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The human health status can be assessed by the means of research and analysis of the human microbiome. Acne is a common skin
disease whose morbidity increases year by year. The lipids which influence acne to a large extent are studied by metagenomic
methods in recent years. In this paper, machine learning methods are used to analyze metagenomic sequencing data of acne, i.e.,
all kinds of lipids in the face skin. Firstly, lipids data of the diseased skin (DS) samples and the healthy skin (HS) samples of acne
patients and the normal control (NC) samples of healthy person are, respectively, analyzed by using principal component analysis
(PCA) and kernel principal component analysis (KPCA). Then, the lipids which have main influence on each kind of sample are
obtained. In addition, a multiset canonical correlation analysis (MCCA) is utilized to get lipids which can differentiate the face
skins of the above three samples. The experimental results show the machine learning methods can effectively analyze
metagenomic sequencing data of acne. According to the results, lipids which only influence one of the three samples or the lipids
which simultaneously have different degree of influence on these three samples can be used as indicators to judge skin statuses.

1. Introduction

Microbes are invisible to our naked eyes but are major resi-
dents living on the earth. Any environment which can be
imagined, such as air dust, surface soil, underground rocks,
waters systems, and other natural environments, as well as
animals including humans, may have some certain microbes.
The ecological community of microbes which lives at a cer-
tain part of the host body is referred to as a microbiota.
The microbiota usually includes bacteria, archaea, micro-
scopic eukaryotes, and viruses [1, 2]. The collection of
genomes and genes which exist in the microbes is called the
microbiome [3, 4]. They have significant influence on the
environment or their host via complex interactions [5–7].

In a sense, the human body is not an individual organ-
ism but a complex community or symbiotic organism of
human cells and various microbial species. Earlier research
on human microbes focused on specific pathogens which
caused human diseases. As the study is deepened step by
step, especially in the past decade, researchers have found
that (1) microbes inside and outside the human body maybe

not only are pathogenicity, but also are a beneficial probiotic
to the host. (2) In most cases, microbes living together with
the host play an important role as a whole [4]. Studies have
shown that human health can be assessed by research and
analysis of the human microbiome [8, 9].

The traditional methods of studying the microbiome are
based on independent cultivation of each microbial strain.
Then, its characteristics and functions are studied. The related
research results give us a lot of knowledge and inspiration
about microbes. Limitations, however, also usually exist. On
the one hand, it has been reported that 99% of microbes cannot
be isolated and cultured [10, 11], which means that a large
number of microbes cannot be studied using separation
methods. On the other hand, microbes of microbiota tend to
live and function as members of a system rather than a group
of isolated microbes [12]. As a result, researchers began to look
for new ways to obtain indirectly genomic information from
microbial communities. Therefore, metagenomics came into
being. Metagenomics refers to the sum of genome information
for all species in an environmental microbiota. With the devel-
opment of next-generation sequencing (NGS) technology, it is
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now very convenient to use metagenomic sequencing to study
microbes. Due to the importance of microbes to human health,
more and more researchers have begun to use metagenomic
sequencing to study human microbes [13, 14]. With the rapid
development of high-throughput sequencing technologies
and the substantial reduction of sequencing costs, metage-
nomic sequencing has become a promising pathogen detection
method for accurate diagnosis of infectious diseases [15]. Fan
et al. [16] performed metagenomic sequencing for the cerebro-
spinal fluid of 4 patients with suspected central nervous system
infection, and Brucella was detected within 48 hours. However,
if the above results were verified by polymerase chain reaction
and Sanger sequencing, the patient’s cerebrospinal fluid needed
be cultured for 7 days, which indicated that metagenomic
sequencing was more rapid, efficient, and accurate in detecting
pathogens than the culture method. Metagenomic sequencing,
as a fast, low-cost, and high-throughput pathogen DNA
sequencing technology, has high efficiency and accuracy for
detection and has been used to detect various pathogen infec-
tions, which demonstrates that metagenomic sequencing can
effectively guide clinical treatment [17]. At present, classifica-
tion and prediction methods based on machine learning have
been successfully applied to many fields such as complex text
sentiment analysis, satire identification, and other difficult pre-
dictions and classifications [18–20]. In recent years, so much
work on machine learning applied to metagenomics has done.
Machine learning can be applied to the clustering, binning of
the metagenomic data, comparative metagenomics and gene
prediction, and so on [21–23]. Principal component analysis
is used to obtain the bacteria which havemain effect on the gin-
givitis by analyzing the data of gingivitis and healthy gums [24].
In the human gut metagenomics study of type 2 diabetes, the
gene cluster which is found by correlation analysis represents
the difference of the samples [25].

