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The development of high-throughput technology has provided a reliable technical guarantee for an increased amount of available
data on biological networks. Network alignment is used to analyze these data to identify conserved functional network modules
and understand evolutionary relationships across species. Thus, an efficient computational network aligner is needed for network
alignment. In this paper, the classic bat algorithm is discretized and applied to the network alignment. The bat algorithm initializes
the population randomly and then searches for the optimal solution iteratively. Based on the bat algorithm, the global pairwise
alignment algorithm BatAlign is proposed. In BatAlign, the individual velocity and the position are represented by a discrete
code. BatAlign uses a search algorithm based on objective function that uses the number of conserved edges as the objective
function. The similarity between the networks is used to initialize the population. The experimental results showed that the
algorithm was able to match proteins with high functional consistency and reach a relatively high topological quality.

1. Introduction

With the development of high-throughput technology, such
as the yeast two-hybrid system [1], an increasing amount of
biological data are being modeled into biological networks.
According to the different meanings of nodes and edges
when the networks are built, the networks can be classified
as protein-protein interaction (PPI) networks [2], gene reg-
ulatory networks [3], and metabolic networks [4]. Biological
systems complete a series of biological processes through
PPI, rendering the study of PPI networks of great signifi-
cance [5]. Network alignment is a more efficient method
for analyzing biological networks, in comparison to biologi-
cal experiments [6], and can be used to discover functional
modules among networks [7] and predict the unknown func-
tion of proteins [8]. Homologous protein pairs of less-studied
biological networks can be discovered by comparison with
biological networks that have been more extensively studied,
to detect potential functions of unknown proteins [9, 10].

An aspect of the difference of biological network align-
ment from graph matching is that the goal is the production
of biologically meaningful alignment results. Therefore, the
sequence similarity, which is an internal property of proteins
[11, 12], between network nodes needs to be used in biolog-
ical alignment. Moreover, the topological structure informa-
tion of the network, which is an external attribute of
proteins, can also be incorporated. The majority of the PPI
network alignment algorithms use a combination of
sequence similarity and topological similarity [13–15].

Network alignment can be divided into local and global
alignment, according to the alignment range [16, 17]. The
purpose of local network alignment is to discover similar
local subgraphs among networks [18]. MaWISH [19],
Graemlin [20], PathBLAST [21], NetworkBLAST [22], and
LePrimAlign [23] are examples of algorithms that can be
used to solve the local network alignment problem. How-
ever, the disadvantage of local network alignment is that
one module may be similar to several modules and a protein
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may be mapped to dissimilar protein nodes [24]. Therefore,
the concept of global network alignment has been proposed
[25]. Global network alignment is aimed at discovering the
overall similar mapping relationship between networks
[26]. At present, a high number of global alignment algo-
rithms have been proposed, such as IsoRank [25], GRAAL
family algorithms [27–30], NETAL [31], MAGNA [32],
MAGNA++ [33], SANA [34], ModuleAlign [35], AligNet
[36], and IBNAL [37]. In IsoRank, the similarity of nodes
between the networks calculated by the PageRank algorithm
is used to guide the greedy algorithm to complete the align-
ment. The GRAAL family of algorithms includes GRAAL,
MI-GRAAL, C-GRAAL, and L-GRAAL, all of which are based
on the Graphlet degree similarity. NETAL first constructs an
alignment score matrix, and then, a greedy strategy is adopted
to update the scores until all nodes in the first network are
aligned with nodes in the second network. MAGNA is an
objective function-based alignment algorithm that uses a
genetic algorithm for searching. MAGNA++ is the optimiza-
tion of MAGNA that optimizes both structure and sequence
similarities and provides a friendly graphical interface. SANA
is also objective function-based and uses the simulated anneal-
ing search algorithm for alignment. Both the ModuleAlign
and AligNet algorithms incorporate the idea of modularity
into network alignment. IBNAL develops a clique-based index
to measure the topology of the proteins.

