
Research Article
Assessing the Adequacy of Hemodialysis Patients via the Graph-
Based Takagi-Sugeno-Kang Fuzzy System

Aiyan Du,1 Xiaofen Shi,2 Xiaoyi Guo,1 Qixiao Pei,3 Yijie Ding ,4,5 Wei Zhou ,1 Qun Lu ,6

and Hua Shi 7

1Hemodialysis Center, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, 214000 Wuxi, China
2Nursing Department, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, 214000 Wuxi, China
3Anesthesiology Department, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, 214000 Wuxi, China
4School of Electronic and Information Engineering, Suzhou University of Science and Technology, 215009 Suzhou, China
5Yangtze Delta Region Institute, University of Electronic Science and Technology of China, 324000 Quzhou, China
6Internal Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, 214000 Wuxi, China
7School of Opto-Electronic and Communication Engineering, Xiamen University of Technology, 365001 Xiamen, China

Correspondence should be addressed to Wei Zhou; 285403434@qq.com, Qun Lu; 1662935168@qq.com,
and Hua Shi; shihua@xmut.edu.cn

Received 4 May 2021; Accepted 10 July 2021; Published 28 July 2021

Academic Editor: Tao Huang

Copyright © 2021 Aiyan Du et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Maintenance hemodialysis is the main method for the treatment of end-stage renal disease in China. The Kt/V value is the gold
standard of hemodialysis adequacy. However, Kt/V requires repeated blood drawing and evaluation; it is hard to monitor
dialysis adequacy frequently. In order to meet the need for repeated clinical assessments of dialysis adequacy, we want to find a
noninvasive way to assess dialysis adequacy. Therefore, we collect some clinically relevant data and develop a machine learning-
(ML-) based model to predict dialysis adequacy for clinical hemodialysis patients. We collect 250 patients, including gender, age,
ultrafiltration (UF), predialysis body weight (preBW), postdialysis body weights (postBW), blood pressure (BP), heart rate (HR),
and blood flow (BF). An efficient graph-based Takagi-Sugeno-Kang Fuzzy System (G-TSK-FS) model is proposed to predict the
dialysis adequacy of hemodialysis patients. The root mean square error (RMSE) of our model is 0.1578. The proposed model
can be used as a feasible method to predict dialysis adequacy, providing a new way for clinical practice. Our G-TSK-FS model
could be used as a feasible method to predict dialysis adequacy, providing a new way for clinical practice.

1. Introduction

Maintenance hemodialysis is themain treatment for end-stage
renal disease in China. Adequate hemodialysis not only
prolongs survival time [1–3] but also reduces dialysis compli-
cations, improves quality of life, and reduces mortality. Kt/V
is the most commonly used indicator to assess the adequacy
of hemodialysis. The British Society of Nephrology and the
Kidney Disease Outcome Quality Initiative (K/DOQI) recom-
mend a minimum Kt/V of 1.2. The Kt/V value needs to mea-
sure the BUN level (before and after dialysis) and is calculated
by the Daugirdas formula (Kt/Vdau). This method requires
repeated blood draws and evaluations, so it is difficult to

frequently monitor the adequacy of dialysis. Currently, some
clinical researchers used body monitor component (BCM)
measurement to calculate the Kt/V value. However, the
BCM technology requires special equipment, and the opera-
tion method has not yet formed a unified standard. The
BCM technology cannot be widely developed. Therefore, it is
especially important to find a more convenient, simple, and
effective method to assess the adequacy of dialysis.

In recent years, machine learning (ML) has been widely
used in the medical field and has achieved good results. For
example, neural networks [4] and the support vector
machine (SVM) [5, 6] were used to predict the dry weight
(DW) of hemodialysis patients. In the field of bioinformatics,
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lots of ML technology have been well used in drug discovery
[7–9], protein function [10, 11], and disease analysis [12].

ML-based predictive models can also be used to quickly
estimate the adequacy of dialysis. This calculation method
can provide a reference for clinical practice. Takagi-Sugeno-
Kang Fuzzy Systems (TSK-FS) [13–15] are well known for
good interpretability [16] and approximation accuracy [17,
18]. In this study, we developed an effective graph-based
Takagi-Sugeno-Kang Fuzzy System (G-TSK-FS) model to
predict the adequacy of dialysis.

2. Methods

2.1. Patients. From January 2018 to December 2020, this
study collected the data of 250 patients from Wuxi People’s
Hospital, China. The criteria of selection are (1) patients over
18 years old, (2) patients without severe infection and heart
failure within 30 days, (3) patients receiving maintenance
hemodialysis for more than three months, (4) patients with
no history of mental illness, and (5) patients who are
informed and volunteered to participate in this study. The
exclusion criteria are (1) patients who withdrew midway
and (2) incomplete data.

All patients have received hemodialysis (HD) or hemo-
diafiltration (HDF) through the Fresenius machine. They
were all dialyzed for four hours. The dialysate was fixed at
500ml/min. Table 1 shows the gender distribution, average
age, mean predialysis body weight (preBW), average ultrafil-
tration level (UF) (the difference between weight before and
after dialysis), average blood pressure, average heart rate,
and average blood flow.

2.2. Blood Sampling. Each patient contains two blood
samples: (1) before dialysis, a sample is collected from a
vascular access vein without anticoagulant. Before collecting,
we collected 10 milliliters of blood from those patients who
used hemodialysis catheters as vascular access and (2) the
other sample is obtained from the inlet of extracorporeal
circulation before the end of dialysis. When the blood sample
is taken, the blood flow rate will be slowed to 50ml/min. At
this time, the dialysate stops flowing and blood can be
collected after 15 seconds.

