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Acute myocardial infarction (AMI) is one of the most serious and dangerous cardiovascular diseases. In recent years, the number
of patients around the world has been increasing significantly, among which people under the age of 45 have become the high-risk
group for sudden death of AMI. AMI occurs quickly and does not show obvious symptoms before onset. In addition, postonset
clinical testing is also a complex and invasive test, which may cause some postoperative complications. Therefore, it is necessary to
propose a noninvasive and convenient auxiliary diagnostic method. In traditional Chinese medicine (TCM), it is an effective
auxiliary diagnostic strategy to complete the disease diagnosis through some body surface features. It is helpful to observe
whether the palmar thenar undergoes hypertrophy and whether the metacarpophalangeal joint is swelling in detecting acute
myocardial infarction. Combined with deep learning, we propose a depth model based on traditional palm image (MTIALM),
which can help doctors of traditional Chinese medicine to predict myocardial infarction. By building the shared network, the
model learns information that covers all the tasks. In addition, task-specific attention branch networks are built to
simultaneously detect the symptoms of different parts of the palm. The information interaction module (IIM) is proposed to
further integrate the information between task branches to ensure that the model learns as many features as possible.
Experimental results show that the accuracy of our model in the detection of metacarpophalangeal joints and palmar thenar is
83.16% and 84.15%, respectively, which are significantly improved compared with the traditional classification methods.

1. Introduction

Acute myocardial infarction (AMI) is the myocardial necro-
sis caused by acute and persistent ischemia and hypoxia of
the coronary artery. It is the most serious and dangerous dis-
ease among cardiovascular diseases. In recent years, the
number of patients has shown an obvious upward trend,
among which the elites under the age of 45 in various indus-
tries have become the high-risk population prone to sudden
death of myocardial infarction due to work pressure, over-
time, and staying up late and other reasons. Therefore,
how to timely detect and diagnose the disease before the
onset and remind patients of prevention and maintenance
is a major problem in the field of medicine at present. How-

ever, there are still some problems in clinical detection and
diagnosis: first, the symptoms of patients with myocardial
infarction before onset are not obvious, although patients
will have chest pain and stuffy symptoms before the onset
of the disease; these symptoms are not typical clinical symp-
toms, and patients often take it lightly. Second, there is no
test for myocardial infarction in the routine physical exami-
nation. Although coronary angiography is the “gold stan-
dard” for the diagnosis of myocardial infarction, this
method still is expensive, complex and cumbersome, and
invasive. It will not only cause some harm to patients but
also cause some postoperative complications. As a result of
the above problems, the onset of myocardial infarction can-
not be treated in time, leading to a high mortality rate.
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Considering these problems with using traditional med-
ical techniques to diagnose AMI, it is necessary to develop a
noninvasive and convenient auxiliary diagnostic system to
detect and prevent this disease. Recently, many researchers
have attempted to implement and apply noninvasive
methods based on the combination of computerized analysis
and traditional Chinese medicine [1–4]. In many works
[5–15], emphasis has been placed on disease diagnosis based
on body surface features, which confirms the superiority and
rationality of noninvasive methods. Wang et al. [16]
designed a novel device to accurately capture tongue and
face images for diagnostic purposes. In addition, a new ton-
gue color space is proposed, which can represent tongue
images with 12 colors statistically. Their corresponding dis-
ease detection experiments demonstrated the effectiveness
of these colors. In addition, Kim et al. [17] proposed a diag-
nostic system for heart disease by utilizing the color distribu-
tion around facial images. Similarly, another work based on
facial images was used for hepatitis detection in [18] with an
average accuracy of 73.6%. Yang et al. [6] also proposed a
respiratory analysis system to diagnose diabetes based on
acetone concentration. Although the above studies demon-
strate the effectiveness of computer diagnosis in traditional
Chinese medicine, to our knowledge, there are few or no
studies on the application of hand images in the auxiliary
diagnosis of (AMI). In the aspect of hand diagnosis in tradi-
tional Chinese medicine, because it takes into account the
various body regions and characteristics that reflect the dif-
ferent states of our organs, when the human body has suf-
fered or will suffer from some diseases, there will often be
different shapes and colors on the specific parts of the
patient’s hand. For example, in people with heart disease,
many have bruising and turning blue or even purple in the
thenar area (the bulge of muscle under the thumb). Patients
with insufficient blood supply to the heart muscle will
appear to have the metacarpophalangeal joint swelling phe-
nomenon. Traditional Chinese medicine doctors can make
an accurate judgment on whether patients are at risk of
myocardial infarction by observing various features of the
hand or face. Therefore, many patients with AMI are more
inclined to be initially diagnosed by traditional Chinese
medicine doctors through inspection. However, hand diag-
nosis in traditional Chinese medicine requires diagnostic
physicians to have many years of medical experience. Differ-
ent physicians have slightly different standards for hand
diagnosis. As a result, the number of doctors is small, but
the number of patients is large, the waiting time of patients
is long, and doctors are under great pressure for diagnosis.
With the rapid development of deep learning technology,
how to combine traditional Chinese medicine hand diagno-
sis with artificial intelligence technology has become an
important issue.

However, in the prediction and diagnosis of AMI by
deep learning, more work focuses on the auxiliary prediction
and diagnosis of myocardial infarction based on electrocar-
diogram (ECG) data and Magnetic Resonance Imaging
(MRI) data. To our knowledge, there are no studies on the
diagnosis of myocardial infarction (MI) based on traditional
images. Baloglu et al. [19] achieved good results in the diag-

nosis of AMI by constructing an end-to-end deep learning
model based on standard 12-lead ECG signals. Wei et al.
[20] used Tunable Quality Factor (Q-Factor) Wavelet
(TQWT) for Variational Mode Decomposition (VMD).
The representative features were extracted by phase space
reconstruction (PSR) and other methods, and then, the neu-
ral network modeling was used for myocardial infarction
detection. Many recent studies [21–23] have achieved cer-
tain results in the diagnosis of myocardial infarction by
using electrocardiogram data combined with a deep learning
algorithm. But these studies use medical data (ECG, MRI,
etc.) that are not readily available to the average person
before they know they have a heart attack. But people will
not obtain ECG, MRI, and other medical data without
knowing that they have a heart attack.