Within the framework of objective function-based search
algorithms, this paper discretizes the bat algorithm [38] and
proposes the BatAlign algorithm. First, the similarity matrix
is constructed by the combination of biological similarity
and topological similarity information. The sequence similar-
ity adopts BLAST bit-score [39] and evaluates the similarity of
the network structure by considering the neighbors of the
nodes, to further improve the similarity between networks.
The greedy search is then used to generate the initial popula-
tion, and the pair of nodes with the maximum score is chosen
and aligned to each other. Finally, the alignment results are
obtained by initial population optimization. By building a
coarse similarity score matrix to guide the initialization,
BatAlign can shorten the search time to convergence, in com-
parison to random initialization of the population. Our main
contributions are summarized as follows.

(1) We propose BatAlign which uses a discrete bat algo-
rithm for network alignment. The main idea of
BatAlign is to iteratively update the bat position
under the guidance of bat velocity

(2) The network topology information and node sequence
information are combined to calculate the node
similarity. The node similarity guides the construction
of the initial population. With the initialization mech-
anism, BatAlign can obtain a good biological score
and relatively high topological score

The related work on network alignment is introduced
in the first section. The framework and theory of the BatA-
lign algorithm are explained in the second section. In the
third section, BatAlign is compared with other state-of-

the-art algorithms based on synthetic and real networks.
The work of this paper and future prospects are presented
in Section 4.

2. Materials and Methods

2.1. Problem Definition. Assume that the two networks to be
aligned are G1ðV1, E1Þ and G2ðV2, E2Þ, where V1, V2 are the
node sets of networks G1, G2, respectively, and E1, E2 are the
edge sets of G1, G2, respectively. Without loss of generaliza-
tion, assuming that ∣V1 ∣ ≤∣V2∣, the small network G1 is the
source network and the large network G2 is the target net-
work. Global network alignment finds a mapping relation-
ship f : V1 ⟶V2, which aligns the nodes in the small
network to the nodes in the large network one by one, to
maximize the overall similarity between the networks.

The similarity of the node pairs between networks usu-
ally combines the similarity of topology and sequence. In
this paper, the topology of the network is considered
through the neighbors of a node, and the sequence similarity
is combined to generate the similarity matrix between the
networks:

S = αB + 1 − αð ÞA1BA
T
2 , α ∈ 0, 1½ �, ð1Þ

where S represents the similarity matrix between networks,
B represents the sequence similarity matrix of nodes
between networks, and A1 and A2 that note the topological
structure of the node represent the adjacency matrix of net-
works G1 and G2, respectively.

2.2. Bat Algorithm. The bat algorithm [38] is a swarm intel-
ligence optimization algorithm that simulates the echoloca-
tion behaviour of bats. The initial population is generated
randomly, and then, the optimal solution is iteratively
searched. The new solution is generated during searching
by adjusting frequency f (Equations (3) and (4)); when the
rate of pulse emission r is smaller than a random number,
the local solution is generated around the selected best solu-
tion (Equation (5)):

f i = fmin + fmax − fminð Þβ, β ∈ 0, 1½ �, ð2Þ

vti = vt−1i + xti − x∗
� �

f i, ð3Þ

xti = xt−1i + vti , ð4Þ

xnew = xold + εAt , ε ∈ −1, 1½ �: ð5Þ
The bats can adjust the loudness (Equation (6)) and the

rate of pulse emission (Equation (7)):

At
i = θAt−1

i , θ ∈ 0, 1ð Þ, ð6Þ

rti = rti 1 − exp −γtð Þ½ �, γ > 0: ð7Þ
2.3. Algorithm Overview

2.3.1. Individual and Population Initialization. The BatAlign
algorithm applies the discretized bat algorithm to the
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network alignment, which is reflected in two aspects: posi-
tion coding and velocity coding.

Position discretization: in both networks, the nodes are
numbered from one and each node number is unique in
its own network. Each individual position in the population
represents an alignment of the entire network, the position is
a vector X with n1 components, and the entries are members
of G2.

Velocity discretization: an individual velocity is repre-
sented by a vector V with n1 components, whose entries
are 0 or 1. The values 0 or 1 were used to represent the flying
velocity of one node in a network, where 0 means keeping
the solution of this node, namely, not to fly, and 1 means
that the solution of this node can randomly fly.