The skin is themost exposed organ in the body, and it is also
the front line that protects various tissues and organs in the
body from physical and chemical damage or damage of patho-
genic microorganisms. Globally, the prevalence of skin diseases
is increasing. According to statistics, acne is the most common
skin disease in the world. Acne is a benignly evolutionary and
chronic skin disease characterized by the inflammatory process
of the hair follicles and attached sebaceous glands [26–29].

Acne mainly occurs in the facial and thoracodorsal areas
and other seborrheic areas [30]. And its manifestations are
polymorphic, ranging from blackheads, pimples, pustules
to more severe statuses such as nodules, cysts, and pustules
[29, 31]. The long course of acne and high recurrence rate
badly affect the patient’s appearance. Simultaneously acne
can reduce the sense of beauty and even can cause mental ill-
nesses such as low self-esteem, negative emotion, anxiety,
and depression [32–34]. Therefore, the study and treatment
of acne is an important and widely studied issue in the der-
matology field. Acne’s pathogenesis is complex. At present,
many researchers have studied the role of bacteria in the
pathogenesis of acne, such as Propionibacterium acnes (P.
acnes), Staphylococcus epidermidis (S. epidermidis), and
Staphylococcus aureus (S. aureus) [23, 35–38]. However,
whether these bacteria are the main pathogens of acne is also
controversial at present [38–41].

Due to the effective application of machine learning to
metagenomic data, we attempt to analyze the metagenomic
sequencing data of acne using machine learning methods. In
this article, we obtained metagenomic sequencing data from
the three skin statuses including face skin of healthy people,
healthy face skin, and diseased face skin of acne patients. Prin-
cipal component analysis (PCA) and kernel principal compo-
nent analysis (KPCA) methods are used to find the
corresponding lipids which largely contribute to the status of
each kind of skin. In addition, multisets of canonical correlation
analysis (MCCA) method are used to obtain lipids which can
effectively differentiate the above three different skin statuses.
Figure 1 is the framework diagram of the proposed method.

The rest of this paper is organized a follows. Firstly, the
Material and Methods are detailedly described in Section 2.
Then, extensive experiments of metagenomic sequencing
data of acne are presented in Section 3. Finally, a conclusion
is drawn in Section 4.

2. Materials and Methods

2.1. Sample Collection. The data collection process for this
experiment was as follows. For 35 acne patients, both infected
cells and healthy cells of the face skin are collected. For 35 nor-
mal control (NC) who do not suffer from the acne, their healthy
skin cells from the face are collected. The chromatographic
apparatus applied was a set of Waters ACQUITY UPLC I-
Class (Waters Corporation, Milford, Massachusetts, USA).
The flow rate was maintained at 0.3mL/min. The injection vol-
ume was 2.0μL. During UPLC runs, the injector needle was
washed with the mobile phase. The eluent outlet was connected
to QTOF-MS for entity detection and characterization. High-
resolution mass measurements were performed with a Waters
Xevo G2-XS QTOF-MS (Waters Corporation, Milford, Massa-
chusetts, USA) equipped with an electrospray ionization (ESI)
interface operating in the positive ion mode. Entities eluted
from the UPLC system were introduced into the QTOF-MS
apparatus at the operating chromatographic flow rate. Nitrogen
was used as the nebulizing and desolvation gas. UPLC-QTOF-
MS data were collected as raw data by Masslynx 4.1 (Waters
Corporation, Milford, Massachusetts, USA). Therefore, three
sample sets for this experiment including the patient’s diseased
skin (DS) samples, the patient’s healthy skin (HS) samples, and
NC samples are obtained. Each sample set has 35 volunteers,
and each volunteer was extracted 2520 sequence data.