To solve the above problems, we hope to establish a
new depth model based on a traditional palm image,
which can well assist traditional Chinese medicine in pre-
dicting myocardial infarction disease. The originality of
our proposed approach has two main components. First
of all, although many studies have attempted scientific
work on the diagnosis of myocardial infarction, as far as
we know, no work has attempted to study myocardial
infarction through the combination of traditional Chinese
medicine hand diagnosis and deep learning. Our work is
a valuable attempt. In addition, our method can be com-
bined with the professional hand diagnosis knowledge of
TCM to simultaneously detect whether there are abnormal
phenomena such as hypertrophy and swelling in two parts
(metacarpophalangeal joints and palmar thenar) from the
palm image, so as to further improve the detection effi-
ciency. In conclusion, we propose a multitask interactive
attentional learning model (MTIALM) to predict AMI
based on hand images. Firstly, according to the hand
images of AMI patients collected by the cooperative com-
pany and the disease labels marked by professional TCM
physicians, we determined the optimal palm image size
through experiments, which was used as the input of the
whole model (Section 3.1). MTIALM is composed of a
shared network and two task-specific attention branch net-
works (task M: detection of metacarpophalangeal joint
swelling, task P: detection of palmar thenar hypertrophy).
Shared network learning contains the characteristic infor-
mation of all tasks (Section 3.2). For each task branch, soft
attention is applied to learn task-specific features after
extracting the output of different middle layers of the
shared network, and finally, classification is made (Section
3.3). We propose a new module for information interac-
tion (IIM) between tasks, which facilitates learning as
much information as possible between different task
branches (Section 3.4).

The contributions of this paper are as follows:

(1) We propose a new method of deep learning based on
a hand image to assist TCM diagnosis of AMI. A
multitask interactive attention learning model
(MTIALM) was designed to detect symptoms in
two parts of the palm simultaneously to improve
the diagnostic efficiency
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(2) A new information interaction (IIM) module is pro-
posed to make the information exchange between
different tasks better and make the model more tar-
geted for training

(3) The feasibility of this method is verified by experi-
ments. The palm image is input into our proposed
model, and the two tasks get their own classification
results, respectively. The results obtained by our
model have certain advantages compared with the
current popular classification models

2. Related Work

2.1. Attention Mechanism. An attention mechanism auto-
matically learns a group of weight coefficients through the
network and emphasizes the regions we are interested in in
the way of “dynamic weighting” and suppresses the irrele-
vant background regions at the same time. Inspired by the
attention mechanism in machine translation, Xu et al. [24]
published an article on the International Conference on
Machine Learning (ICML) in 2015, which first applied the
attention mechanism to the field of image description. It
proposes two mechanisms of hard attention and soft atten-
tion at the same time and uses visualization technology to
intuitively express the role of the attention mechanism. Hard
attention is a random prediction that emphasizes dynamic
change. Although it works well, its application is limited
due to its nondifferentiable nature. On the contrary, soft
attention is differentiable everywhere and can be obtained
by neural network training based on a gradient descent
method. Therefore, its application is relatively extensive.
Hu et al. [25] model the interdependence between channels
explicitly by building the “Squeeze-and-Excitation” block (SE
block). Li et al. [26] were inspired by the concept block and
SE block. From the perspective of multiscale features, they
introduce multiple convolution kernel branches to learn the
attention of feature graphs at different scales, so that the net-
work can focus more on important scale features. In addition,
He et al. [27] used the 1-dimensional sparse convolution oper-
ation to optimize the full-connection layer operations involved
in the SE module, so as to significantly reduce the number of
parameters and maintain a comparable performance.
Through two-parallel channel attention and spatial attention,
Park et al. [28] adopted expanded convolution to efficiently
expand the receptive field and finally generated the final 3D
attention MAP. Woo et al. [29] concatenated the two dimen-
sions of channel and space and used global average pooling
and maximum pooling to get the attention graph and then
multiplied the attention graph with the input feature graph
to refine the adaptive feature. Fu et al. [30] proposed a dual
attention network that adaptively combines local features with
global relevance and is used to solve the scene segmentation
task. Cao et al. [31] proposed a lightweight global context
modeling module that integrates spatial attention and channel
attention into one module.

2.2. Multitask Learning. Since many problems in the real
world cannot be decomposed into an independent subprob-
lem, even if they can be decomposed, each subproblem is

still related to each other and the rich correlation informa-
tion among problems will be ignored in the process of
decomposition. Therefore, multitasking learning is becom-
ing more and more important. In the context of deep learn-
ing, a multitasking network has the potential to improve
performance if the related tasks share complementary infor-
mation or can act as a regulator for each other compared to
the single-tasking situation. A lot of work [32–34] has dem-
onstrated that multitasking networks can not only signifi-
cantly reduce memory footprint and increase speed but
also have the potential to improve performance between
tasks. In hard parameter sharing, the parameter set is
divided into shared and task-specific operations. In soft
parameter sharing, each task is assigned its own set of
parameters (i.e., task-specific networks) and feature sharing
mechanisms handle the cross-task talk. UberNet [35] is the
first multihead design architecture across different network
layers and scales, handling low, medium, and advanced
visual tasks in a unified architecture. Cross-stitch networks
[36] use the linear combination activated in each layer of a
specific task network as a means of soft feature fusion. By
adopting the method of “single-tasking multiple tasks,”
Maninis et al. [37] enabled the network to highlight the fea-
tures suitable for the task through task-related feature adap-
tation or task attention. [38] considers the importance of
task interaction from a multiscale perspective. Teichmann
et al. [39] proposed a unified architecture for classification,
detection, and semantic segmentation tasks and greatly
increased the computational time from the perspective of
real-time applications. [40] proposes a joint task recursive
learning framework, which recursively refines the results of
two t5asks through serialized task-level interactions and ulti-
mately realizes a semantic segmentation and monocular
depth estimation task. Multitask learning is currently a hot
research field. The main idea is to learn multiple related
tasks from a dataset at the same time. As an important
research direction in multitask learning, an association rule
mining (ARM) algorithm oriented to multitask has hardly
been studied so far [41, 42]. The standard ARM algorithm
discovers rules from the entire dataset instead of task-based,
ignoring the relationship between tasks. [43] proposed the
research of ARM based on multitask for the first time. It dis-
covers rules by considering multiple tasks jointly. All the
studies mentioned above have proven from different angles
that multitask simultaneous learning can improve the learn-
ing ability of each individual task.

