
Research Article
Effect of Aberrant Long Noncoding RNA on the Prognosis of
Clear Cell Renal Cell Carcinoma

Han Wu , Haixiao Wu , Peng Sun , Desheng Zhu , Min Ma , and Wentao Fan

Department of Urology Surgery, Jinhua Municipal Central Hospital, Jinhua 321001, China

Correspondence should be addressed to Han Wu; wuhanhan0904@163.com

Received 7 May 2021; Accepted 7 August 2021; Published 3 September 2021

Academic Editor: Tao Huang

Copyright © 2021 Han Wu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Clear cell renal cell carcinoma (ccRCC) is a kind of lethal cancer. Although there are mature treatment methods, there is still a lack
of rigorous and scientific means for cancer diagnosis. Long noncoding RNAs (lncRNAs) are a kind of noncoding RNA (ncRNA).
Recent studies find that alteration of lncRNA expression is related to the occurrence of many cancers. In order to find lncRNAs
which can effectively predict the prognosis of ccRCC, RNA-seq count data and clinical information were downloaded from
TCGA-KIRC, and gene expression profiles from 530 patients were included. Then, K-means was used for clustering, and the
number of clusters was determined to be 5. The R-package “edgeR” was used to perform differential expression analysis.
Subsequently, a risk model composed of 10 lncRNA biomarkers significantly related to prognosis was identified via Cox and
LASSO regression analyses. Then, patients were divided into two groups according to the model-based risk score, and then,
GSEA pathway enrichment was performed. The results showed that metabolism- and mTOR-related pathways were activated
while immune-related pathways were inhibited in the high-risk patients. Combined with previous studies, it is believed that
these 10 lncRNAs are potential targets for the treatment of ccRCC. In addition, Cox regression analysis was used to verify the
independence of the risk model, and as results revealed, the risk model can be used to independently predict the prognosis of
patients. In conclusion, our study found 10 lncRNAs related to the prognosis of ccRCC and provided new ideas for clinical
diagnosis and drug development.

1. Introduction

Renal cell carcinoma (RCC) is the most common cancer in
the kidney of adults, and the incidence has been increasing
in the past decades [1]. The tumor tissue of ccRCC patients
often comes with bleeding, necrosis, cystic change, and calci-
fication. With the progression of cancer, it will form heman-
gioma thrombus and even metastasize to lymph nodes and
other organs. Since ccRCC has strong resistance to chemo-
therapy and radiotherapy, the main treatment for ccRCC is
surgery, and partial nephrectomy is the most effective and
commonly used treatment so far [2, 3]. Although most
ccRCC patients can be cured with surgical treatment, there
are still 30% of ccRCC patients developing tumor metastasis
after surgery [4, 5]. Many studies have been involved in the
molecular mechanisms of ccRCC. For example, Yin and
other investigators found that NR1B2 can inhibit the devel-
opment of ccRCC by regulating LATS 1/2-YAP signaling

pathway [6]. Hakimi and other experts found that mutations
in two epigenetic regulators on chromosome 3p21, BAP1 and
SETD2, can affect the progression of ccRCC [7]. However,
there is still a lack of biomarkers to guide clinical diagnosis
and treatment of ccRCC. Therefore, it is very important to
further research the molecular mechanisms of ccRCC to
guide the development of therapeutic drugs and clinical
diagnosis.

