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Background and Objective. Accurate segmentation of retinal vessels is considered as an important prerequisite for computer-aided
diagnosis of ophthalmic diseases, diabetes, glaucoma, and other diseases. Although current learning-based methods have
greatly improved the performance of retinal vessel segmentation, the accuracy could not meet the requirements of clinical
assistance yet. Methods. A new SERR-U-Net framework for retinal vessel segmentation is proposed, which leverages
technologies including Squeeze-and-Excitation (SE), residual module, and recurrent block. First, the convolution layers of
encoder and decoder are modified on the basis of U-Net, and the recurrent block is used to increase the network depth.
Second, the residual module is utilized to alleviate the vanishing gradient problem. Finally, to derive more specific vascular
features, we employed the SE structure to introduce attention mechanism into the U-shaped network. In addition,
enhanced super-resolution generative adversarial networks (ESRGANs) are also deployed to remove the noise of retinal
image. Results. The effectiveness of this method was tested on two public datasets, DRIVE and STARE. In the experiment
of DRIVE dataset, the accuracy and AUC (area under the curve) of our method were 0.9552 and 0.9784, respectively, and
for SATRE dataset, 0.9796 and 0.9859 were achieved, respectively, which proved a high accuracy and promising prospect
on clinical assistance. Conclusion. An improved U-Net network combining SE, ResNet, and recurrent technologies is
developed for automatic vessel segmentation from retinal image. This new model enables an improvement on the accuracy
compared to learning-based methods, and its robustness in circumvent challenging cases such as small blood vessels and
intersection of vessels is also well demonstrated and validated.

1. Introduction

The essence of automatic segmentation of retinal vessel image
is to classify the vessel pixel and its surrounding pixels. In clin-
ical application, manual segmentation of retinal vessel is time-
consuming and labor-intensive, which is also highly depen-
dent on clinician’s experience. With the explosion of retinal
image data, computer-aided segmentation of retinal vessels

has attracted more and more attention [1]. Currently, auto-
matic retinal vessel segmentation methods can be divided into
two categories: machine learning- (ML-) based and deep
learning- (DL-) based approaches.

For the unsupervised ML-based method, Chaudhuri et al.
[2] designed a 2D Gaussian matched filter for the retinal
vascular segmentation, and then, other methods based on
vascular morphology and specific rules of pixels emerged,
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such as the morphological processing method proposed by
Yang et al. [3], which first enhanced vascular features and
suppressed background information, and then utilized fuzzy
clustering to achieve vascular segmentation. Zhao et al. [4]
proposed a deformable model-based method, which used
the regional information of different vascular types to fulfill
segmentation. Li et al. [5] optimized the matched filtering
method for vascular segmentation and width estimation. In
summary, the unsupervised ML-based method is known for
fast speed, but it tends to result in low precision.

For the supervised ML-based methods, thanks to the
manually labeling process, the training model is much
strengthened, and thus, it is more reliable than unsupervised
ML methods in vascular feature extraction. Staal et al. [6]
used the KNN algorithm to classify each pixel, compared
the features in the training set with the corresponding feature
in the test set, and extracted the most similar top k data, so as
to obtain the classification with the highest frequency. Soares
et al. [7] first used a 2D filter to extract the overall features of
the retinal image and then employed the naive Bayes to
classify the retinal background and vessels. Ricci and Perfetti
[8] extracted the green channel of retinal image in prepro-
cessing and then employed SVM for segmentation according
to the difference of vascular width. Fraz et al. [9] proposed a
method of combining AdaBoost and Bagging algorithms,
which integrates the feature vectors with the binary classifica-
tion model, and using the supervision method to perform
automatic analysis of retinal images. In general, the accuracy
of supervised ML-based method is greatly improved;
however, it cannot properly adapt to the shape, scale, and
geometric transformation of blood vessels and thus tend to
result in low robustness in the segmentation of small vessels
and their intersections.

For the DL-based methods, due to the improvement of
computer hardware, these approaches are able to provide accu-
rate prediction of vascular and nonvascular pixels, with the
description of vascular scale, shape, and multiple curvature
information. Among them, the Convolution Neural Network-
(CNN-) based method has been attracted extensive attention
by scholars, and thanks to its ability of automatically extracting
feature information from high-dimensional dataset. Fu et al.
[10] used Fully Convolutional Networks (FCN) to produce a
vessel probability map and obtained high accuracy and sensi-
tivity on the DRIVE and STARE datasets. Mo and Zhang
[11] used an auxiliary classifier in the middle layer of CNN to
solve the vanishing gradient problem. Jiang et al. [12] proposed
a modified end-to-end deep FCN to improve the accuracy of
small blood vessel segmentation. Dharmawan et al. [13] pro-
vided a new blood vessel data enhancement method and com-
bined it with U-Net to improve the accuracy of segmentation.