3. Materials and Methods

The overview of the proposed method is shown in Figure 1.
We now introduce our proposed multitask-based attention
learning framework model, which can be well applied to
the hand-assisted diagnosis of AMI. Firstly, we preprocessed
the collected palm image to obtain the region of interest
(ROI) image and input it into the shared network to extract
the common features (note that this shared network can be
replaced with any popular classification network). Then,
we designed a set of attention modules for different tasks,
and these modules were combined with the common
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features extracted from the shared network to extract the
specific features of specific tasks. In addition, we propose
the information interaction module (IIM). It connects the
specific features of different tasks in a new way and fuses
the connected features to achieve further information inter-
action. We use a dimension reduction technique to reduce
the feature channels such that the output features satisfy
the channel dimension requirement of the next layers. We
will further explain the three components of MTIALM in
the following sections: the shared network, the task-specific
attention branch, and the information interaction module.

3.1. Data Preprocessing. In this paper, in order to minimize
the impact of environment, location, illumination, angle,
and other factors, RGB images of the hands were collected
with professional equipment. The device takes an image of
a patient’s hand at 1200 pixels by 1200 pixels, which is a
higher resolution than normal images. However, for hand
diagnosis of TCM, doctors of TCM seldom make diagnosis
according to the finger region, and the main area of concern

is the palm (the metacarpophalangeal joints, thenar, and
other areas). Therefore, it is not beneficial for our work to
directly input the original complete palm image as the model
input. In addition, due to the high resolution of the original
image, a deep neural network is needed for dimensionality
reduction in order to predict our classification task. How-
ever, when too many convolutional layers are used in the
network, a large number of parameters will be generated,
which will lead to the problem of model overfitting. If we
do not want to use too many convolutional layers, we need
to use downsampling operations to reduce the size of the
feature graph in order to meet the size requirements of the
network. However, this would lose a lot of useful features,
which would also be bad for our mission. In addition, a
too large background area contains too much irrelevant
information, which can cause the network to be unable to
effectively focus on the key information contained in the
ROI area. Therefore, we want the input of the model to
include the part of the palm region as far as possible and
avoid the interference of other regions (finger, wrist,
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Figure 1: The framework of the proposed MTIALM. The input is the processed palm image, and then, the feature is extracted by the shared
network (the shared network in the figure is ResNet-18). The shared network is connected to task-specific attention branch networks. There
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background region, etc.), so as to learn the correct mapping
relationship. Thus, we need to determine the optimal image
size as an input to the overall model to ensure that we get as
much useful information as possible.

At this point, we get an input image X ∈ RðH,W, CÞ
with rich information, where H and W are the height and
width of the patch image, respectively, and C is the number
of channels of the patch image. In order to ensure that the
palm area is located in the center of the image (patch), we
labeled the area of interest in the image by referring to the
professional diagnosis and treatment experience of a TCM
doctor with 20 years of experience. In the natural unfolding
state of the palm, as shown in Figure 2, the demarcation
points between the middle finger and the palm were marked
as Y1, the demarcation points between the palm and the
wrist were marked as Y2, the demarcation points between
the thumb and the palm were marked as X1, and the bound-
ary on the other side of the palm was marked as X2. Then,
ΔX and ΔY (ΔX: 423 ± 16:26, ΔY : 439 ± 27:15) are calcu-
lated as equation (1). Finally, as shown in equation (2), the
larger one of the two values is selected to obtain Psize. Psize
is taken as the height and width of patch image size and is
intercepted.

ΔX = X1 − X2j j
ΔY = Y1 − Y2j j

( )
, ð1Þ

Psize = max ΔX, ΔYh i: ð2Þ
As shown in Figure 3, in order to ensure that the entire

palm region is included in the patch image, we counted the
Psize corresponding to the palm region in all the palm images

and finally found that the Psize of most samples was less than
460. Therefore, we decide to set the size of the patch image
as 460 and feed it into the neural network as the input of
the model.

3.2. Shared Network. The proposed multitask attention
learning model (MTIALM) consists of three parts: the
shared network for extracting common features, the atten-
tion network corresponding to each specific task, and the
information interaction module (IIM) between tasks. The
shared network can be switched according to specific tasks.
After processing the data, we input it into the shared net-
work for extracting common features. We use ResNet-18
as a shared network in our work. The deep residual network
(ResNet) [44] has almost become the most widely used con-
volutional neural network (CNN) in the field of deep learn-
ing in recent years, and its main advantage is the shortcut
structure constructed based on the residual learning concept.

X1 X2

Y2

Y1

Δ Y = 528

(b) Patch image

453×528 528×528

Δ X = 453

Psize = ΔY

(a) Full-size palm image

1200×1200

Figure 2: Explanation of the patch process. This figure shows how to cut a full-size palm image (a) into a patch image. Through four marked
points ðX1, X2, Y1, Y2Þ, we can determine ΔX and ΔY . Based on the determined Psize, we can successfully extract the palm image without
fingers (b).

Psize

0 200 460400 600

Figure 3: Statistics of Psize. The figure shows that the size of most
palm areas is less than 460 pixels.

5Computational and Mathematical Methods in Medicine



In the forward convolution, convolution of each layer actu-
ally only extracts part of the image information. As a result,
the deeper the original image, the more serious the loss of
information. However, if only a small part of the features
in the original image is extracted, it is obvious that the phe-
nomenon similar to underfitting will occur. Adding a short-
cut structure is equivalent to adding all the information of
the previous image in each block. In this way, more of the
original information is preserved. When there is no shortcut,
all samples are classified by using the most complex features,
which is time-consuming and laborious. After adding a
shortcut, it is equivalent to retaining some simple features
for judgment, which not only accelerates the convergence
of the network but also reduces the loss of information.
For the proposed networks of different depths, such as
ResNet-18, ResNet-34, and ResNet-50, we determined to
use ResNet-18 as the shared network model after verification
(Section 4.3).