lncRNA is a kind of RNA that cannot be translated into
proteins. Similar to protein-coding transcripts, lncRNA
transcripts are processed by spliceosome mechanisms
[8–11]. While being compared with protein-coding genes,
lncRNA coding genes are composed of fewer exons and
are less selective and less abundant in the evolution [12].
When being transcribed from the enhancer region or adja-
cent sites, lncRNAs can be used as scaffolds or guides for
regulating protein-protein or protein-DNA interactions, as
a bait for binding to proteins or miRNAs, and as an
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enhancer influencing gene transcription [13–18]. Recent
studies suggested that the expression of lncRNA affects the
development of tumors, and it plays a role as a tumor sup-
pressor or promoter with its alteration in transcriptional
level in tumor tissue. For example, Zhai and other experts
found that there is a feedback loop between lncRNA-
URRCC and EGFL7/p-AKT/FOXO3 signals, which pro-
motes the proliferation and metastasis of ccRCC [19]. In
addition, some studies also found that HOTAIR can pro-
mote the invasion of cervical cancer by targeting Notch
pathway and HULC can promote the metastasis of hepato-
cellular carcinoma through miR-200a-3p/ZEB1 signaling
pathway [20, 21]. In addition to direct impacts, lncRNA is
also discovered to play a key regulatory role in many biolog-
ical processes of cancers. For example, lncRNA participates
in the regulation, transcription, and posttranscriptional pro-
cesses of chromatin state [17, 22–24]. In recent years, with
the development of high-throughput detection techniques
and bioinformatics analysis, the construction of cancer prog-
nosis model based on lncRNA has become a mainstream. A
number of studies have mined prognostic biomarkers for
different cancers based on the expression data of lncRNAs
using various bioinformatics analyses. For instance, Sun
et al. established a prognostic model based on autophagy-
associated lncRNA for bladder urothelial cancer [25]. Like-
wise, Lian et al. [26] explored lncRNAs associated with prog-
nosis of bladder cancer patients from public databases. All in
all, bioinformatics analysis is more effective to find prognos-
tic biomarkers of specific cancer from complicated lncRNA
expression data in comparison with traditional methods.

In this study, lncRNA expression matrix and matched
clinical information of ccRCC patients were downloaded
from TCGA and analyzed with bioinformatics methods.
Firstly, K-means clustering was used to classify the patients,
and then univariate Cox, LASSO, and multivariate Cox
regression models were used to further screen lncRNAs
related to the prognosis of ccRCC. A risk model based on
the identified lncRNAs was then established, and the
lncRNAs were noted to be related to metabolism, immunity
and epithelial-mesenchymal transition (EMT). In conclu-
sion, we found 10 lncRNA biomarkers related to the progno-
sis of ccRCC and further understood the molecular
mechanisms underlying the development of ccRCC, which
provides new ideas and experimental basis for the diagnosis
and treatment of ccRCC patients.

2. Materials and Methods

2.1. Data Downloading and Processing. Transcriptome
expression matrix data and matched clinical data of ccRCC
patients were downloaded from TCGA (https://portal.gdc
.cancer.gov/) on December 20, 2019. Then, sequencing data
of samples from 530 ccRCC patients with complete clinical
information (Supplementary Table 1) were obtained, and
the samples were randomly divided into the training set
and the test set at 7 : 3. lncRNAs were annotated with
human genome annotation document downloaded from
the GENCODE database (https://www.gencodegenes.org/)
and used for subsequent analyses.

2.2. lncRNA K-Means Clustering and Patient Grouping.
Firstly, lncRNA expression data in the training set were stan-
dardized using scale function. The training set data were
used to determine cluster number with the elbow method,
and then, the patients were classified by the K-means
method according to the lncRNA expression profile. Finally,
the patients were grouped according to the clustering results
[27, 28]. In K-means clustering, the sum of square-error
between the centroid and each data point in a cluster was
calculated to defined distortion degree, which decreased with
the increase of cluster number. For a dataset with certain
discrimination, the distortion degree was greatly improved
when it reached a certain critical point, and then, it
decreased slowly. This critical point can be considered the
point with good clustering performance. The best clustering
number can be determined with an experimental line graph
based on the distortion degree and cluster number, and then
K-means clustering can be carried out according to the
determined cluster number.

2.3. Differential Expression Analysis. Patients were divided
into groups according to the clustering results. The differ-
ences in gene expression between the samples in one cluster
and the samples in the other clusters in the training set were
analyzed (log ∣ FC ∣ >1, FDR < 0:05) with the R-package
edgeR [29, 30]. Differential lncRNAs in each cluster were
finally obtained. The results were visualized with heat map.

2.4. Identification of ccRCC Prognosis-Related Genes. Follow-
ing differential expression, survival package [31] was used to
perform univariate Cox regression analysis to explore the
differentially expressed lncRNAs of all clusters, and the
lncRNAs significantly related to clinical risk of ccRCC were
screened. Then, LASSO regression analysis was conducted to
screen redundant prognosis-related genes using glmnet
package [32]. Finally, lncRNAs which had significant impact
on the prognosis of ccRCC patients were screened out.