2.2. Principal Component Analysis. Principal component
analysis (PCA) is a common means in data analysis. It is
hoped that fewer variables can be used to interpret most of
variables in the original data, and the main feature compo-
nents of the data are extracted.

Suppose the sample set X includes m samples, and each
sample is n-dimensional vector. At the same time, the sum
of these m samples is 0 as shown in Equations (1) and (2).

Xn×m = x1, x2,⋯,xmð Þ, ð1Þ
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〠
m

i=0
xi = 0: ð2Þ

Suppose the new coordinate system is Wn×n = ðw1,w2,
⋯,wnÞ after the transformation of projection, where wi is
an orthonormal basis. The original data sample is projected
to a new coordinate system. The projection rule is shown in
Equation (3).

Zn×m =WT
n×n × Xn×m: ð3Þ

For separating all samples as far as possible after projec-
tion, the variance of these samples after projection should be
maximized. Therefore, the optimized objective function is
shown in Equations (4), where I is the unit vector.

max tr
W

WTXXTW
� �

s:t:WTW = I: ð4Þ

The Lagrange multiplier method is used to solve the
equation, and the objective function is shown as follows.

J Wð Þ = tr WTXXTW + λ WTW − I
� �� �

: ð5Þ

The derivative of the above equation is obtained and
shown in Equation (6).

XXTW = λW: ð6Þ

It can be seen from the above equation that for finding the
eigenspace Wn×n, the corresponding eigenvalues and eigen-
vectors of the covariance matrix should be calculated. How-
ever, the eigenspace obtained is still n-dimensional and has
not achieved the goal of dimensionality reduction. Therefore,
the eigenvalue λ is arranged in descending order, and a recon-
struction threshold t1 is selected using the following equation.

∑k
i=1λi

∑n
i=1λi

≥ t1: ð7Þ

Then, the eigenspace Wn×k = ðw1,w2,⋯,wkÞðk < nÞ com-
posed of k eigenvectors can be determined. The information con-

tained in the discarded part is often related to noise. Therefore,
discarding this part of information can improve the experimental
effect to a certain extent. In general, when the reconstruction
threshold t1 reaches 85%, it is considered that the found principal
components have large effect on the sample set.

2.3. Kernel Principal Component Analysis. Compared with
PCA, kernel principal component analysis (KPCA) can mine
the nonlinear information contained in the data set. In
KPCA, a kernel function is introduced and used to calculate
the kernel matrix K of the input data. Gaussian kernel is
selected as the kernel function, so the kernel matrix K is
described as

Ki×j = e Xi−X jk k2/2σ2 : ð8Þ

Then, eigenvalues and eigenvectors of the kernel matrix
K are calculated. After arranging the eigenvalues from the
largest to the smallest, the reconstruction threshold t1
should be set to determine the eigenspace W. In our exper-
iment, the reconstruction threshold t1 is set 95% and 99%
for both PCA and KPCA.

2.4. Multiset Canonical Correlation Analysis. Since the PCA
and KPCA methods only can analyze a kind of sample set.
In order to obtain lipids which better distinguish three sam-
ples, a multiset canonical correlation analysis (MCCA)
method is used. MCCA is used to analyze the relationship
between multiple sets of data. The main idea of MCCA is
that when the correlation coefficient β between several sam-
ple sets is maximum, the typical variable wi corresponding
to each sample set is found. Given the number of sample sets
is u, and each sample set includes N samples, the objective
function is described as

arg max β = 〠
u

k,l=1
k≠l

wT
k〠

ij

wl k ≠ lð Þs:t:〠
u

k=1
wT

k〠
ij

wl = 1,

ð9Þ

where ∑ij = xTk ⋅ xl.