With the development of semantic segmentation [14],
many DL-based network models have been proposed. These
models confirm that deeper networks are more suitable for
image segmentation tasks [15]. However, problem such as
the vanishing gradient makes it difficult to train deep models.
One solution is to utilize the optimized activation function
(e.g., ReLU or ELU) for such problem [16]. Another method
is proposed by He et al. [17], who used the function mapping
to train a deep residual model to overcome this problem.

2. Related Work

We briefly review the related works, including U-Net, recur-
rent block, ResNet, and Squeeze-and-Excitation.

2.1. U-Net. Among numerous methods of medical image seg-
mentation, U-Net [18] is considered to be one of the most
successful methods, which is composed of convolutional
encoder and decoder unit, with several advantages for seg-
mentation tasks. First, it allows the use of both global features
and context information. Second, it can accomplish the train-
ing work with limited samples and achieve prior perfor-
mance. Third, it processes the entire image end-to-end and
generates the segmentation result directly. The above three
characteristics ensure U-Net retains the complete context
information of the input image, which is a great advantage
compared with other patch-based methods [19].

2.2. Recurrent Block and ResNet. Different improved models
of U-Net model have also been proposed. Compared with
traditional U-Net, the performance of the network training
has been improved, with superior convergence. Meanwhile,
the promotion of skip connection for medical image segmen-
tation task has also been verified. Specifically, by adding
recurrent structure [20], the network level of U-Net is deep-
ened, and a superior learning effect is acquired by stacking
several ordinary convolution blocks. In addition, to solve
the network optimization problem, the residual network
(ResNet) is proposed [21], which makes it possible to train
CNN more deeply. Lian et al. [22] proposed a globally and
locally enhanced residual U-Net for accurate retinal vessel
segmentation, and the experimental results of the network
on two datasets proved the effectiveness of the method.

2.3. Squeeze-and-Excitation. Squeeze-and-Excitation net is a
new network structure proposed by Hu et al. [23]. It auto-
matically acquires the importance of each feature channel
via learning, captures features according to this importance,
and discards features that are not important to the current
task. Although the structure increases the number of param-
eters and calculation burden in the original classification net-
work, it achieves better results. Based on the fusion of fully
connected and multiplicative features, SE could implement
an attention mechanism. Guo et al. [24] proposed a residual
spatial attention network (RSAN) for the retinal vessel
segmentation, which not only be used to construct a deep
network for deriving more complex vessel features, but also
effectively eliminates overfitting problem.

The proposal of abovementioned semantic-level net-
works provides new ideas for the segmentation of retinal ves-
sels and become important theoretical basis of the proposed
method. This paper leverages the above technologies to pro-
pose a new end-to-end automatic segmentation framework
for retinal vessels.

The main contributions of this paper are as follows:

(i) On the basis of the U-Net network, the convolu-
tional layers of the upsampling and downsampling
parts are modified, and the recurrent block is used
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to increase the network depth and obtain higher
segmentation accuracy

(ii) The residual module is used to alleviate the vanishing
gradient problem caused by the increased network
depth, promote the model to converge faster, and
achieve the purpose of training a deeper network

(iii) By introducing attention mechanism into the U-
shaped network, SE structure can adaptively extract
the retinal image features, while suppressing irrelevant
regions, ensuring that the network can focus on fea-
tures related to the blood vessel segmentation task

The rest of the paper is organized as follows: Section 3
introduces the image preprocessing and the proposed network
architecture; Section 4 focuses on the experimental results and
analysis; Section 5 discusses and summarizes the whole paper.

3. Method

In this paper, we propose a SERR-U-Net for retinal vessel
segmentation, which consists of two main steps: (1) image
preprocessing and (2) proposed network architecture.

3.1. Image Preprocessing. For the best learning efficiency and
higher accuracy, the image is preprocessed first, with the
flowchart shown in Figure 1.

3.1.1. Detail Enhancement. The retinal images used are RGB
images. In order to improve the accuracy of segmentation,
this paper uses the ESRGAN method [25] to preprocess the
retinal images, which is a popular perceptual-driven method
for single-image super-resolution reconstruction. By this
means, the contrast of the retinal image increases, the gap
between the contour of the vessel and the background is
sharpened, and the noise is reduced, which is beneficial to
the subsequent vascular segmentation. Furthermore, the
Contrast Limited Adaptive Histogram Equalization
(CLAHE) algorithm is employed to enhance local contrast.