2.5. Construction and Verification of Risk Model. Prognosis-
associated genes were obtained after LASSO regression anal-
ysis, and then, survival package was used for multivariate
Cox regression analysis. A risk model was then established,
and samples in the training set and the test set were evalu-
ated with the expression level of signature genes and corre-
sponding risk coefficient. According to the median risk
score in all samples, the samples were divided into the
high-risk group and low-risk group. The difference in sur-
vival between the two groups was shown with Kaplan-
Meier curves. Then, in order to evaluate the accuracy and
predictive value of the risk model, time-dependent ROC
curves for 1-year, 3-year, and 5-year survivals were drawn
to obtain the area under the curve (AUC) value. The model
was validated in both the training set and the test set.

2.6. Model Independence Verification. In order to verify the
independence of the constructed lncRNA-based risk model
in the risk prediction of ccRCC, traditional clinical charac-
teristics of ccRCC and risk values calculated by the model
were subjected to Cox regression analysis using survival
package.
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2.7. Establishment of Prognostic Nomogram. R-package
“rms” [33] was used to draw a nomogram based on the
above factors, and fitting curves presenting the predicted
results and the actual survival situation were drawn. The
nomogram was used to help clinicians to evaluate the sur-
vival time of patients.

2.8. Functional Analysis. In order to study the potential
mechanisms of the screened genes affecting the prognosis
of ccRCC patients, GSEA enrichment analysis was carried
out in the high- and low-risk groups, and the enrichment
results were analyzed with p < 0:05 as the threshold [34,
35]. GSEA enrichment analysis was used to evaluate whether
different metabolic pathways are enriched in different sam-
ples, and finally, the differences in gene sets of interest
among different samples can be achieved.

2.9. Data Analysis. Unless specified, the threshold of signifi-
cance in this study was FDR < 0:05, and all data in the
research were displayed in the mode ofmean ± SD (standard

deviation). Experimental results were calculated and visual-
ized with GraphPad Prism 6 and R (3.5.0) software.

3. Results

3.1. K-Means Clustering and Identification of Differentially
Expressed lncRNA. Firstly, K-means clustering was per-
formed on the lncRNA expression profile of ccRCC patients
to determine the optimal cluster number. The degree of dis-
tortion with the cluster number set from 1 to 15 was calcu-
lated. It can be seen from the figure that the distortion
degree before the cluster number being 5 was greatly
improved and then decreased after 5. Therefore, cluster
number was determined to be 5 (Figure 1(a)). After cluster-
ing, survival analysis was performed on corresponding sam-
ples in the 5 clusters. The results of the K-means clustering
were significantly related to the survival of patients, indicat-
ing that the K-means clustering can judge disease severity
based on lncRNA expression profile and classify the patients
(Figure 1(b)). In order to further screen out differentially
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Figure 1: K-means clustering and differential gene expression analysis. (a) K-means clustering of the expression matrix of lncRNA; (b)
overall survival (OS) for each cluster (p = 0:036); (c) heat map of differentially expressed lncRNAs in each cluster.

3Computational and Mathematical Methods in Medicine



expressed lncRNAs, a differential expression analysis was
performed on the samples in one cluster and the samples
in the other clusters. Finally, there were 95 differentially
expressed lncRNAs in cluster 1, 62 in cluster 2, 22 in cluster
3, 22 in cluster 4, and 84 in cluster 5. According to the signif-
icance of the differential expression, ten genes with the most
significant difference were selected from each cluster to draw
a heat map (Figure 1(c)). The above results showed that the
K-means clustering effect is good, and there are significant
differences in the expression of lncRNAs among various
clusters.