DS samples

HS samples

NC
samples

PCA

KPCA

MCCA

Metagenomic data Methods

The most typical lipids for representing DS samples

The most typical lipids for representing HS samples

The most typical lipids for representing NC samples

The most typical lipids for identifying DS, HS and
NC samples 

Results analysis

The results of multi-data analysis

The results of single data analysisSingle data analysis

Multi-data analysis

Original data

Figure 1: The framework of the proposed method.

3Computational and Mathematical Methods in Medicine



Using the Lagrange multiplier method for the objective
function, the following equation can be obtained:

C −Dð Þw = βDw, ð10Þ

where C =
x1x

T
1 ⋯ x1x

T
N

⋮ ⋱ ⋮

xNx
T
1 ⋯ xNx

T
N

0
BB@

1
CCA and D =

x1x
T
1 ⋯ 0

⋮ ⋱ ⋮

0 ⋯ xNx
T
N

0
BB@

1
CCA.

Then, the influential lipids can be found by the means of
the typical variable wi.

2.5. Feature Selection. Data can be reconstructed using PCA
and KPCA as shown in Equation (11).

Yk×m =WT
n×k × Xn×m: ð11Þ

The new data after dimension reduction is Yk×m = ðy1,
y2,⋯, ymÞ. In this way, n-dimensional data in the original
data X is reduced to the k-dimensional data. The obtained
Y is already the data in another spatial dimension and not
the lipid information of the original data. Therefore, based
on the relevant knowledge of mathematical statistics, a
method is proposed to map the eigenspace to the input space
in this paper.

First of all, the position information of several basis
space components wj×p which have the greatest influence
on the new data Y is counted, corresponding to the lipids
of the original data. Then, the frequency of each original
data in the same eigenvector is calculated, and weights are
added according to its eigenvalues. Finally, the frequencies
and weights of the original data counted by all eigenvectors
are multiplied, and the product is summed if it is the same
original data. All of products are arranged in descending
order, and the maximum k results are lipids that have
greater impact on acne.

In Equation (11), each element in Y is calculated as
shown in Equation (12):

y1×1 y1×2 ⋯ y1×m

y2×1 y2×2 ⋯ y2×m

⋅ ⋅ ⋯ ⋅

⋅ ⋅ ⋯ ⋅

⋅ ⋅ ⋯ ⋅

yk×1 yk×2 ⋯ yk×m

2
666666666664

3
777777777775

= 〠
n

j=1

wj×1 ⋅ xj×1 wj×1 ⋅ xj×2 ⋯ wj×1 ⋅ xj×m
wj×2 ⋅ xj×1 wj×2 ⋅ xj×2 ⋯ wj×2 ⋅ xj×m

⋅ ⋅ ⋯ ⋅

⋅ ⋅ ⋯ ⋅

⋅ ⋅ ⋯ ⋅

wj×k ⋅ xj×1 wj×k ⋅ xj×2 ⋯ wj×k ⋅ xj×m

2
666666666664

3
777777777775

: ð12Þ

PCA KPCA
1311
1264
1240

(a)
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607

KPCA
2334
776

608

(b)
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KPCA

1311
1245
1240
1266
1264
1236
1205

(c)

Figure 2: The lipids with larger contributes to (a) DS samples, (b) HS samples, and (c) NC samples when the cumulative contribution rate is
95%.

4 Computational and Mathematical Methods in Medicine



PCA

KPCA

1311
1264
1240
1205
1245
1266
1236
1315
1283

(a)

PCA
608

2334
776

2172

KPCA

607

(b)

1245
1311
1240
1266
1264
1236
1205
1304
1279
1302
1283
1244
1061
1219

PCA

2374

KPCA

889

(c)

Figure 3: The lipids with larger contributes to (a) DS samples, (b) HS samples, and (c) NC samples when the cumulative contribution rate is
99%.

Table 2: Lipids with effects on all sample sets (DS, HS, and NC), obtained by MCCA.

