantly positively related to the microenvironment score,
stroma score, endothelial cell, macrophage 1 (M1), macro-
phage 2 (M2), mast cell, monocyte, and myeloid DCs in
overall immune cells in various types of human cancers,
including BLCA, BRCA, COAD, ESCA, HNSC, KIRC,
LGG, LIHC, LUAD, LUSC, PAAD, PCPG, PRAD, READ,
SKCM, STAD, TGCT, and THCA. Meanwhile, we observed
that BGN expression was significantly negatively related to B
cells in more than 80% of cancer types (Figure 7(b)).

4. Discussion

GC is the most commonly diagnosed neoplasm of the diges-
tive tract. Although the diagnosis and treatment strategies of
GC have been greatly improved in the past few decades, the
morbidity and lethality rates of GC are still rising due to
lacking early diagnosis strategies and powerful treatments
[1]. Most GC cases are related to H. pylori [25] and EBV
infection [4]. A few GC cases exhibited an association with
the CDH1 [26] or MMR gene [27], while GC with sporadic
mismatch repair defects has an epigenetic silencing of
MLH1 in the context of the CpG island methylator pheno-
type (CIMP) [28]. In our literature, we found a total of 37
DEGs in GC by analyzing 4 independent datasets, including
MFSD4A, ERO1B, DNER, CA9, TMED6, CPA2, GUCA2B,
FD, CAPN13, MAMDC2, ZBTB16, MFAP2, BGN, THY1,
THBS2, TIMP1, PRRX1, TMEM158, CLDN1, SALL4,
SFRP4, TEAD4, RARRES1, CEMIP, EPHB2, CD300LF,
PLPPR4, GREM1, FJX1, CHI3L1, IGF2BP3, WNT2,
TREM1, CXCL9, CXCL8, and TREM2. Of note, several of
them had been implied in human cancers. For example,
MFSD4 was identified as a putative tumor suppressor in gas-
tric cancer [29]. THY1 acted as a potential novel diagnostic
marker for GC [30]. Upregulation of CLDN1 was related
to shorter OS in GC [31]. Three hub genes, BGN, TREM1,
and MFAP2, were identified to be hub genes in GC. Among
them, BGN was chosen for further analysis. Our research
has discovered that the overexpression of BGN was corre-
lated to poorly prognostic status and resulted in the
increases in immune infiltrating levels in cytotoxic cells,
DCs, macrophages, neutrophils, Th17 cells, Th2 cells, etc.,
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Figure 4: Confirmation of BGN by the KM plotter. (a–e) Higher expression of BGN was correlated to shorter OS than patients with lower
BGN expression by analyzing GSE29272 (a), GSE62254 (b), GSE14210 (c), GSE15459 (d), and Kaplan-Meier plotter (e) databases.
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in GC. This study for the first time revealed that BGN was a
potential biomarker for GC.

So far, a large number of effective biomarkers for GC
diagnosis and prognosis have been identified. For instance,
by integrative analysis of the Gene Expression Omnibus
(GEO) database and TCGA database, Zhang et al. elaborated
that UCA1, HOTTIP, and HMGA1P4 lncRNAs were upreg-
ulated in GC tissues and firstly identified that HMGA1P4, a
target of miR-301b/miR-508, took part in the process of cell
cycle and senescence by modulating CCNA2 in GC. This
study suggested that the 3 lncRNAs were candidate contrib-
utors to the development of GC, and their potential func-
tions perhaps had an association with GC prognosis.
Utilizing TCGA and cross-validation with GEO datasets,
Lan et al. [32] identified that 9 genes associated with the
tumor microenvironment were largely related to poorly
prognostic status in GC patients. Using bioinformatics anal-
ysis, Chong et al. revealed that abnormally expressed FN1,
TIMP1, and SPP1 displayed a relation to poor OS in GC
patients [33]. Previous studies have indicated that inhibited
FN1 led to the reduction of GC cell invasion and migration
[34, 35]. Some reports indicated that the overexpression of
TIMP1 facilitated GC cell proliferation in patients via the
NF-κB-dependent mechanism [35]. It was demonstrated
that the high expression of SPP1 was closely associated with
GC occurrence [36]. The advance of modern bioinformatics
and high-throughput sequencing tools provides a variety of
effective tools for analyzing the molecular mechanism of car-
cinomas. Here, our literature tried to identify differentially
expressed genes in GC by using a series of public datasets.
In total, 37 key genes were identified to be differentially
expressed in GC. By applying PPI network analysis, BGN,
TREM1, and MFAP2 were identified to be hub genes in

GC. Further analysis demonstrated that BGN, TREM1, and
MFAP2 were upregulated and their levels exhibited a corre-
lation to shorter OS time in patients with GC.