Individual initialization: the position and velocity of
each individual need to be initialized. The initial position is
an alignment generated by the greedy algorithm under the
guidance of the similarity matrix. For example, assuming
the similarity matrix of two networks has been obtained by
Equation (1), the similarity matrix is shown in Figure 1(c).
For each node in the source network, BatAlign identifies

the node with the highest similarity; therefore, position xi
is obtained, as shown in Figure 1(d). The method for initial-
izing the velocity is given in Equation (8), and the velocity of
the conserved node is 0. For example, assuming the individ-
ual position, shown in Figure 2(b), has been obtained, the
velocity is obtained as shown in Figure 2(c):

vk =
0, ∃ uk, ulð Þ ∈ E1,∃ ∅ ukð Þ,∅ ulð Þð Þ ∈ E2,
1, otherwise:

(
ð8Þ

Due to the incompleteness of the similarity between net-
work nodes, it is possible that simple greedy algorithms may
not directly align all the nodes. Therefore, unaligned nodes
were randomly mapped to generate all the individuals in
the population (Figure 3). That is, only the nodes that have
similarity are aligned first, while the nodes that do not have
similarity are aligned randomly.

2.3.2. Individual and Population Iteration. The individual
iteration process is composed of two parts: generating new
individuals and updates.

Generating new individuals includes two parts: updating
velocity and position. For an individual, the method for
updating the velocity is given in

vtij =
vt−1ij , if xij = x∗j,
°vt−1ij , otherwise,

8<
: ð9Þ

1 (b1) 3 (b3)2 (b2) 4 (b4) 5 (b5) 6 (b6) 7 (b7) 8 (b8)

1 (a1) 0.49 0.260 0 0 0 0.19 0

2 (a2) 0 0.780 0 0 0 0 0

3 (a3) 0 0.650 0.53 0 0 0 0

4 (a4) 0 00 0 0.48 0 0 0.32

a4

a2

a3 a1

b3

b4

b1 b6

b8 b2

b7

b5

(a) (b)

(c)

Xi 1 43 5

(d)

Figure 1: Initialization of individual position. In this figure, (a, b)
are the source network and target network, respectively; (c) is the
similarity matrix. Assuming the similarity matrix has been
obtained, according to the matrix, the most similar node pair is
chosen, and then, a2 is mapped to b3. Nodes are not aligned
repeatedly; then, the most similar node pair is a3 and b4; a3 is
mapped to b4; in a similar way, a1 is mapped to b1, and a4 is
mapped to b5; thus, the individual position can be obtained as
shown in (d).

1 3 54xi

0 0 10vi

a4

a2

a3 a1

b3

b4

b1 b6

b8 b2

b7
b5

(a)

(b)

(c)

Figure 2: Initialization of individual velocity. Assuming the
individual position is as shown in (b), according to the position,
the edges (a1, a3) and (a2, a3) are conserved; the nodes a1, a2,
and a3 are conserved; thus, the velocity of these nodes is 0.
Therefore, the individual velocity can be obtained as shown in (c).
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1 (b1) 3 (b3)2 (b2) 4 (b4) 5 (b5) 6 (b6) 7 (b7) 8 (b8)

1 (a1) 0.49 0.260 0 0 0 0.19

2 (a2) 0 0.780 0 0 0 0 0.41

3 (a3) 0 0.650 0.53 0 0.35 0 0

4 (a4) 0 00 0.08 0.25 0 0 0

(a)

Xi 1 43 5

5 (a5) 0.33 00 0 0 0 0 0

6 (a6) 0 00 0.11 0 0 0 0

– –

x2 1 43 5 7 8

1 (b1) 3 (b3)2 (b2) 4 (b4) 5 (b5) 6 (b6) 7 (b7) 8 (b8)

1 (a1) – –– – – – – –

2 (a2) – –– – – – – –

3 (a3) – –– – – – – –

4 (a4) – –– – – – – –

5 (a5) – –0 – – 0 0 0

6 (a6) – –0 – – 0 0 0

(b)