3.1.2. Grayscale Conversion. The original color retinal image
was separated into 3 channels: red (R), green (G), and blue
(B). Figure 2 provides some examples. It can be seen that
among all the channel results, the green channel shows less
noise and high contrast between the vessel and the back-
ground; therefore, the green channel is selected as the input
data.
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Figure 1: Flowchart of image preprocessing.
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Figure 2: Individual channel representation of retinal images.
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3.1.3. Image Intensity Transformation. For the green channel
of the retinal image, first, standardized processing is adopted
to perform data centralization, thereby increasing the gener-
alization ability of the model. Then, the normalization pro-
cess is used to make the data distributed between 0 and 1,
so as to realize the unification of the measurement. Finally,
nonlinear gamma transformation is used to adjust the illumi-

nation intensity of the input retinal images and perform a
nonlinear operation on the intensity values, which makes
the intensity values of the input and output image constitute
an exponential relationship:

Vout = AVγ
in, ð1Þ

(a) (b)

Figure 3: Random cropping of vessels: (a) original images and (b) annotated images.
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Figure 4: The framework of the proposed SERR-U-Net.
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where A is a constant, and in the common case of A = 1, the
input and output values are typically in the range [0, 1]. V in
represents the grayscale value of the input image and takes
a value in the range [0, 1]. γ denotes the grayscale scaling
factor, which is used to stretch the image grayscale. Through
nonlinear gamma transformation, the overexposed or too
dark retinal images are corrected.

3.1.4. Data Augmentation. Due to the relatively small
amount of training data, data augmentation is performed
to reduce the influence of overfitting. In this paper, the reti-
nal images are rotated at random angle to simulate different
acquisition environments, and moreover, patches are
extracted from 20 DRIVE and 10 STARE training images
via random cropping. As a result, a set of 285,000 patches
is generated. Figure 3 shows an example of random cropping
results of retinal images.

3.2. Proposed Network Architecture. The proposed SERR-U-Net
(our code is available at https://github.com/lixiang007666/
SERR-U-Net-Retinal-Vessel-Segmentation) in this paper is a
modification of U-Net. It is inspired by SE, ResNet, and tradi-

tional recurrent network and refers to some ideas from the
recurrent residual CNN-based U-Net (R2U-Net) [26]. The
Conv+ReLU structures of the U-Net encoder and decoder
are changed to SE-ResNet module and recurrent block struc-
ture. Since the network depth is increased, the residual struc-
ture of ResNet is used to avoid the vanishing gradient
problem caused by the increased network depth.

Figure 4 provides the framework of the proposed SERR-
U-Net. Firstly, the codec of U-Net is replaced with the
Conv+ReLU structures, and meanwhile, the SE-ResNet mod-
ule and recurrent blocks are added, which inherits the sym-
metrical characteristic of the U-Net. Similarity, the hidden
layer is also composed of a downsampling part and an
upsampling part. The difference is that, when skipping and
connecting, instead of U-Net cropping and splicing, a cascad-
ing operation based on feature summation of different time
steps is adopted to obtain more features of lower level.

The detailed parameters of the SERR-U-Net are listed in
Table 1. The network includes two parts: encoder and
decoder, each of which consists of multiple blocks. The
encoder block contains three parts: a convolution layer, an
SE block, and a maximum pooling layer. Each convolution

Table 1: Details of SERR-U-Net.

Block name Layer (type) Output size Params

Input (inputlayer) (48, 48, 1) 0

Encoder block (1)
Conv2d_1 (Conv2D) (48, 48, 16) 2320

B_N(Batch Normalization) (48, 48, 16) 64

SE_block_1 (SE-ResNet)

Max_pooling2d (maxpooling2D)

Encoder block (2)
Conv2d_2 (Conv2D) (24, 24, 32) 9248

B_N(Batch Normalization) (24, 24, 32) 128

SE_block_2 (SE-ResNet)

Max_pooling2d (maxpooling2D)

Encoder block (3)
Conv2d_3 (Conv2D) (12, 12, 64) 36928

B_N(Batch Normalization) (12, 12, 64) 256

SE_block_3 (SE-ResNet)

Max_pooling2d (maxpooling2D)

Encoder block (4)
Conv2d_4 (Conv2D) (6, 6, 128) 147712

B_N(Batch Normalization) (6, 6, 128) 512

SE_block_4 (SE-ResNet)

Encoder block (5)
Conv2d_5 (Conv2D) (6, 6, 128) 147712

B_N(Batch Normalization) (6, 6, 128) 512

Up_sampling2d (upsampling2D)