3.2. Screening of Prognosis-Related lncRNAs and
Construction of Risk Model. Univariate Cox regression anal-
ysis was used to analyze the differentially expressed lncRNAs
screened, and 75 prognosis-related genes were obtained.
Then, LASSO regression analysis was used to further screen
these lncRNAs. Thereafter, 18 relatively independent
prognosis-related lncRNAs were selected for subsequent
model construction (Figures 2(a) and 2(b)). Finally, the 18
lncRNAs obtained were further analyzed with multivariate
Cox step regression, and 10 lncRNAs (KIF9_AS1, GSEC,
LIN00894, TNFRSF14_AS1, AC147651.4, AGAP2_AS1,
RNF144A_AS1, AC008556.1, AL137127.1, and HLA_
DQB1_AS1) which were significantly associated with prog-
nosis were eventually identified, and a 10-lncRNA-based risk
model (Figure 2(c)) was constructed. For validation, the
samples in the training set were divided into the high-risk
group and low-risk group according to the median risk
score. The Kaplan-Meier method was used to compare the
survival time in high/low-risk groups. log-rank test was used
for significance test, and OS curves were drawn. The results
showed that the OS rate in the high-risk group was signifi-
cantly lower than that in the low-risk group (Figure 2(d)).
ROC curves were used to evaluate the 1-year, 3-year, and
5-year survival times of the patients. The results showed that
AUC values of the three groups were all greater than 0.7,
demonstrating that the risk model was accurate in predicting
the prognosis of patients with ccRCC (Figure 2(e)). The test
set was then used for further verification. It turned out that
the survival time in the high-risk group was significantly
lower than that in the low-risk group (Figure 3(a)). ROC
curves presented that the AUC values of 1-year, 3-year,
and 5-year survivals were all about 0.7, indicting the accurate
model performance (Figure 3(b)). To sum up, a risk model
composed of 10 lncRNAs was constructed to evaluate the
prognosis of ccRCC patients. The validation results showed
that the model was accurate and showed good diagnostic
efficiency.

3.3. The 10-lncRNA-Based Risk Model Is Independent in
Predicting Prognosis. In order to verify whether the 10-
lncRNA risk model is independent in predicting prognosis,
the model-based risk score plus clinical characteristics was
analyzed in Cox regression analysis. Univariate regression
analysis showed that age, pathologic_T, pathologic_N, path-
ologic_M, clinical stage, and the risk score were significantly
correlated with the prognosis of patients (Figure 4(a)). Mul-
tivariate regression analysis showed that only age and the

risk score were significantly correlated to the prognosis of
patients (Figure 4(b)). The results showed that the risk score
based on the 10-lncRNA signature was capable of indepen-
dently predicting the prognosis of ccRCC patients.

3.4. Nomogram Establishment and Verification. Since the
risk model enabled independent prediction of the prognosis
of patients, a nomogram for verification was drawn. The
nomogram combining clinical indicators and the1 0-
lncRNA-based risk score could be used to assist clinical diag-
nosis (Figure 5(a)). After establishment, the accuracy of the
nomogram was assessed by fitting curves, and the results
showed that the nomogram showed good fitness
(Figures 5(b)–5(d)). Based on the above results, it is believed
that the nomogram was accurate in predicting the survival
time of ccRCC patients.

3.5. GSEA Enrichment Analysis in the High- and Low-Risk
Groups. In order to explore the reason for the difference in
prognosis between the high-risk group and the low-risk
group, GSEA software was used to analyze the pathway
enrichment between the two groups. The results showed that
pathways involved in propanoate metabolism, mTOR sig-
naling pathway, cell adhesion, cytokine receptor interaction,
and renal cell carcinoma were significantly different
(Figure 6). It turned out that in the high-risk group, the
metabolism of tumor tissue was active, the immunity was
inhibited, and the EMT was activated. Based on the above
results, it is believed that the poor prognosis of ccRCC
patients in the high-risk group may be related to the changes
in activity of the above pathways.

4. Discussion

ccRCC is one of the most common types of cancer. In the
United States, ccRCC causes nearly 64,000 new cancer cases
and more than 13,000 deaths per year [36]. Biomarkers
based on gene expression can help to improve the accuracy
of early diagnosis and prognosis prediction. In recent years,
many biomarkers are verified to predict the prognosis of
patients, and many of them have the potential to predict
the clinical prognosis of ccRCC patients. For example,
MGAT5 is a potential independent prognostic biomarker
in ccRCC patients after nephrectomy [37]. The promoter
methylation of PCDH8 is associated with poor prognosis
in ccRCC [38]. Yao and other experts evaluated the biologi-
cal functions of CADM1-AS1 with miRNA and found that
CADM1-AS1 is a new tumor suppressor in ccRCC [39].
Moreover, this lncRNA is correlated with poor prognosis
of ccRCC. Xue and other researchers used qRT-PCR assay
to detect the expression of NBAT-1 in ccRCC cell lines
and analyzed the correlation between NBAT-1 and clinico-
pathological features. This study found that NBAT-1 expres-
sion in ccRCC tissue and RCC cells is significantly lower
than that in normal tissue and normal cells, and this low
level is associated with poor prognosis [40]. Although a large
number of biomarkers with clinical significance were
detected by experiments, most studies focus on a single bio-
marker or small number of samples, and the results lack the
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Figure 2: Continued.
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support of clinical data. Based on TCGA database, this study
analyzed the data of lncRNAs related to ccRCC for screening
a ccRCC prognostic lncRNA signature.