In addition, we also applied transfer learning to extract
common features by using the CNN model pretrained by
ResNet-18 on the ImageNet [45] dataset. As far as we know,
transfer learning requires that the source space and the tar-
get space are relatively similar. Because our hand images
are also ordinary images rather than grayscale images or
other medical images, we carried out network weight migra-
tion. This method can not only accelerate and optimize the
learning efficiency of the model but also avoid the overfitting
problem which may be caused by the small number of
datasets.

3.3. Task-Specific Attention Branch Networks. We use com-
mon features extracted from different layers of the shared
network to build task-specific attention modules. By cascad-
ing several attention modules together, a branching network
of attention is formed and features related to a particular
task are learned. As shown in Figure 1, the common features
at different levels extracted from the shared network are rep-
resented as f ðiÞ, i = 1,2,3,4,5. Then, the output of the atten-
tion module is expressed as f mðiÞ. It is worth noting that
the first attention module of each branch only takes as input
the shallowest common features extracted from the shared
network. We divide each attention module into two parts,
one of which is expressed as AMX-1 and the other as
AMX-2 (X is the serial number of the notice module). In
AMX-1, we conduct information fusion between the public
features and the output of the attention module of the previ-
ous layer and carry out feature extraction through the con-
volutional layer. As shown in equation (3), we express the
output of this stage as f ′ðiÞ:

f ′ ið Þ =
T G f ið Þð Þð Þ, i = 1

T G f ið Þ ⊕ f m i − 1ð Þð Þð Þ, i ≥ 2

( )
, ð3Þ

where ⊕ denotes the concatenation. G and T are convo-
lutional layers with batch normalization [46]. Batch normal-
ization is used to prevent overfitting of the model. G is
composed of a ½3 × 3� convolution kernel and activation
function ReLU, and T is composed of a ½1 × 1� convolution

kernel and activation function sigmoid. We use a ½1 × 1� con-
volution kernel in order to match the channel between the
output feature of the previous layer of the attention module
and the shared feature of this layer.

In order to better enable the network to learn the rele-
vant characteristics of specific tasks, we set the second part
AMX-2. In this part, we further exchange information
between the output of the IIM block (Section 3.4) and the
output of the previous part. As shown in equation (4), the
output of AMX-2 in the second part is the output of the
attention module f mðiÞ:

f m ið Þ =G f i ið Þ + 1
� �

⊙ f IIM ið Þ
� �

, i = 1: ð4Þ

Here, f IIMðiÞ denotes the output of the IIM block for
information interaction between branches. ⊙ denotes the
element-wise multiplication. The “+1” operation is a residual
identity mapping driven by [27, 47] that helps the network
learn more robust attention maps by avoiding exploding or
vanishes gradients (possibly caused by continuous layer-
by-layer multiplication). f mðiÞ is learned in a self-
supervised way through back propagation. Multiple atten-
tion modules are cascaded to extract high-expression feature
maps more effectively. After that, we use global average
pooling (GAP [48]) to replace the traditional fully connected
layer in the convolutional neural network. The idea is to
generate the corresponding feature map for each category
in the classification task.

3.4. Information Interaction Module. In this section, we
design a new method for information interaction between
different task branches. In the auxiliary diagnosis task of
myocardial infarction based on hand diagnosis of traditional
Chinese medicine, we believe that even though specific
branches of attention for different tasks focus on a certain
part of the hand for feature extraction, each branch of atten-
tion for different tasks still has information that is beneficial
to other branches of attention. Therefore, we build an infor-
mation interaction module (IIM), through which the fea-
tures of the same level in different attention modules of the
attention branches of two specific tasks are fused.

We want the IIM module to capture more information
that is useful for the specific task, rather than allowing spe-
cific task branches to fit freely without any interaction of
information. Therefore, the IIM module alternately uses
the output features of the attention modules of the two tasks
as the main information and reference information. Firstly,
the reference information features are given certain weight;
then, they are interacted with the main information features.
In this method, features with the same spatial resolution
from different task branches are connected and dimension-
ality reduction is performed. This is conducive to cross-
channel information interaction and helps the model to
extract more distinctive features.

As shown in Figure 4, the output of the IIM module is
mainly divided into two parts IIMi

M and IIMi
P (i represents

the information interaction between the i-th attention mod-
ule in the attention branch of two tasks). They represent the
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information interaction when different task branches are
used as the main information and reference information,
respectively. In particular, Fi

M,P ∈ℝH×W×C (H, W, and C
are the height, width, and channel number of the feature
graph, respectively) is defined as the output feature of the i
-th attention module in the attention branch corresponding
to task M or task P. In IIMi

M, task M is the main information
and task P is the reference information. In IIMi

P, task P is the
main information and task M is the reference information.
We define the weight of the reference information in IIMi

M
as λ1 and the weight of the reference information in IIMi

P
as λ2. As shown in equation (5), the output of the IIM mod-
ule can be defined as

IIMi
M = T1×1 Fi

M ⊕ λ1F
i
M

� �
, i ≥ 1

IIMi
P = T1×1 Fi

P ⊕ λ2F
i
P

� �
, i ≥ 1

( )
: ð5Þ

Here, T1×1 represents the convolution layer with the reg-
ularization and the convolution kernel of 1 × 1, and the
stride is 1. It is worth noting that we use the 1 × 1 convolu-
tion layer because the 1 × 1 convolution kernel is able to per-
form calculations based on channels only, rather than fusing
features of different spatial locations or changing the spatial
size of features. In this way, the information interaction
between channels is realized as well as dimension reduction.
We also used batch normalization to enable stable learning.
We train the IIM by backpropagating the task-specific losses
and the l2 weight decay loss on the 1 × 1 convolutional
weights.