Decoder block (6)
Conv2d_6 (Conv2D) (12, 12, 64) 36928

B_N(Batch Normalization) (12, 12, 64) 256

Up_sampling2d (upsampling2D)

Decoder block (7)
Conv2d_7 (Conv2D) (24, 24, 32) 9248

B_N(Batch Normalization) (24, 24, 32) 128

Up_sampling2d (upsampling2D)

Decoder block (8)
Conv2d_8 (Conv2D) (48, 48, 16) 2320

B_N(Batch Normalization) (48, 48, 16) 64

Conv2d_9 (Conv2D) (48, 48, 1) 0
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layer is followed by a BN and a ReLU processing. The struc-
ture of the decoder block is similar to the encoder block,
except that it employed a transposed convolutional layer
instead of the pooling layer. Based on the above framework,
the parameter number we used is 370,817 in all.

This paper proposes a combination structure of the SE-
ResNet module and the recurrent module. First, a recurrent
module is added to the common “Conv+ReLU” layer, and
then, the structure is stacked. Through this processing, a
deeper network is obtained, which is conducive to higher
accuracy. Second, a residual structure was inserted between
the input layer and the output layer, which could avoid the
vanishing gradient problem effectively as the network depth
increases. Lastly, based on the above structure, we modify
the traditional ResNet module to SE-ResNet module, so as
to introduce attention mechanism. This structure can prop-
erly fit the complex correlation between channels and reduce
the number of parameters and calculation burden caused by
the increased network depth.

Figure 5 shows the two most important parts of attention
mechanism: full connection layer and feature multiplication
fusion. Suppose that the input image H ×W × C is stretched
into dimension of 1 × 1 × C through global pooling and full
connection layer and then multiplied by the original image,
and meanwhile, each channel is given the corresponding
weight to achieve the purpose of feature fusion. In addition,
in the denoising task, each noise point is assigned a weight,
the low-weight noise points are automatically removed, while
the high-weight noise points are retained, and the parameter
calculation is reduced. This is why the SE module is consid-
ered as an attention mechanism.

The proposed network allows the use of global position-
ing to obtain context information at the same time, which

is appropriate for retinal image segmentation. The pipeline
architecture at each level allows the global information of
the model to be retained. Besides, the added recurrent mod-
ule could effectively increase the depth of the network, while
the SE residual module solves the vanishing gradient prob-
lem, and the added attention mechanism reduces the diffi-
culty of understanding the model during training.

Considering that in the practical process of retinal
images, the image dataset may be blurred or deformed due
to factors such as illumination, weather, and the shaking of
the collection equipment, which results in difficult follow-
up processing. In order to optimize low-quality pictures,
the ESRGAN [25] technology was utilized in this paper to
generate realistic textures in super-resolution processing of
single image and meanwhile suppress artifacts.

3.3. Loss Function. The purpose of the segmentation of the
retinal vascular images is to classify the pixels as vessels and
background in the images. However, since almost 90 percent
pixels of the retinal image belong to the background, while
the other 10 percent belong to the vessels [27], thus the
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Figure 5: Recurrent and residual module with attention mechanism.

Table 2: The division of datasets for training, validation, and test.

Database Training Validation Test

DRIVE 20 images (190000 patches) 4 images (38000 patches) 20 images

STARE 10 images (95000 patches) 2 images (19000 patches) 10 images

Table 3: The detailed training parameters of implementation.

Parameters Value

Learning rate 0.001

Learning step 5

Patch size 96 × 96
Downsampling ratio 500

Batch number 25

Epoch 20
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training of the network is likely to stop at a local optimal value,
and the segmentation target would be more inclined to the
background. In view of such imbalance problem, Dice coeffi-
cient [19] is more suitable than CE (Cross-Entropy); therefore,
Dice coefficient was chosen as the loss function for the net-
work optimization, which we aim to minimise. A differentia-
ble approximation of Dice loss is defined as follows:

Ldice = 1 −
2∑N

i pigi

∑N
i p2i +∑N

i g2i
, ð2Þ

where pi represents a vector of the predicted binary segmenta-
tion and gi represents a vector of the ground truth. By employ-
ing the above loss function, the complicated process of
defining weight coefficients could be avoided.

Moreover, in order to eliminate the instability of the loss
values and the validation dataset during the training process,
BN (Batch Normalization) layer and L2 regularization are
added into the framework in this paper to avoid the occur-
rence of overfitting. The purpose of adding a BN layer is to
normalize the input data and meanwhile improve the train-
ing efficiency of the proposed SERR-U-Net. The equation
of L2 regularization is as follows:

arg min
w

L wð Þ = Ldice wð Þ + λ wk k22: ð3Þ

The L2 regularization is the value of LðwÞ plus the squared
constraint of the L2 norm, where LdiceðwÞ represents the loss
function, and what this equation solves is the value of param-
eter w when the objective function LðwÞ gets the minimum
value. L2 regularization can not only prevent overfitting,
but also improve the generalization ability of the network,
so as to segment the retinal vascular images more efficiently.