TREM participated in innate immune and inflammatory
responses, and TREM1 signaling is activated upon crosslink-
ing its ligand, leading to the production of TNFα, IL-18, and
CCL2 through the adaptor DAP12 [37]. It was described
that TREM1 promoted tumorigenesis and supported tumor
growth in multiple tumor models, such as intestinal, pancre-
atic, and lung carcinomas [38]. TREM1 is also expressed in
gastric mucosa epithelial cells and is upregulated in the gas-
tric mucosa of adult patients with H. pylori infection [39].
MFAP2 is related to modulating the deposition of proelastin
on microfibers to shape elastic fibers [40, 41]. Recently,
MFAP2’s role in carcinoma has attracted much attention.
For instance, Wang et al. [40] claimed that MFAP2 pro-
moted the epithelial-mesenchymal transition by motivating
the TGF-β/SMAD2/3 signaling pathway in GC cells. Shan
et al. [42] presented that MFAP2 might exhibit a pivotal role
in GC progression and that it is displayed as an oncogene.
Yao et al. reported that upregulated MFAP2 was displayed
in GC tissues, and this upregulation had a bearing on GC
cell proliferation, migration, and invasion.

The 5-year OS rate of early GC is over 90% [1]. However,
most patients with GC are diagnosed at a late stage [1].
Herein, exploring the hidden details may be conducive to
developing ideal strategies for GC early diagnostics. Micro-
array and bioinformatics analyses are largely applied in
disease diagnosis and drug screening. For instance, using
high-throughput screening methods, Li et al. [43] identified
that CASR, CXCL12, and SST were potential prognosis
markers for GC treatment. In our research, we reported that
BGN was significantly upregulated in GC samples. More
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Figure 5: BGN expression was largely correlated with TIICs in GC. (a–f) TIMER database analysis data showed that BGN had a markedly
negative correlation with B cells (a) but had positive correlations with CD8+ T cells (b), CD4+ T cells (c), macrophages (d), neutrophils (e),
and dendritic cells (f) in GC samples. (g–j) The xCell algorithm was used to compute the proportion of different TIICs in BGN highly
expressed and lowly expressed GC samples.
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dead cases were identified in BGN highly expressed groups
compared to lowly expressed groups. The KM survival
curves showed that higher levels of BGN had a significant

correlation with worse prognosis in GC. Moreover, we uti-
lized TCGA to explore BGN expression in pan-cancers and
found that BGN was highly expressed in most cancer types.
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Figure 6: BGN was differentially expressed across human cancers. (a) BGN was differentially expressed in ACC, BLCA, BRCA, CESC,
CHOL, COAD, DLBC, and ESCA. (b) BGN was differentially expressed in GBM, HNSC, KICH, KIRC, KIRP, LAML, LGG, and LIHC.
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This study revealed that BGN could be utilized as prospec-
tive treatment targets and biomarkers for multiple human
cancers, especially for GC.

Despite the fact that several previous studies had
revealed the potential roles of BGN in GC, the detailed roles
of BGN in GC prognosis and immune response remained to
be unclear. The neoplasm microenvironment primarily con-
tains the mixture of neoplasm cells and TIICs, extracellular
matrix, blood vessels, and other stromal components.
Research studies on the neoplasm microenvironment have
indicated the role of TIICs in the treatment response and
immunotherapy resistance across diverse carcinoma types.
The mechanisms by which TIICs participate in the systemic
antitumor response are still being explored. Our research
showed that BGN had a markedly negative correlation with
B cells but had positive correlations with CD8+ T cells, CD4+

T cells, macrophages, neutrophils, and dendritic cells in GC
samples. Moreover, the pan-cancer analysis also demon-
strated that BGN was tightly related to the infiltrating levels

of various types of tumor-infiltrating immune cells. This
study for the first time revealed that BGN was a potential
biomarker for GC tumor immune infiltration.

5. Conclusion

In conclusion, a total of 37 differentially expressed genes
were identified in GC by analyzing TCGA, GSE118897,
GSE19826, and GSE54129. Using the PPI database, we iden-
tified 17 hub genes in GC. By analyzing the expression of
hub genes and OS, MFAP2, BGN, and TREM1 were related
to the prognosis of GC. In addition, our results showed that
higher levels of BGN exhibited a significant correlation with
shorter OS time in GC. Moreover, we revealed that BGN had
a markedly negative correlation with B cells but had positive
correlations with CD8+ T cells, CD4+ T cells, macrophages,
neutrophils, and dendritic cells in GC samples. The pan-
cancer analysis demonstrated that BGN was differentially
expressed and related to tumor-infiltrating immune cells
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Figure 7: BGN was related to tumor-infiltrating immune cells across human cancers. (a, b) The correlation between BGN expression and
tumor-infiltrating immune cells across human cancers by analyzing the TIMER database (a) and xCell dataset (b).
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across human cancers. This study for the first time revealed
that BGN was a potential biomarker for the prediction of GC
prognosis and tumor immune infiltration.
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