3.5. Objective Function. Two of our tasks (task M, task P)
were classified tasks. Therefore, the softmax function is used
in the last layers of the two attention branches to predict the

palmar thenar detection task (task P) and the metacarpo-
phalangeal joint detection task (task M). As shown in equa-
tion (6), the cross-entropy loss of the palmar thenar
detection task is expressed as

Lt = − yt ⋅ log pt
� �

+ 1 − yt
� �

⋅ log 1 − pt
� �� �

, ð6Þ

where pt is the output of the model and yt is the true
label of the patient. For the loss of the metacarpophalangeal
joint detection task, as shown in equation (7), cross-entropy
loss is also adopted and expressed as

Lk = − yk ⋅ log pk
� �

+ 1 − yk
� �

⋅ log 1 − pk
� �h i

, ð7Þ

where yk is the output of the model and yk is the true
label of the patient. Finally, we define the total loss function
Ltotal as shown in

Ltotal σh, σkð Þ = 1
2σ2

h

Lh +
1
2σ2k

Lk + log σ2
h + log σ2

k: ð8Þ

Inspired by [49], we adopt the method of uncertain
weight to set task weight. σh and σk are learnable observa-
tion noise parameters.

4. Results

We introduced the dataset used for training and verification
in Section 4.1. In Section 4.2, we introduced some imple-
mentation details in the experiment. In Section 4.3, we test
the performance of our proposed method compared with
the mainstream classification network. In addition, we also
select several baseline networks and use comparative exper-
iments to explain why other networks are not selected as the
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Figure 4: The framework of the proposed IIM. When the attention modules (task M and task P) of different tasks are input into the IIM,
their feature maps are regarded as the main information and reference information, respectively. After the reference information is given a
certain weight (blue translucent cube and orange translucent cube), it interacts with the main information. The useful channels of the final
feature map are emphasized according to the depth of channel color.
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shared network for common feature extraction. In Section
4.4, we conducted some ablation experiments to verify the
effectiveness of modules we proposed.

4.1. Dataset. In this work, we used a dataset containing cases
of AMI patients from a cooperative Chinese medicine com-
pany. The dataset collected 2414 high-resolution hand
images of 342 anonymous AMI patients, with labeled infor-
mation by physicians with 20 years of rich experience in
TCM diagnosis and treatment. In order to avoid the influ-
ence of light, angle, and other redundant factors, all image
data are collected with professional equipment. However,
for this study, we excluded images based on certain criteria:
(1) images of severe peeling of the hand (n = 122), (2) images
with scars in the palm area (n = 98), and (3) the palm that
does not unfold naturally for various reasons or has more
fingers and less fingers (n = 35). Because our research is a
four-classification problem for two tasks, there were 570
images of palmar thenar hypertrophy with metacarpopha-
langeal joint swelling, 530 images of palmar thenar hypertro-
phy without metacarpophalangeal joint swelling, 522 images
of metacarpophalangeal joint swelling without palmar the-
nar hypertrophy, and 537 images of both palmar thenar
and metacarpophalangeal joint normal. In the end, 2414
tagged hand images were obtained from 301 patients (182
males and 119 females). We used 1931 for training and
483 for verification.

4.2. Implementation Details. All the experiments were con-
ducted on a workstation with Ubuntu 18.04 LTS, Intel(R)
Xeon(R) W-2102 CPU, and a NVIDIA TITAN XP GPU.
We implemented MTIALM on the basis of PyTorch. We
used the minibatch Adam optimizer (the basic learning rate
is 0.01, beta1 is 0.9, beta2 is 0.999, epsilon is none, decay is 0,
and batch size is 32) and set the maximum number of epoch
to 500. In order to obtain better model performance, as
shown in equation (9), we adopted the following learning
rate variation scheme:

l sð Þ

l 0ð Þ, 0 ≤ s ≤ 100

l 0ð Þ ∗ 0:5, 100 < s ≤ 150

l 0ð Þ ∗ 0:1, 150 < s ≤ 250

l 0ð Þ ∗ 0:01, 250 < s ≤ 400

l 0ð Þ ∗ 0:001, 400 < s ≤ 500

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
, ð9Þ

where s is the number of iterations and the initial learn-
ing rate lð0Þ is 0.01. During the training process, the model
with the minimum total loss is saved to the validation set
for validation on the test set. In order to avoid the slight
imbalance of our dataset and overfitting of the model, as
shown in equations (10) through (13), we evaluated the per-
formance through accuracy, specificity, sensitivity, area
under the receiver operator curve (AUC) [50], and F1-score.
Their mathematical definition is as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
, ð10Þ

Sensitivity =
TP

TP + FN
, ð11Þ

Specificity =
TN

TN + FP
, ð12Þ

F1‐score = 2TP
2TP + FN + FP

, ð13Þ

where TP represents the positive sample predicted by the
model as a positive class, TN represents a negative sample
predicted by the model as a negative class, FP represents a
negative sample predicted by the model as a positive class,
and FN represents a positive sample predicted by the model
as a negative class.

4.3. Contrast Experiment

4.3.1. Comparison of Classification Performance. At present,
we have not found a similar study of TCM hand diagnosis
based on traditional images. Therefore, in order to verify
the performance of the proposed model, we apply several
mainstream classification networks to our task and count
the performance indicators of these methods. Table 1 shows
the performance comparison between the proposed
MTIALM and several other classification networks in terms
of accuracy, sensitivity, specificity, and F-score. In this com-
parison, our MTIALM outperformed all other methods in
the task of detecting palmar thenar hypertrophy and meta-
carpophalangeal joint swelling based on traditional images.
As shown in Figure 5, our method can achieve more than
83% accuracy in both tasks, which is about 4% higher than
the best performance of ResNet-50 in other networks. We
have performed a formal statistical analysis of the perfor-
mance results of the model using uncorrected Dunn’s test.
We have performed a formal statistical analysis of the per-
formance results of the model using uncorrected Dunn’s
test. We conducted comparative experiments on the training
running time of different methods, as shown in Table 2. The
experimental results show that compared with other
methods, our method does not have much difference in run-
ning time with other methods while ensuring accuracy. In
addition, we plotted the specificity and sensitivity of differ-
ent models in Figures 6 and 7. They can show the stability
and robustness of our MTIALM in the task of detecting pal-
mar thenar hypertrophy and metacarpophalangeal joint
swelling from different angles.