4. Experiments

4.1. Dataset. The experiments were conducted on two pub-
licly available datasets DRIVE (https://http://drive.grand-
challenge.org/DRIVE/) and STARE (http://cecas.clemson
.edu/~ahoover/stare/probing). For the STARE dataset, it
includes 20 JPEG retinal images. Ten of the images are of
patients with no pathology (normals), and ten others contain
pathology that obscures or confuses the blood vessel appear-
ance in varying portions of the image (abnormals). The
image resolution is 605 × 700, and each image corresponds
to the manual annotated labels by two experts. For the
DRIVE dataset, it includes 40 retinal images, 7 of which have
symptoms of early diabetic retinopathy and 33 have no
symptoms of diabetic retinopathy. Its image resolution is
565 × 584, and each image corresponds to the results manu-
ally annotated by two experts with masks. Considering that
there are two manual segmentation results for the two public
datasets, we select one result as the golden standard, and the
other is used for qualitative comparison.

Wemanually divided the DRIVE and STARE datasets into
training sets and test sets with the ratio of 1 : 1. The detailed
division is shown in Table 2. For the DRIVE dataset, 20 images
were used for training, and 20 images for test; meanwhile, four
images were selected from the training set randomly for vali-
dation. For the STARE dataset, 10 images were selected for
training, while 10 others for test; also, two images were
selected from the training set randomly for validation.

Due to the limited amount of datasets in DRIVE and
STARE, to reduce the influence of overfitting, in addition to
the operations of L2 regularization and BN, the data augmen-
tation is also implemented. By augmenting the DRIVE and
STARE datasets, a set of 285,000 patches is obtained by
extracting 9,500 patches for each training image.

4.2. Implementation. The experiments were implemented on
a PC configured with Intel(R) Xeon(R) Silver 4110 CPU,
GPU RTX 2080Ti, RAM 64G, Ubuntu 18.04, and the model
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Figure 6: Training visualization: (a) ACC with increasing epoch, (b) loss with increasing batch, and (c) ACC with increasing batch.
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was implemented using Python 3.7 and Keras 2.2.5 frame-
work. In the training process, we use adaptive moment esti-
mation (Adam) [28] as the optimizer and employ
Tensorboard and Matplotlib for model visualization. The
detailed training parameters are listed in Table 3.

4.3. Evaluation Metrics. To evaluate the performance of the
proposed method, several metrics are used in this paper,
including accuracy (ACC), sensitivity (SE), specificity (SP),
and F1-score.

ACC is widely used for the task of binary classification,
which is defined as the proportion of correct predictions
(both true positives and true negatives) among the total num-
ber of cases examined. It is calculated as follows:

ACC =
TP + TN

TP + TN + FP + FN
, ð4Þ

where TP, TN, FP, and FN represent true positive, true neg-
ative, false positive, and false negative, respectively.

SE is also called recall or true positive rate. It measures
the proportion of actual positives that are correctly classified.
It is calculated as follows:

SE
recall

true positive rate

� �
=

TP
TP + FN

: ð5Þ

SP is also referred as true negative rate, which measures
the proportion of actual negatives that are correctly classified.
It is calculated as follows:

SP true negative rateð Þ = TN
TN + FP

: ð6Þ

F1-score measures the balance between recall and preci-
sion, where precision calculates the proportion of true posi-
tives in the total predicted positive results. Precision is

calculated as follows:

Precision =
TP

TP + FP
: ð7Þ

The highest value of F1-score is 1.0, indicating perfect
precision and recall, while the lowest value is 0, if either the
precision or the recall is zero. F1-score is defined as follows:

F1 = 2 ∗
precision ∗ recall
precision + recall

=
TP

TP + 1/2 FP + FNð Þ : ð8Þ

Besides, since the receiver operating characteristic (ROC)
curve is an important reference to measure the accuracy, it is
also plotted with SP as the abscissa and SE as the ordinate.
Moreover, the area under the curve (AUC) is utilized here,
which is indicated by the area from the ROC curve to the
two axes, and the closer the AUC is to 1, the better the
performance.

In the training process, this paper uses the mean intersec-
tion over union (MIOU) for evaluation, but not for optimiza-
tion. However, since it directly reflects the effect of the
algorithm, thus it plays a guiding role in the following exper-
iment. For a standard measure of semantic segmentation, it
calculates the ratio of intersection over union as follows:
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Figure 7: Overfitting analysis: (a) overfitting, (b) add BN layer, and (c) BN layer with L2 regularization.