(c) (d)

x1 1 43 5 2 6

Xn 1 43 5 2/6/7/8 2/6/7/8

0

Figure 3: Initialization of individual position with population size n. Assuming the similarity matrix in (a) has been obtained, according to
the matrix, the position is obtained as shown in (b); a2 is mapped to b3; a3 is mapped to b4; a1 is mapped to b1; and a4 is mapped to b5. As
nodes are not aligned repeatedly, the matrix is obtained as shown in (c). In this case, the similarities of a5 with other nodes are 0; thus, a5 is
randomly aligned with b2, b6, b7, or b8; and a6 is also aligned randomly. By mapping unaligned nodes randomly, the positions of
individuals with population size n are obtained as shown in (d).

Is the objective function
improved and random <A? 

Update

Accept the individual that
improve the objective function

Update the rate and loudness
of the individual

Generate new individual by the
global search 

Update the velocity
according to equation (9)

Generate a new position
according to the velocity and
initialize the velocity of the
new individual according to

equation (8)
Generate new individual by the

local search 

Generate a new position
according to the velocity 
and initialize the velocity 

of the new individual 
according to equation (8)

Accept the individual that
better than the objective

function of the global search

Random > r

Random < = r

N

Y

Figure 4: The individual iteration process.
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where vtij is the velocity of the ith individual on the jth
dimension during the tth iteration, xij is the position of the
ith individual on the jth dimension, and x∗j is the optimal
solution on the jth dimension. The calculation of °vt−1ij is as
follows in

°vt−1ij =
° f i, if vt−1ij = 1,
0, otherwise,

(
ð10Þ

where ° f i is calculated as follows in

° f i =
1, if f i > 0:5 ∗ fmax − fminð Þ,
0, otherwise,

(
ð11Þ

where fmax and fmin represent the maximum and minimum
frequency, respectively. In BatAlign, fmax is set equal to 1
and fmin equal to 0. The calculation of f i is Equation (2).

The method to update the position depends on the new
velocity. An individual velocity entry of 1 means that this
node needs to be remapped and the individual position of
this node needs to be changed. Updating the position
includes two processes: global search and local search. Each
individual position is updated through global search. If the
rate of the individual is less than a random number between
0 and 1, BatAlign performs a local search. On the other
hand, if the objective function value of the position gener-

ated by the local search is larger than the value of the posi-
tion generated by the global search, then the local search
position is accepted. The new position is obtained through
global and local search, and if the objective function value
of the new position is larger than the old position and the
current loudness of the individual is greater than the ran-
dom number between 0 and 1, BatAlign accepts this new
position of the individual. Figure 4 shows the process of
individual iteration.

The global search method is given in Equation (12). The
node with a velocity of 0 is reserved, and the remaining
nodes are those to be aligned and put into set U . The selec-
tion operation is represented by σ. Figure 5 shows the global
search that generates a new position:

xtij =
σ Uð Þ, if vtij = 1,

xt−1ij , otherwise:

8<
: ð12Þ

The local search method is given in Equation (13), where
the set C is composed of nodes with a velocity of 1. An
example of local search is shown in Figure 6:

xtij =
σ Cð Þ, if vtij = 1,

xt−1ij , otherwise:

8<
: ð13Þ

1 3 54xi

0 0 10vi

a4

a2

a3 a1

b3

b4

b1 b6

b8 b2

b7
b5

(a)

(b)

(c)

1 3 2/6/7/84xi

Figure 5: Example of global search. Assuming an individual
position with the velocity shown in (b), according to the global
search method, the node for which the velocity is 1 is changed
through randomly choosing an unaligned node from U = f2, 6, 7, 8g
; thus, the updated position is obtained as shown in (c).