Label Description

1061 Tacrolimus

1192 FMC-5 (d18 : 1/18 : 0)

1200 PS (22 : 6 (4Z, 7Z, 10Z, 13Z, 16Z, 19Z)/19 : 0)

1205 1-(6-[5]-Ladderane-hexanoyl)-2-(8-[3]-ladderane-octanyl)-sn-glycerophosphocholine

1219 PG (20 : 3(8Z, 11Z, 14Z)/17 : 0)

1236 1-(8-[3]-Ladderane-octanoyl)-2-(8-[3]-ladderane-octanyl)-sn-glycerophosphoethanolamine

1240 PS (22 : 6 (4Z, 7Z, 10Z, 13Z, 16Z, 19Z)/18:1(9Z))

1244 PS (20 : 5(5Z, 8Z, 11Z, 14Z, 17Z)/20 : 0)

Table 1: The specific descriptions of the lipids shown in Figure 1.

Label Description

607 PC (20 : 0/21 : 0)

608 PC (20 : 0/26 : 0)

776 PC (34 : 0/16 : 0)

1205 1-(6-[5]-Ladderane-hexanoyl)-2-(8-[3]-ladderane-octanyl)-sn-glycerophosphocholine

1236 1-(8-[3]-Ladderane-octanoyl)-2-(8-[3]-ladderane-octanyl)-sn-glycerophosphoethanolamine

1240 PS (22 : 6 (4Z, 7Z, 10Z, 13Z, 16Z, 19Z)/18 : 1(9Z))

1245 1-(8-[3]-Ladderane-octanoyl)-2-(8-[3]-ladderane-octanyl)-sn-glycerophosphoethanolamine

1264 PS (22 : 6 (4Z, 7Z, 10Z, 13Z, 16Z, 19Z)/19 : 1(9Z))

1266 1-(6-[3]-Ladderane-hexanoyl)-2-(8-[3]-ladderane-octanyl)-sn-glycerophosphocholine

1311 PS (22 : 6 (4Z, 7Z, 10Z, 13Z, 16Z, 19Z)/19 : 0)

2334 GlcAbeta-Cer (d18 : 1/18 : 0)
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Each element yp/q is the sum of n multipliers, and each
multiplier is the product of the basis space component and
the original data. For each element yp×q, n multipliers are
arranged in descending order during the process of accumula-
tion, and each multiplier is expressed as wcount

j×p ⋅ xj×p, count ∈
½1, n�. The larger the number count is, the smaller the value
is. The threshold value t2 is selected to satisfy Equation (13),
and the position information of these l base space components
wj×p which maximize the multiplier is recorded.

∑l
count=1w

count
j×p ⋅ xj×q

∑n
count=1w

count
j×p ⋅ xj×q

≥ t2: ð13Þ

Because each eigenvalue corresponding to eigenvector is
different, the position information of basis space components
obtained in each eigenvector must be divided into a group.
The position information of basis space component corre-
sponds to the original data, and then, the frequencies f i×jði
∈ ½1, k�Þ of different original data in each group are, respec-
tively, calculated, where j represents the space component
location information. Equation (14) is used to calculate the
projects after adding weight.

Pi×j = f i×j ⋅ λi: ð14Þ

So k groups of P values can be obtained. However, since
the number and type of position information of basis space
components obtained between different groups are uncertain,
the sum of P values between different groups with the same
position of basis space components is required. The size of
the final sum represents the amount of information contained
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Figure 4: Lipids with different effects on DS, HS, and NC sample sets.

Table 3: Lipids with effects on single sample set, obtained by
MCCA.

Label Description

95 Prodelphinidin B6

608 PC (20 : 0/26 : 0)

889 PS (20 : 2(11Z, 14Z)/21 : 0)

1069 PS (18 : 4(6Z, 9Z, 12Z, 15Z)/22 : 2(13Z, 16Z))

1108 PS (20 : 3(8Z, 11Z, 14Z)/19 : 0)

2172
1-(10-Methylhexadecanyl)-2-(8-[3]-ladderane-octanyl)-

sn-glycerophosphocholine

2334 GlcAbeta-Cer (d18:1/18 : 0)

2374 Phoenicoxanthin/adonirubin/3-hydroxycanthaxanthin
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by each lipid in the original data. The sum operation is shown
in Equation (15).