Table 4: Comparing results of different ablation experiments on the
10 STARE images.

Methods AUC F1-score

U-Net 0.9793 0.8360

Recurrent+U-Net 0.9799 0.8383

SE-ResNet+U-Net 0.9834 0.8372

Recurrent+ResNet+U-Net (R2-U-Net) 0.9856 0.8474

Ours (SERR-U-Net) 0.9859 0.8478
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MIOU =
1

k + 1
〠
k

i=0

TP
FN + FP + TP

, ð9Þ

in which k + 1 represents the number of categories.

4.4. Quantitative Analysis on Training Efficiency. Figure 6(a)
shows the change of accuracy as the epoch increases during
the training process. It can be seen that in the early stage,
the network training curve converges quickly, and the learn-
ing efficiency of the model is higher. As training continues,
the slope of the training curve decreases gradually, and the
learning efficiency of the model slows down. When the num-
ber of training reaches about 13, the curve begins to be grad-
ually parallel to the axis of abscissa, indicating that the
learning efficiency of the network has reached saturation
and appears slight fluctuation.

Regarding the selection of batch size, if it is too large, it
would cause unstable and slow convergence and oscillating
of loss value. On the contrary, it will lead to a large amount
of calculation and high memory consumption. This experi-
ment finally determines 25 for the batch size. Figures 6(b)
and 6(b) show the change of loss and ACC as the batch
increases, respectively. As the batch input reaches 16 k, the
ACC peaks and the training loss drops to a minimum and
stabilizes.

As the number of epoch increases continually (as shown
in Figure 7(a)), the loss of training set gradually decreases
after the 20th epoch; however, the loss of validation set
increases. It is found a typical overfitting phenomenon,
which is due to the excessive iterations of weight learning
(overtraining) that fits the noise and the nonrepresentative
features of the training image.

In this paper, we solve the overfitting problem by adding
the BN layer and using L2 regularization. When only BN is
added, the loss of validation set fluctuates as shown in
Figure 7(b), while combined with L2 regularization, the loss
of validation set decreases gradually as shown in
Figure 7(c). Therefore, in the training, the BN layer enables
a correlation of all the samples in an input batch; thus, the
network would not generate a certain result from a specific
training sample, but it will still produce loss fluctuation.
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Recurrent + SE-ResNet + U-Net (SERR-U-Net)

Figure 8: Evaluation of ablation experiments on the 10 STARE images.

Table 5: Comparative results between our proposed method and
expert 2nd.

Database Method ACC AUC SP SE

STARE
Ours 0.9796 0.9859 0.9926 0.8220

Expert 2nd 0.9347 - 0.9382 0.8955

DRIVE
Ours 0.9552 0.9784 0.9813 0.7792

Expert 2nd 0.9464 - 0.9717 0.7796
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Moreover, by adding L2 regularization on this basis can effec-
tively avoid overfitting phenomenon.

4.5. Ablation Analysis. In this section, we conducted ablation
experiments and analysis based on our SERR-U-Net code.

Table 4 shows the AUC and F1-score obtained by the net-
work of different structures. For the U-Net, the final AUC is
0.9793, and the F1-score is 0.8360. For the recurrent+U-Net,
the AUC of the network increases to 0.9799, and the F1-score
increases to 0.8383. For the SE-ResNet+U-Net structure, the
AUC of the network is 0.9834, and the F1-score is 0.8372. For
the recurrent+ResNet+U-Net (R2-U-Net), the AUC and F1-
score of the network increase to 0.9856 and 0.8474,
respectively.

Compared to other structure, when the recurrent, SE, and
ResNet structures are utilized together, the AUC of the net-
work improves to the highest value of 0.9859, and the F1-
score improves to the highest value of 0.8478, which indicates
that the combination of the above structures enables a posi-
tive impact on the performance improvement of the other
U-Net-based methods.

For an evaluation of the whole ablation, the ratio of
AUC value F1-score was also calculated and shown in
Figure 8, in which the abscissa and ordinate represent
the AUC and the F1-score, respectively. The closer the
bubble is to the upper right corner, the better the perfor-
mance is. It can be seen that the bubble of our proposed
method (purple) is located in the top right and thus prov-
ing a superior performance.

4.6. Test Results on DRIVE and STARE Datasets. This section
conducts comparative experiments on the STARE and
DRIVE retinal image datasets and compares the results of
our proposed method with the contour manually annotated
by one of the experts (expert 2nd [9]). Table 5 shows the com-
parative results with several metrics including ACC, AUC,
SP, and SE.