Many studies screened lncRNAs related to the prognosis
of ccRCC, including LOC389332, SPRY4-IT1, and MFI2-
AS114, and constructed prognostic models [41–44]. In this
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Figure 2: Screening of prognosis-related lncRNAs and construction of risk model. (a) 10-time cross-validation for tuning parameter
selection in the LASSO model; (b) LASSO coefficient profiles of 75 prognosis-related lncRNAs; (c) multivariate Cox regression analysis
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study, ccRCC patients were divided into five groups accord-
ing to K-means clustering, and then, the differences in gene
expression of each group were analyzed. Univariate Cox
regression, LASSO regression, and multivariate regression
analyses were used to identify new lncRNA markers for
ccRCC prognosis. Finally, 10 lncRNAs (KIF9_AS1, GSEC,
LIN00894, TNFRSF14_AS1, AC147651.4, AGAP2_AS1,
RNF144A_AS1, AC008556.1, AL137127.1, and HLA_
DQB1_AS1) were obtained. As analyzed, the patients with
lowly expressed TNFRSF14_AS1 and AL137127.1 had a bet-
ter prognosis and the ones with highly expressed KIF9_AS1,
GSEC, LIN00894, AC147651.4, AGAP2_AS1, RNF144A_
AS1, AC008556.1, and HLA_DQB1_had a worse prognosis.
The role of these genes in ccRCC has not been reported
except KIF9_AS1 and AGAP2_AS1. However, most of them
are closely related to the development of multiple cancers.
For example, TNFRSF14_AS1 is considered to be associated
with breast cancer occurrence [45]. AC147651.4 is consid-
ered a biomarker of lung cancer [46]. RNF144A_AS1 is
shown to enhance the migration of lymphoma [47]. In addi-
tion, KIF9_AS1 is believed to induce drug resistance of

ccRCC patients by regulating TGF-β [48]. Gao and other
experts found that the prognosis of ccRCC patients with
high expression of AGAP2_AS1 is poor [49]. In addition
to the above lncRNAs, the other five lncRNAs have not been
reported, and their role in cancer needs to be further verified
in the future. In conclusion, these prognosis-related
lncRNAs with biological functions in cancer may be impor-
tant targets for a further study of ccRCC.

After screening prognosis-related genes, we constructed
a lncRNA-based prognostic model and verified its effective-
ness in prognosis prediction. The results showed that the
risk model could accurately predict the prognosis of patients
in an independent manner. Thereafter, we also combined
the risk model with clinical features for comprehensive anal-
ysis and built a nomograph to assist prediction. Finally, the
functions of the 10 lncRNAs were explored. Enrichment
analysis showed that the prognosis of patients was related
to the changes of the pathways involved in metabolism,
immunity, mTOR, and cell adhesion. It is reported that
activity of metabolism-related pathways is closely related to
tumor growth. A study found that the activity of amino acid
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Figure 5: Nomogram for clinical prediction of survival time. (a) Nomogram for prediction of 1-year, 3-year, and 5-year survival times; (b–
d) fitting curves of the nomogram for 1-year, 3-year, and 5-year survival times.
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Figure 6: GSEA enrichment analysis for the high- and low-risk groups.
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metabolism-related pathways can promote the progression
of ccRCC [50]. Cytokines and chemokines are important
pathways affecting antitumor immunoreaction, and ccRCC
may achieve immune escape by affecting the activity of
related pathways. In addition, mTOR is considered to be
an important pathway to promote tumor growth, and dys-
regulated expression of mTOR can promote tumor prolifer-
ation and metabolism [51]. In conclusion, it is believed that
the changes in pathways related to metabolism, immunity
and mTOR are the reason for the difference in prognosis
of ccRCC patients.

This study is aimed at identifying lncRNAs which may
be related to the prognosis of ccRCC with bioinformatics
methods. A ccRCC prognostic risk model consisting of 10
lncRNAs was established, and the ability to predict progno-
sis was evaluated. The results showed that these 10 lncRNAs
could be used as biomarkers for ccRCC diagnosis and can
provide references for cancer diagnosis and prognosis. In
addition, since the above results are only based on bioinfor-
matics mining of TCGA database, more experimental data
were needed for validation.
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