Qj = 〠
k

i=1
pi×j: ð15Þ

Using the above method, the types of lipids that have a
greater impact on acne in the original data can be determined.

3. Results

3.1. The Experiment Results and Analysis of PCA and KPCA
Methods. The PCA or KPCA method only can test DS, HS,
and NC samples, respectively. We can determine the num-
ber of principal components based on the cumulative contri-
bution rate. The lipids which have great influence on the
samples can be found using the corresponding eigenvalues
and eigenvectors. In Figure 2 the Venn diagram is used to

show the similarities and differences on the experimental
results of DS, HS, and NC samples, i.e., the lipids which have
larger influence on the samples, using the PCA and KPCA
methods when the cumulative contribution rate is 95%.
The numbers in Figure 2 represent the labels of some certain
lipids, and the descriptions of the lipids are presented in
Table 1.

In Figure 2(a), it is found that three lipids such as num-
bers 1311, 1264, and 1240 have the greater impact on the DS
samples not only using PCA but also KPCA methods. In
Figure 2(b), the lipid like number 608 which has the larger
influence on the HS samples is found using PCA and KPCA
methods. Besides, another lipid number 607 is also found
using the PCA method, and 2 lipids like number 2334 and
number 776 are found using the KPCA method. In
Figure 2(c), the same 7 lipids have a significant effect on
NC samples by not only PCA but also KPCA. In Figure 2,
the contribution of the lipid decreases along the direction
of arrow step by step.
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Figure 5: Lipids with effects only on DS sample set: (a) No. 95, (b) No. 1069, and (c) No. 1108.
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Figure 3 shows the lipids which have the larger influence
on the samples when the cumulative contribution rate is
99%, and Figures 3(a)–3(c) are the results of PCA and KPCA
on DS, HS, and NC samples, respectively. The lipids’ specific
description is shown in Table 2.

It can be seen from Figure 3 that 9 lipids including
numbers 1311, 1264, 1240, 1205, 1245, 1266, 1236, 1315,
and 1283 have the larger influence on DS samples by both
PCA and KPCA. For HS samples, the similar results are
obtained. Five lipids like numbers 608, 2334, 776, 2172,
and 607 which contribute to the status of samples are
obtained using KPCA, and among these, 4 lipids are
results of PCA. For NC samples, the same results obtained
by PCA and KPCA are gotten including 14 lipids. And
some differences can be seen from Figure 3(c). For exam-

ple, number 2374 is found by PCA, and number 889 is
found by KPCA.

Furthermore, both PCA and KPCA can be used to find
the primary lipids which contribute to the status of different
samples. KPCA, however, can obtain more complete and
richer lipids than PCA, because it can mine nonlinear infor-
mation in the original data. In addition, the lipids which
have the main influence on the HS samples such as numbers
608, 2334, and 776 are completely different from DS and NC
samples and can be used as an indicator of the improvement
of skin status during the course of acne treatment. For the
DS and NC samples, some lipids are found simultaneously
like numbers 1311, 1264, and 1240. It is shown that these
lipids are significant both for DS samples and NC samples.
At the same time, some differences appear. For example,
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Figure 6: Lipids with effects only on HS sample set: (a) No. 608, (b) No. 2172, and (c) No. 2334.
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some lipids like numbers 1304, 1279, and 1302 only exist in
the results of NC samples. It suggests that when these lipids
are rich, the status of skin is very healthy and could effec-
tively suppress the growth of toxin.

3.2. The Experimental Results and Analysis of MCCA
Method. PCA and KPCA methods can only analyze one kind
of sample set. In order to simultaneously analyze three kinds
of sample sets and to obtain lipids which can distinguish DS,
HS, and NC samples, MCCA is used. Experiments show that
19 lipids as shown in Table 2 which bear on all sample sets
DS, HS, and NC are obtained. Among the 19 kinds of lipids,
13 lipids exert different effects on the three types of sample
sets. As shown in Figure 4, the abscissa represents the sam-
ples, and the ordinate denotes the influence degree, i.e., the
contents of the lipids. The descriptions of the found lipids
are presented in Table 3.