As a result, the ACC of our proposed method is prior to
the annotation of expert 2nd; however, the SP and SE of the

(a) (b) (d) (e)(c)

(g) (i) (j)(h)

DRIVE

STARE

(f)

Figure 9: Segmentation results on DRIVE and STARE: (a, f) original retinal image; (b, g) grayscale conversion; (c, f) binarization; (d, i) our
result; (e, j) expert 2nd.

Table 6: AUC results of our proposed method on the 20 DRIVE images.

DRIVE AUC DRIVE AUC DRIVE AUC DRIVE AUC

21_test.tif 0.9874 26_test.tif 0.9651 31_test.tif 0.977 36_test.tif 0.9862

22_test.tif 0.9824 27_test.tif 0.9796 32_test.tif 0.9618 37_test.tif 0.9831

23_test.tif 0.9624 28_test.tif 0.9758 33_test.tif 0.9772 38_test.tif 0.9842

24_test.tif 0.9756 29_test.tif 0.9789 34_test.tif 0.9824 39_test.tif 0.9838

25_test.tif 0.9768 30_test.tif 0.9772 35_test.tif 0.9780 40_test.tif 0.9841

Table 7: AUC results of our proposed method on the 10 STARE
images.

STARE AUC STARE AUC

im0081.ppm 0.9829 im0044.ppm 0.9870

im0291.ppm 0.9826 im0001.ppm 0.9881

im0005.ppm 0.9899 im0002.ppm 0.984

im0235.ppm 0.9866 im0255.ppm 0.9864

im0004.ppm 0.9832 im0236.ppm 0.9868
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proposed method on the DRIVE dataset are slightly lower
than thosemanually annotated by expert 2nd. Themain reason
is that the proposed method is not as robust as that of expert
2nd yet, especially at the intersection of small blood vessels.

Figures 9(b) and 9(c) illustrated some typical grayscale
segmentation and binarization results on DRIVE dataset,
while Figures 9(g) and 9(h) provided the typical grayscale
segmentation and binarization results on STARE dataset.
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(a)
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R
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SERR-U-Net, AUC: 0.9859
U-Net, AUC: 0.0.9793

(b)

Figure 10: ROC of different models for retinal vessel segmentation: (a) DRIVE and (b) STARE.

(a) (b)

(c) (d)

Figure 11: Comparative results of the proposed SEER-U-Net and U-Net: (a) original image, (b) golden standard, (c) result of U-Net (red
arrow indicates the error at optic disc area, and blue arrow indicates the error at vessel branch area), and (d) result of our proposed method.
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By comparing the grayscale image, it can be seen that the
proposed SERR-U-Net in this paper properly separated the
vessel from its background and performed well both at the
branch of the vessel and the endpoint of small blood vessel;
thus, it is adaptable to the classification of multichannel images.

From Figures 9(d), 9(e), 9(h), and 9(i), we also found that
both the proposed method could achieve vascular segmenta-
tion comparative to manual annotation. However, the manual
labeling requires professional knowledge and patience. More-
over, the proposed method provided predication result with
higher contrast than that annotated by manual depiction.

Table 6 provided the AUC results of the proposed
method on the 20 DRIVE test images. It can be seen that
the proposed model achieved a stable segmentation, with a
minimal AUC value of 0.9618 and a maximal AUC value of
0.9874. Table 7 showed the AUC results of the proposed
method on 10 STARE images, with the minimal AUC value
of 0.9826 and the maximal AUC value of 0.9899.

To demonstrate the changes of sensitivity and specificity
of retinal vascular images with different thresholds, the ROC
curve is depicted, which takes the false positive rate (FPR) as
the abscissa and the true positive rate (TPR) as the ordinate.

Figure 10(a) shows the average ROC curve of the pro-
posed method on the DRIVE dataset, and the average AUC
reaches 0.9784. Figure 10(b) shows the average ROC curve
of the proposed method on the STARE dataset, and the aver-
age area under the curve (AUC) reaches 0.9859. The AUC
values on both datasets are higher than that of U-Net, which
proves a higher performance of the proposed method.

4.7. Qualitative Analysis on Intersection of Vessels and Small
Vessels. In Figure 11, we select some intersections of vessels
and the local area of small blood vessels to compare, in which

the red box highlights the contrast of the segmentation effect
of small blood vessels and vessel intersections.