4 3 86xi

1 0 01vi

a4

a2

a3 a1

b3

b4

b1

b6

b8 b2

b7
b5

(a)

(b)

(c)

6 3 84xi

Figure 6: Example of local search. Assuming an individual position
with the velocity shown in (b), according to the local search
method, the node for which the velocity is 1 is changed through
randomly choosing the node for which the velocity equals to 1
from C = f4, 6g; thus, the updated position is obtained as shown
in (c).
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The update operation is performed when the current
loudness of the individual is greater than the random num-
ber between 0 and 1 and the value of the objective function
of the new position is larger. The objects of the update
operation include the velocity, position, rate, and loudness.
The objective function used in this study is the number of
conserved edges. The more conserved edges, the larger the
objective function.

In each iteration, the individual with the highest score is
chosen as the optimal solution in the population. When
BatAlign runs T iterations or the optimal solution remains
the same after N times, the optimal solution is output as
the final alignment.

3. Results and Discussion

3.1. Experimental Dataset. Synthetic networks were used,
retrieved from the NAPAbench2 [40], which was a synthet-
ically constructed network alignment benchmark including
three types of networks: Crystal Growth (CG), Duplication
Mutation Complementation (DMC), and Duplication with
Random Mutation (DMR). The number of nodes and edges
of the three networks is shown in Table 1.

The dataset of the real networks was obtained from the
BioGRID database [41]. The test species includes the Rattus
norvegicus (RN), Schizosaccharomyces pombe (SP), Cae-
norhabditis elegans (CE), and Mus musculus (MM). The
information of the real networks is provided in Table 2.

The similarity scores in the BioGRID datasets were
BLAST bit scores computed by the BLAST package on NCBI
(https://www.ncbi.nlm.nih.gov/). Gene Ontology terms [42]
were used as standard functional annotations, and GO
annotations were extracted from NCBI’s Entrez Gene data-
base [43].

3.2. Evaluation Metrics. The network alignment quality was
evaluated in two aspects: topology and biology. The edge
conservation under an alignment has been evaluated using
three measures so far: Edge Correctness (EC) [27], Induced
Conservative Structure (ICS) [44], and Symmetric Substruc-
ture Score (S3) [32]. S3 has been shown to be superior to EC
and ICS, since EC only penalizes alignments from sparse
graph regions to dense graph regions. ICS only penalizes
alignments from dense graph regions to sparse graph
regions; however, S3 considers both aspects simultaneously.
S3 was used to evaluate the topological similarity of an align-
ment. The higher the S3 value is, the more analogous struc-
ture the alignment has conserved:

S3 was proposed in MAGNA, and it is formulated as

S3 = ∣f E1ð Þ ∣
∣E1∣+ E2 G2 f V1ð Þð Þð Þj j−∣f E1ð Þ ∣ , ð14Þ

where f : V1 ⟶V2 represents the alignment and ∣f ðE1Þ ∣
is the number of edges from the smaller network G1 that is
conserved by alignment. The formulation of f ðE1Þ is as fol-
lows in Equation (15). ∣E2ðG2ð f ðV1ÞÞÞ ∣ is the number of
edges from the induced subnet of G2 with the aligned node
set. The formulation of f ðV1Þ is as follows in Equation (16):

f E1ð Þ = f uð Þ, f vð Þð Þ ∣ u, vð Þ ∈ E1 : f uð Þ, f vð Þð Þ ∈ E2f g, ð15Þ

f V1ð Þ = f uð Þ ∣ u ∈ V1, f uð Þ ∈ V2f g: ð16Þ
The network alignment biological quality was evaluated

by two measures, including Gene Ontology consistency
(GOC) [45] and Average Functional Similarity (AFS) [46].
The high GOC and AFS values indicate the high functional
consistency of the alignment.

GOC is based on the Gene Ontology (GO) consistency
of the aligned pairs of proteins. GO terms describe some bio-
logical properties of a protein such as Cellular Component
(CC), Molecular Function (MF), and Biological Process
(BP). Proteins with similar GO terms are supposed to be
functionally similar. GOC can be computed as follows in

GOC u, f uð Þð Þ = 〠
u∈V1

GO uð Þ ∩GO f uð Þð Þj j
GO uð Þ ∪GO f uð Þð Þj j , ð17Þ

where GOðuÞ denotes the set of GO terms annotating a pro-
tein u.