4.3.2. Analysis of Baseline Shared Networks. In order to verify
the effectiveness of choosing ResNet-18 as the shared net-
work in our model, we calculate the performance indicators
of different methods as the shared network. Table 3 shows
the comparison of accuracy, sensitivity, specificity, and F
-score between the ResNet-18 used as the shared network
and other networks (ResNet-50, VGG16, InceptionV3,
MobileNet, etc.) used as the shared network. Since we use
weights pretrained on the ImageNet dataset for transfer
learning, we also use this approach for different baseline net-
works in the comparative experiment of common feature
baseline networks. In this comparison, the results showed
that the ResNet-18 we selected as the shared network was
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superior to other baseline networks. In the task of detecting
palmar thenar hypertrophy, the accuracy was 82.23%, the sen-
sitivity was 83.20%, the specificity was 78.38%, and the AUC

was 84.47%. In the task of detecting metacarpophalangeal
joint swelling, the accuracy was 84.46%, the sensitivity was
86.35%, the specificity was 79.47%, and the AUC was 85.39%.

Table 1: Performance of different deep learning methods.

Methods Task
Results (%)

Accuracy Sensitivity Specificity F-score P value

MTIALM
M 83:16 ± 2:11 84:71 ± 0:82 79:47 ± 4:16 81:25 ± 1:57

P 84:15 ± 3:07 85:79 ± 2:16 81:28 ± 2:72 82:91 ± 2:28

ResNet-50
M 79:02 ± 2:35 83:49 ± 2:23 73:18 ± 5:34 80:36 ± 1:23 0.0204

P 79:64 ± 4:03 84:02 ± 1:63 75:57 ± 4:19 82:33 ± 0:77 0.0301

DenseNet121
M 78:63 ± 0:36 80:42 ± 3:46 74:91 ± 1:40 74:12 ± 0:49 <0.001
P 79:19 ± 2:31 83:06 ± 2:08 76:81 ± 2:48 75:63 ± 0:92 <0.001

VGG16
M 66:56 ± 1:24 67:81 ± 2:42 64:49 ± 3:32 65:94 ± 1:22 <0.001
P 71:01 ± 0:48 73:44 ± 1:63 69:38 ± 1:71 68:71 ± 0:89 <0.001

AlexNet
M 63:01 ± 2:15 64:09 ± 2:20 60:29 ± 2:08 60:33 ± 1:87 <0.001
P 65:29 ± 1:01 69:24 ± 1:01 62:51 ± 1:33 63:59 ± 3:01 <0.001

InceptionV3
M 66:28 ± 2:27 69:25 ± 3:31 65:38 ± 1:17 63:97 ± 4:11 <0.001
P 68:25 ± 1:77 69:58 ± 1:83 65:26 ± 1:91 65:29 ± 3:18 <0.001

MobileNet
M 72:37 ± 4:13 75:39 ± 3:67 71:33 ± 3:47 71:86 ± 2:92 <0.001
P 73:02 ± 2:19 78:26 ± 2:21 69:28 ± 2:63 71:88 ± 1:45 <0.001
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Figure 5: Column bar graph plots of accuracy scores of different models.

Table 2: Comparison of training running time of different methods.

Methods MTIALM ResNet-50 DenseNet121 VGG16 AlexNet InceptionV3 MobileNet

Time (min/epoch) 0.45 0.43 0.47 0.52 0.24 0.37 0.25
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4.4. Ablation Experiments. In this section, in order to further
evaluate the effectiveness of the proposed specific task
branch and the information interaction module (IIM mod-
ule), we conducted several ablation experiments. Under the
same training settings and the same dataset, we verified the
performance of the modules mentioned in MTIALM,
respectively, and evaluated them all according to the above
indicators.

4.4.1. Analysis of Attention Modules. In order to quantify the
effectiveness of task-specific attention branch networks in
the proposed method, we only used the shared network as
the feature extraction method for the two tasks (OSN) and
classified it. That is to say, we used ResNet-18 as the network
of two tasks to independently detect metacarpophalangeal
joint swelling and detect palmar thenar hypertrophy. As
shown in Table 4, when the shared network is only used as
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the feature extraction network for each task, the perfor-
mance of this method (OSN) is far lower than that of our
method in each evaluation index.

In addition, in order to further verify the effectiveness of
cascading attention modules, we combined the correspond-
ing attention modules at different levels in the shared net-
work and finally conducted 15 groups of experiments
(including 4 sets of One-AM, 6 sets of Two-AM, 4 sets of
Three-AM, and our proposed specific attention module).
In order to solve the channel and image size matching prob-
lems during the ablation experiment, we used linear interpo-
lation to achieve the unification of image size and 1 × 1
convolution to achieve the unification of image channels.
For the combination of attention modules, as shown in
Table 5, using only one attention module (One-AM),
regardless of which layer of the shared network output is
used as the input of the task-specific attention module, the
result will result in the lowest performance (task M: the min-
imum accuracy was 51.24%, the minimum sensitivity was
53.45%, and the minimum specificity was 49.36%; task P:
the minimum accuracy was 50.75%, the minimum sensitiv-
ity was 52.61%, and the minimum specificity was 50.13%).
Using two task-specific attention modules (Two-AM)

improves performance compared to using One-AM but is
still not satisfactory. The reason for our analysis is that the
two attention modules may still not be able to extract the
distinguishing features well. For example, only low-
dimensional features (1, 2 combination) or only high-
dimensional features (3, 4 combination) cannot make the
attention module play a real role. However, between the
combination of low-dimensional features and high-
dimensional features (1, 4 or other combinations), low-
dimensional features need several times of subsampling
before they can interact with high-dimensional features,
which will lose too much information in this process.

In contrast, we found that four-task-specific attention
module (MTIALM) cascades were most effective, and the
accuracy, sensitivity, and specificity of metacarpophalangeal
joint swelling task detection were 81.92%, 83.47%, and
79.93%, respectively. The accuracy, sensitivity, and specific-
ity of the palmar thenar hypertrophy task were 82.46%,
84.11%, and 80.33%, respectively. By taking the layered fea-
tures of the shared network as input to the attention mod-
ules for each specific task and cascading the attention
modules layer by layer, the model can focus more on the
most distinctive features. Therefore, we believe that task-
specific attention branches formed by cascading attention
modules are effective.