It can be concluded from Figure 4 that the lipids with
different effects on these three samples sets can be catego-
rized into three types, respectively, shown in Figures 4(a)–
4(c). Among of three line charts, Figure 4(a) reveals that
all samples follow the same variation trend under the influ-
ence of the lipids like No. 1219, No. 1264, and No. 1311. For
DS and HS samples, difference of lipids contents is puny. For

NC, however, obvious decrease appears. Therefore, No.
1219, No. 1264, and No.1311 can be used to distinguish
DS and HS sample sets from NC sample set.

Figure 4(b) demonstrates six lipids (No. 1061, No. 1200,
No. 1240, No. 1266, No. 1302, and No. 1315) with the effects
on the three sample sets. These six representative lipids have
greater impact on DS samples compared with HS and NC
and have little effects difference on the latter two. It can be
inferred that when the contents of these six lipids are small,
the status of skin on DS samples is improving or that skin is
involved in a sound condition. Figure 4(c) depicts the impact
of four kinds of lipids (No. 1205, No. 1236, No. 1245, and
No. 1304) on the samples which are a monotonic decrease
trend for DS, HS, and NC samples. Thus, these four lipids
can be taken as metrics to distinguish DS, HS, and NC.

The content of lipids of samples fluctuates only in
response to certain lipids as shown in Figures 5–7. For
example, No. 95, No. 1069, and No. 1108 influence DS sam-
ples alone, No. 608, No. 2172, and No. 2334 only effect on
HS samples, and No. 889 and No. 2374 only affect NC
samples.

Figure 5 shows different content of lipids like No. 95, No.
1069, and No. 1108 for DS, HS, and NC samples. The
abscissa is the sample number, and the ordinate is the
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Figure 7: Lipids with effects only on NC sample set: (a) No. 889 and (b) No. 2374.
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content of the lipids. As demonstrated above, these three
lipids only have a major impact on DS, and thus, the content
in DS is obviously higher than that in the other two samples.
We can safely conclude that when the content of these three
lipids increases significantly, the skin of the subject is in a
diseased condition and needs treatment. Conversely, if a
patient with acne undergoes a dramatic decrease on the con-
tent of these lipids during treatment, it demonstrates that the
skin condition is turning better.

Likewise, Figure 6 shows the content changes of lipids
like No. 608, No. 2172, and No. 2334 for DS, HS, and NC.
These three lipids are absent for DS and NC while they are
a marked increase for HS. The result suggests that when
the content of lipids like No. 608, No. 2172, and No. 2334
escalates, the subjects’ skin is during a transitional period.

Figure 7 presents two lipids such as No. 889 and No.
2374 which have effects only on NC sample sets. It can be
seen that the content of these two lipids in NC increases
notably while is rather low in DS and HS. If the content of
No. 889 and No. 2374 rises significantly in the process of
treatment, it indicates that the treatment is effective and
the skin is in a healthy condition.

4. Conclusion

As one of the common skin diseases in the world, acne has a
large number of patients with complex etiology and will
cause certain psychological and physiological damage to
patients. Therefore, the research and treatment of acne is
of great significance. In this paper, the pathogenesis of acne
is analyzed from the perspective of metagenomics. In view of
the large amount of data on acne metagenomics, it is found
that it is difficult to find the hidden valuable data. And the
method of machine learning is proposed for analysis. In
the experiment, PCA, KPCA, and MCCA are used to analyze
the data of DS, HS, and NC sample sets, and the lipids that
can distinguish the three sample sets are obtained. Compar-
ing all experimental results, it is found that the lipid of No.
1240 can be used to distinguish DS sample set, lipids like
No. 608 and No. 2334 can be used to distinguish HS sample
set, and lipids that can be used to distinguish NC sample set
are No. 1264 and No. 1311. It can be concluded from the
experimental results that the method of machine learning
can quickly and accurately determine and distinguish lipids
in different sample sets, which can provide certain auxiliary
guiding significance for the prevention, diagnosis, and treat-
ment of acne.
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