AFS is calculated based on the semantic similarity of the
GO terms and depends on the distance between them in the
ontology. Semantic similarity measures can be used to calcu-
late the functional similarity in each category of BP, MF, and
CC. The semantic similarity is calculated using a graph-
based method, Wang. The detailed work of the Wang
method is illustrated in [47]. AFS is defined as follows in

AFSc =
1
V1j j × 〠

u∈V1

sc u, f uð Þð Þ, ð18Þ

where sc is the semantic similarity of nodes u and f ðuÞ, for

Table 1: Information of the synthetic networks. �k represents the
average degree of the network.

Data Network Nodes Edges �k

CG
A 3000 11987 7.991

B 4000 15987 7.994

DMC
A 3000 23700 15.8

B 4000 34206 17.103

DMR
A 3000 30910 20.607

B 4000 44386 22.193

Table 2: Information of the real networks. The species names are
mentioned in the first col of the table. The number of nodes and
edges are presented in the second and third col, respectively. The
fourth col represents the average degree of the network.

Network Nodes Edges �k

RN 2682 4604 3.433

SP 3269 10953 6.701

CE 6058 16463 5.435

MM 7282 21811 5.990
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type cðc ∈ fBP, MF, CCgÞ, calculated by Wang. GoSemSim
[48] was used for semantic similarity calculation.

3.3. Experimental Results and Analysis. The number of iter-
ations in BatAlign was set to 1000; the size of the population
was set to 40; N = 10; that is, when the optimal solution is
not updated after 10 times, the current optimal solution
was output as the final alignment result. BatAlign makes
use of parameter α in Equation (1), where α determines

the relative importance of sequence and topological similar-
ity. Meanwhile, α = 1 implies that only sequence information
was used. In order to ensure the fairness of the comparison,
parameter α was set to 0:4 in all the algorithms that use
alpha to control the weight of topological similarity and
sequence score, and this value was also recommended by
ModuleAlign.

To verify the effectiveness of the BatAlign, the algorithm
was tested on synthetic and real networks and compared to

CG DMC DMR

0

500

1000

1500

2000

2500

G
O

C

NETAL
ModuleAlign
L-GRAAL

MAGNA
IBNAL
BatAlign

Figure 8: GOC of the different algorithms on synthetic networks.

CG DMC DMR
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0.6
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0.8

S3

NETAL
ModuleAlign
L-GRAAL

MAGNA
IBNAL
BatAlign

Figure 7: S3 of the different algorithms on synthetic networks.
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several state-of-the-art algorithms (i.e., NETAL [31], Modu-
leAlign [35], L-GRAAL [30], MAGNA [27], and IBNAL
[37]). NETAL only adopts topological information to con-
struct the alignment. ModuleAlign is an algorithm based
on modularity. L-GRAAL is the representative of the
GRAAL family algorithms and integrates Graphlet degree
similarity and sequence similarity. MAGNA uses a genetic
algorithm, only considers the topological similarity, and is
based on the objective function. IBNAL makes use of a novel
clique-based index.

The performance of the algorithms is evaluated in
Figure 7, based on S3 on the synthetic networks. In CG net-
works, the performance of BatAlign was inferior compared
to L-GRAAL, NETAL, and ModuleAlign, and S3 of BatAlign
was 1.3-120 times higher than IBNAL and MAGNA. In the
DMC networks, the score of BatAlign was 0.1-3.8 times
higher than NETAL, MAGNA, and IBNAL. In DMR net-

works, the performance of BatAlign was inferior to Modu-
leAlign, L-GRAAL, and NETAL. S3 of BatAlign was 3.8-4.6
times higher than MAGNA and IBNAL. The results show
that the quality of the BatAlign is medium.

The algorithms based on the GOC score on the syn-
thetic networks are compared in Figure 8. BatAlign pre-
sented good biological scores in DMC, while its score was
slightly lower than ModuleAlign, outperforming the other
algorithms. The score of BatAlign was lower than Modu-
leAlign and L-GRAAL in CG and DMC, while its perfor-
mance was good compared to the other aligners. The
topology of the real network is more complex than that of
the synthetic network. Although the performance of BatA-
lign was not as good as ModuleAlign and L-GRAAL in syn-
thetic networks, BatAlign performed well in real networks.
BatAlign can identify functionally consistent proteins,
which is helpful to biological research.