4.4.2. Analysis of the Information Interaction Module. In
order to demonstrate the advantages in the information
interaction module (IIM), we compare the performance of
our proposed model (MTIALM) with the model without
the IIM module. To simplify, we validated the IIM module
only on the basis of the best performance cascading four
task-specific attention modules (MTIALM). The experimen-
tal results are shown in Table 6, which indicates that the
accuracy of the model is significantly reduced after the dele-
tion of the IIM module. As shown in Figures 8 and 9, we

Table 3: Performance of different shared networks.

Shared network Task
Results (%)

Accuracy Sensitivity Specificity AUC

ResNet-18
M 82:23 ± 3:46 83:20 ± 1:13 78:38 ± 3:54 84:47 ± 0:32

P 84:46 ± 4:31 86:35 ± 0:22 79:47 ± 2:72 85.39± 0.27

ResNet-34
M 79:37 ± 1:78 82:38 ± 1:01 75:24 ± 2:21 81:74 ± 0:44

P 80:33 ± 2:81 83:81 ± 2:25 74:89 ± 3:41 83:09 ± 1:05

ResNet-50
M 82:03 ± 1:83 83:31 ± 0:77 78:37 ± 2:51 84:21 ± 1:13

P 82:57 ± 1:23 84:06 ± 1:15 79:32 ± 3:18 84:33 ± 0:65

VGG16
M 67:73 ± 1:87 71:34 ± 3:03 64:25 ± 5:17 69:24 ± 1:03

P 71:56 ± 0:35 72:05 ± 2:76 67:62 ± 6:38 73:87 ± 0:93

AlexNet
M 63:46 ± 3:51 66:40 ± 3:16 60:74 ± 3:92 65:37 ± 2:16

P 68:98 ± 2:89 70:28 ± 4:35 63:68 ± 5:03 70:45 ± 0:86

InceptionV3
M 68:45 ± 3:24 70:33 ± 3:07 62:76 ± 4:91 69:57 ± 0:62

P 69:71 ± 1:87 72:48 ± 2:89 65:03 ± 2:38 71:22 ± 1:19

MobileNet
M 74:36 ± 3:10 77:23 ± 2:17 69:71 ± 4:17 76:35 ± 0:27

P 74:76 ± 2:66 76:25 ± 1:79 70:29 ± 3:02 78:25 ± 0:46

Table 4: Evaluation result of the models with or without attention
modules.

Models Task
Result (%)

Accuracy Sensitivity Specificity AUC
F

-score

MTIALM
M 82.43 81.05 84.27 82.91 81.35

P 83.03 81.33 84.65 84.13 81.65

OSN
M 78.35 75.26 79.16 79.41 79.37

P 78.86 76.83 80.01 79.80 80.50
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further illustrate the differences between MTIALM and
noIIM-MTIALM in terms of performance and prevention
of overfitting. In noIIM-MTIALM, the accuracy, sensitivity,
and specificity of task M were 79.10%, 78.26%, and
83.33%, respectively, and those of task P were 80.64%,
79.51%, and 83.27%, respectively. These evaluation indexes
were significantly lower than those of MTIALM. This means
that the IIM module can learn more effective features
through further interaction between features of different task

branches by giving a certain weight to features of different
branches. We hope that the IIM module can further help
the task-specific attention branch network to act as a guide
to help different tasks in the model focus on different areas,
thus further extracting distinctive features.

For the setting of superparameters λ1 and λ2, we set the
values of different superparameters, so as to determine the
optimal scheme of information interaction between two task
branches. Since there are two independent information

Table 5: Evaluation result of different attention module combinations.

Models
Component

Task
Result (%)

1 2 3 4 Accuracy Sensitivity Specificity AUC

One-AM-1 √
M 51.24 53.45 49.36 52.39

P 50.75 52.61 50.13 52.11

One-AM-2 √
M 51.78 54.14 51.01 54.21

P 53.16 56.73 51.84 55.59

One-AM-3 √
M 57.28 59.31 53.82 58.37

P 54.53 59.46 52.44 58.84

One-AM-4 √
M 62.21 64.57 58.30 64.73

P 62.55 63.79 60.15 65.03

Two-AM-1 √ √
M 56.41 59.73 53.51 57.32

P 54.89 56.56 51.74 56.56

Two-AM-2 √ √
M 62.81 65.82 58.66 64.39

P 62.17 66.15 60.59 62.95

Two-AM-3 √ √
M 66.15 69.81 62.54 68.26

P 65.23 67.48 62.05 68.47

Two-AM-4 √ √
M 62.79 65.22 59.57 65.01

P 61.97 63.98 57.18 64.56

Two-AM-5 √ √
M 67.09 70.02 65.91 71.63

P 65.77 67.57 61.10 69.05

Two-AM-6 √ √
M 73.80 74.46 67.09 75.79

P 70.19 73.11 64.96 74.14

Three-AM-1 √ √ √
M 76.21 78.40 69.38 79.52

P 74.26 77.03 69.65 77.31

Three-AM-2 √ √ √
M 73.46 77.73 71.09 76.37

P 73.10 74.95 70.33 73.96

Three-AM-3 √ √ √
M 72.59 74.30 68.72 75.93

P 73.33 76.24 70.65 77.01

Three-AM-4 √ √ √
M 76.68 80.33 75.03 79.36

P 78.21 82.06 74.29 80.65

Four-AM (ours) √ √ √ √
M 81.92 83.47 79.93 82.30

P 82.46 84.11 80.33 83.27

Table 6: Evaluation results of the models with or without the CA block.