By comparing the segmentation results of the original
image (Figure 11(a)), the gold standard image (Figure 11(b)),
the segmentation results of original U-Net (Figure 11(c)), and
our proposed method (Figure 11(d)), we can see that the U-
Net misclassifies some blood vessel area as the background at
part of the small vessel and the branch of the vessel (indicated
by blue arrow in Figure 11(c)), and the edge of the optic disc is
incorrectly depicted as the blood vessels (indicated by red
arrow in Figure 11(c)), which may cause negative impact on
the clinical diagnosis.

The result is attributed to high-density downsampling of
the proposed method, by which the feature information will
not be excessively lost, so as to ensure that the segmentation
of small blood vessels results in a higher accuracy, and the
segmentation details of small blood vessels and intersections
are retained to a greater extent, with a stable connectivity.

4.8. Quantitative Comparison with State-of-the-Art Methods. In
order to further illustrate the performance of the proposed
method in the retinal vessel segmentation, themethod proposed
in this paper is compared with some related state-of-the-art
methods [29–34] with the aforementioned evaluation metrics.

In Table 8, based on DRIVE database, our proposed
method obtained an ACC of 0.9552, SE of 0.7792, SP of
0.9813, and AUC of 0.9784. Compared with the unsupervised
learning method [29–31], the proposed method performs
better, mainly because the manually annotated labels are
used to strengthen the training model, and thus, the reliabil-
ity is higher. In addition, compared with the supervised
learning method [32–34], although our SP is slightly lower
than [32, 34], our other performances are superior.

Table 8: Comparative results with state-of-the-art methods on DRIVE databases.

DRIVE Methods ACC SE SP AUC

Unsupervised learning

Lam [29] 0.9472 \ \ 0.9614

You [30] 0.9434 0.7410 0.9751 \

Azzopardi [31] 0.9442 0.7655 0.9704 0.9614

Supervised learning

Roychowdhury [32] 0.9520 0.7250 0.9830 0.9620

Liskowsk [33] 0.9495 0.7763 0.9768 0.9720

Qiaoliang [34] 0.9527 0.7569 0.9816 0.9738

Ours 0.9552 0.7792 0.9813 0.9784

Table 9: Comparative results with state-of-the-art methods on STARE databases.

STARE Methods ACC SE SP AUC

Unsupervised learning

Lam [29] 0.9567 \ \ 0.9739

You [30] 0.9497 0.7260 0.9756 \

Azzopardi [31] 0.9563 0.7716 0.9701 0.9497

Supervised learning

Roychowdhury [32] 0.9510 0.7720 0.9730 0.9690

Liskowsk [33] 0.9566 0.7867 0.9754 0.9785

Qiaoliang [34] 0.9628 0.7726 0.9844 0.9879

Ours 0.9796 0.8220 0.9926 0.9859
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In Table 9, based on the STARE database, our proposed
method obtained an ACC of 0.9796, SE of 0.8220, SP of
0.9926, and AUC of 0.9859. Compared with the unsupervised
learning method [29–31], our proposed method performs
better, mainly due to the fact that the feature information is
not excessively lost during the training process; thus, it is able
to accurately identify the vascular features. Compared with
the supervised learning method [32–34], the AUC value of
the proposed method is slightly lower than that of [34]; how-
ever, our proposed method achieved superior performance
on other performances.

The above results are mainly due to the ability of the pro-
posed SERR-U-Net on deriving the context features, texture
features, and other advanced features from the image. Spe-
cially, combined with SE, ResNet, and recurrent block, the
network depth is increased by recurrent structure, and the
attention mechanism is added to SE residual block to allevi-
ate the gradient dispersion problem caused by the increase
of network depth, and thus, the connectivity of small blood
vessels and bifurcations is well retained.

5. Conclusions

Automatic segmentation of blood vessels from retinal images
is a difficult problem in the field of medical image preprocess-
ing, which is due to the lower contrast between the retinal
vessels and the background, and uneven vessel width. This
paper proposes a SERR-U-Net framework to improve the
segmentation accuracy, which leverages the SE, ResNet, and
recurrent technologies. The framework is supposed to derive
more targeted feature information through SE and meanwhile
employ residual structure to avoid the vanishing gradient
problem caused by the increased network depth. Themodified
convolution layer enables high-density feature sampling to
obtain vessel information of different sizes, which can properly
represent the features of specific segmentation task.

The experimental results on DRIVE and STARE datasets
show that the proposed method could achieve high accuracy
that is comparable to manual annotation on retinal vascular
segmentation. Specifically, it maintains a good performance
in handling small blood vessels and blood vessel branches,
which indicates a promising prospect in clinical assisted
diagnosis. For the follow-up study, we would pay more atten-
tion on the segmentation method of retinal vascular with
lesions and meanwhile reduce the training time.

Data Availability
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