RN-SP RN-CE RN-MM SP-CE SP-MM CE-MM
0.0

0.2

0.4

0.6

NETAL
ModuleAlign
L-GRAAL

MAGNA
IBNAL
BatAlign

S3

(a)

NETAL
ModuleAlign
L-GRAAL

MAGNA
IBNAL
BatAlign

RN-SP RN-CE RN-MM SP-CE SP-MM CE-MM
0

50
100
150
200
250
300
350
400
450
500

GOC

(b)

Figure 9: The performance of the different algorithms on real networks. (a) S3 and (b) GOC of the different algorithms on real networks.
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Figure 10: Continued.
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Figure 9 shows the results of the different algorithms on
the real networks. The BatAlign performance with respect to
S3 was low, while BatAlign outperformed other aligners in
terms of GOC; in particular, the alignment between RN
and MM achieved an excellent biological score, which may
be because these two species were closely related in genetic
relationship. NETAL performed best with respect to the S3

score, but it had a very low GOC score, may be because
NETAL is a topological-only method; it can realize high
topological quality at the expense of the biological quality.
However, GOC carries more importance metrics than S3 as
a metric. In Figure 9, S3 of ModuleAlign and MAGNA was
higher than BatAlign, but they scored low GOC values,
and their alignment result may miss node pairs with high
functional similarity. The results showed that BatAlign per-
formed much better than IBNAL in terms of S3 and GOC
scores. The GOC of BatAlign was slightly lower than L-
GRAAL when aligning RN and CE. However, BatAlign
was superior to L-GRAAL when aligning other networks.

AFS provides an alternative way to describe the biologi-
cal quality of an alignment. Figure 10 represents the perfor-
mance of each aligner in terms of AFS. The AFS of BatAlign
was 20-50%, 19-54%, and 11-43% higher than NETAL,
ModuleAlign, MAGNA, and IBNAL aligners, in terms of
BP, MF, and CC, respectively. The performance of L-
GRAAL was higher than BatAlign when mapping RN to
CE and CE to MM. On the other hand, BatAlign outper-
formed L-GRAAL, when mapping other networks. Overall,
BatAlign has good biological quality compared to other aligners.

On synthetic networks, BatAlign had high GOC scores
among selected aligners and competitive S3 scores. On real
networks, BatAlign performed well in terms of the biological
score with a relatively high topological score. Thus, BatAlign
reached a relatively high topological quality and a superior
biological quality. Experiments showed that BatAlign may
be a useful tool for predicting the functions of unknown pro-
teins in less studied species through network alignment with
species that have been better studied.

4. Conclusions and Prospects

The BatAlign based on a discretized bat algorithm for the
global alignment of two networks is proposed in this paper.
BatAlign discretizes the bat algorithm and uses 0 or 1 to
represent the flying velocity. The population of BatAlign is
initialized according to the similarity score matrix. A new
solution is generated according to a global and a local search,
performed according to velocity. The number of conserved
edges is used as the objective function. BatAlign overcomes
the shortcoming of other search algorithms based on objec-
tive functions that initialize the population randomly and
can only rely on a larger population and many iterations to
find the optimal solution. The results of BatAlign are com-
parable to other state-of-the-art aligners. Experiments
showed that BatAlign is a pairwise biological network global
alignment algorithm that performs well in terms of biologi-
cal quality. Future work will include parallelization of the
BatAlign and expansion from two to multiple networks.

CC

RN-SP RN-CE RN-MM SP-CE SP-MM CE-MM

0.12
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0.16

0.18
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0.26

0.28

0.30

0.32

0.34

NETAL
ModuleAlign
L-GRAAL
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Figure 10: The AFS of the different algorithms on real networks. (a) AFS with respect to BP; (b) MF and (c) CC of the different algorithms
on real networks, respectively.
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