Models Task
Result (%)

Accuracy Sensitivity Specificity AUC F-score

MTIALM
M 82.23 80.63 83.73 84.28 81.33

P 83.03 80.75 84.66 84.71 81.75

noIIM-MTIALM
M 79.10 78.26 83.33 83.89 78.23

P 80.64 79.51 83.27 83.65 80.16
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interaction channels in the IIM module, there is no direct
connection between the channels. Therefore, we separately
verify the optimal values of λ1 and λ2. We first set λ1 in
IIM1 to 0 and set five values (0.2, 0.4, 0.6, 0.8, and 1) for
λ2 in IIM2 to verify the performance, respectively .After that,
λ2 in IIM2 was set to 0 and λ1 in IIM1 was set to 5 values
(0.2, 0.4, 0.6, 0.8, and 1) for experimental verification of per-
formance. As shown in Table 7, we found that when λ1 and
λ2 were 0.2 and 0.4, respectively, the performance of the
model was the highest. It is worth noting that we did not
choose 0 when we chose the value of λ, because when the
value of λ is 0, it is equivalent to no information interaction
between the two features, which means no IIM block is used.
Therefore, we use 0.2 and 0.4 as the optimal values for λ1
and λ2.

In addition, in order to prove that the two tasks can pro-
mote each other in the process of model training, we remove
the attention branches of two specific tasks, respectively, and

observe the performance changes of the single task and mul-
titask. The results are shown in Table 8. When the task
branch for detecting palmar thenar hypertrophy was
removed, the accuracy, sensitivity, and specificity of the task
branch for detecting metacarpophalangeal joint swelling
were 81.63%, 79.25%, and 82.77%, respectively. When the
task branch of detecting metacarpophalangeal joint swelling
was removed and only the task branch of detecting palmar
thenar hypertrophy was retained, the accuracy, sensitivity,
and specificity of detecting palmar thenar hypertrophy were
81.33%, 79.98%, and 83.30%, respectively. When the two
tasks were performed simultaneously and the IIM module
was added, the experimental results showed that the accu-
racy of both tasks was significantly improved. This further
indicates that there are still some features between the two
tasks that are conducive to improving the overall perfor-
mance, and the IIM module we proposed can extract these
features in the model training process.

5. Discussion

5.1. Visualization of the Deep Model. In order to further ver-
ify that the multitask attention model proposed by us has
learned different features, we applied the gradient-weighted
class activation mapping (Grad-CAM [51]) on the model.
The visual result is shown in Figure 10. The brightness of
part of the CAM image can indicate the extent to which
the region is activated in the input image. The higher the
brightness of a region, the more helpful it is for the model
to predict the current task. The CAM image
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Table 7: Evaluation results of two different weight combinations in
the IIM module.

λ1, λ2ð Þ Task
Result (%)

Accuracy Sensitivity Specificity AUC F-score

(0, 0.2)
M 81.02 79.23 83.21 82.25 79.39

P 80.37 78.16 81.91 82.01 79.31

(0, 0.4)
M 82.71 80.85 84.79 83.03 81.45

P 82.26 81.11 84.63 82.98 81.27

(0, 0.6)
M 82.39 80.16 83.33 83.92 81.02

P 81.72 81.21 82.70 83.54 81.25

(0, 0.8)
M 80.35 78.24 81.26 82.22 78.14

P 80.54 78.93 82.38 82.83 80.03

(0, 1)
M 79.29 78.45 80.35 81.44 77.76

P 80.06 78.82 82.96 82.07 78.31

(0.2, 0)
M 82.84 80.02 83.29 83.03 80.15

P 83.45 80.89 84.67 84.41 81.73

(0.4, 0)
M 81.10 79.24 83.25 82.74 79.31

P 82.26 80.23 83.33 83.67 81.20

(0.6, 0)
M 80.43 78.85 81.01 82.03 78.26

P 81.93 79.64 80.40 82.39 79.33

(0.8, 0)
M 80.22 78.65 81.23 81.42 78.35

P 80.47 78.38 82.17 81.89 78.94

(1, 0)
M 78.91 75.42 80.52 80.30 77.43

P 79.09 78.51 81.33 81.35 78.41
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Table 8: Evaluation results of the single task and multitask in the model.

Models Task
Result (%)

Accuracy Sensitivity Specificity AUC F-score

MTIALM
M 82.06 80.20 83.39 83.86 81.27

P 82.96 81.07 84.35 84.39 81.24

MTIALM-no M P 81.33 79.98 83.30 83.62 80.04

MTIALM-no P M 81.63 79.25 82.77 83.20 80.51

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 10: Gradient-weighted class activation mapping images of the last convolution layer in MTIALM: (a–d) palm images of swollen
metacarpophalangeal joints selected from four different patients; (e–h) images of palmar thenar hypertrophy selected from four different
patients.
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(Figures 10(a)–10(d)) is the task of predicting metacarpo-
phalangeal joints. It can be seen that most of the high-
activation areas show the metacarpophalangeal joint and
surrounding areas of the hand. The CAM image
(Figures 10(e)–10(h)) is the task of predicting palmar thenar
hypertrophy, in which the high-activation areas exist in the
surrounding area of the palmar thenar. These indicate that
our method can better enable each task branch to focus on
a specific area for learning, which is in line with the diagnos-
tic methods of the related fields of traditional Chinese med-
icine hand diagnosis.

5.2. Research Limitation. Research limitations exist in two
ways. First of all, our data is collected with professional
equipment, excluding the influence of light, background,
angle, and other factors. How to keep good performance
without excluding the influence of these factors still needs
further research. In addition, although our research has
achieved good results, there is still room for improvement
in the accuracy of prediction.

6. Conclusion

In this paper, we propose a new method based on a hand
image to assist traditional Chinese medicine diagnosis of
AMI, which can make good use of deep learning to assist
traditional Chinese medicine to predict myocardial infarc-
tion. Our method is also a valuable attempt to combine tra-
ditional Chinese medicine hand diagnosis with artificial
intelligence technology. Through a multitask interactive
attention learning model (MTIALM), this method can detect
the symptoms of two parts of the palm (metacarpophalan-
geal joints and palmar thenar) at the same time. Among
them, in order to better realize the information interaction
between the two tasks, we propose the new information
interaction module (IIM). We used many evaluation indexes
to carry out different experiments. From the experimental
results, this method is more accurate than other traditional
methods in two-task classification, and the model also has
better stability and robustness. In the next research, we will
combine more images to assist the prediction of myocardial
infarction, in order to further improve the prediction
performance.
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