The Kt/V is used as a “gold standard” for postdialysis,
and predialysis eqU is calculated as

Kt
V

=
ln R − 0:008 × Thdð Þ + 4 − 3:5 × Rð Þ × Uf

BW
, ð1Þ

where Uf is ultrafiltration, BW is postdialysis body weight,
and Thd is the duration of the dialysis session in hours.
R =Upost/Upre.

2.3. Graph-Based TSK Fuzzy System. In this work, we use
TSK-FS to predict the Kt/V of a hemodialysis patient. For a
classic 1-order TSK fuzzy system, the fuzzy inference rules
are defined as follows.

TSK fuzzy rule Rk is as follows.
If x1 is A

k
1 ∧ x2 is A

k
2 ∧⋯∧xd is Ak

d , then f kðxÞ = pk0 + pk1
x1 +⋯+pkdxd , k = 1,⋯, K , where Ak

i is a fuzzy subset of the

kth rule for the ith input variable xi. K denotes the number
of fuzzy rules. Each fuzzy rule is premised on the feature
space x = ½x1, x2,⋯, xd�T . And TSK-FS maps the fuzzy sets
to an output single dependent variable yo by f kðxÞ. The
output of the TSK-FS can be formulated as follows:

yo = 〠
K

k=1

μk xð Þ
∑K

i=1μ
i xð Þ

f k xð Þ = 〠
K

k=1
�μk xð Þf k xð Þ, ð2Þ

where μkðxÞ and �μkðxÞ are the fuzzy membership function
and normalized function via fuzzy set Ak. And μkðxÞ can be
calculated by

μk xð Þ =
Yd
i=1

μAk
i
xið Þ, ð3Þ

where μAk
i
ðxiÞ is the fuzzy membership function of the kth

rule under the ith input variable. In general, TSK-FS uses
the Gaussian membership function:

μAk
i
xið Þ = exp

− xi − cki
� �2
2δki

 !
, ð4Þ

where cki and δki are two parameters of the ith variable value
of the fuzzy set k. Fuzzy C-means (FCM) is employed to
estimate the following two parameters:

cki =
∑N

j=1ujkxji
∑N

j=1ujk

,

δki =
h∑N

j=1ujk xji − cki
� �2

∑N
j=1ujk

,

ð5Þ

where ujk is the fuzzy membership of the jth sample under
the kth fuzzy set by FCM clustering. h denotes the scale
parameter. When the premise (if-parts) of the TSK-FS is
determined, let

xe = 1, xð ÞT , ð6aÞ

�xk = �μk xð Þxe, ð6bÞ

xg = �x1
� �T , �x2

� �T ,⋯, �xK
� �T� �T

, ð6cÞ

pk = pk0, p
k
2,⋯, pkd

� �T
, ð6dÞ

pg = p1
� �T , p2

� �T ,⋯, pK
� �T� �T

: ð6eÞ

And equation (2) (then-parts) can be formulated as

yo = xgpg: ð7Þ
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So, the problem of TSK-FS training can be regarded as
solving linear regression:

min
pg

E = y −Xgpg
� �T

y −Xgpg
� �

, ð8Þ

where y ∈ RN×1 and Xg = ½xTg1, xTg2,⋯, xTgN �T ∈ RN×K ·ðd+1Þ are
the true value to be approximated and the feature after
fuzzy rule mapping, respectively. N denotes the number of
training samples. K ⋅ ðd + 1Þ is the dimension after K fuzzy
rule mapping. To improve the generalization performance
of the model, we add the Laplace regularization term to
equation (8):

min
pg

E = y −Xgpg
� �T

y −Xgpg
� �

+ βTr Xgpg
� �T

LXgpg
� �

+ λpTgpg,
ð9Þ

where β and λ are the coefficients of the two regularization
terms. We derive formula (9) and get the solution

∂E
∂pg

= 0 −XT
g y −Xgpg
� �

+ λpg + βXT
gLXgpg

= 0 XT
gXg + λI + βXT

gLXg

� �
pg =XT

gy,

pg = XT
gXg + λI + βXT

gLXg

� �−1
XT

gy, ð10Þ

where L ∈ RN×N is the Laplacian matrix, which can be
calculated as

L =D−1/2ΔD−1/2, ð11aÞ

Δ =D − S, ð11bÞ
where D ∈ RN×N is a diagonal matrix, Dii =∑N

j=1Sij. Similarity

matrix S ∈ RN×N is built by cosine similarity of two feature vec-
tors. We call this model as graph-based TSK-FS (G-TSK-FS),
and the frame diagram of TSK-FS is shown in Figure 1. The
least squares is employed to solve the optimization problem
of G-TSK-FS.

3. Result

In this work, we test G-TSK-FS and other predictors on the
dataset. Each model is evaluated with the root mean square
error (RMSE) [5, 19], R-squared, and adjusted R-squared

Table 1: Statistics of the studied population.

Feature Value

Age 57:51 ± 13:582
Sex (male/female) 144/106

Urine volume (≤100ml/>100ml) 229/21

Dry weight (kg) 62:042 ± 12:8788
Vascular access (fistula/catheter) 209/41

Dialysis model (HD/HDF) 216/34

Dialyzer membrane area (m2) (1.2/1.4/1.8/2.2) 8/54/158/30

Ultrafiltration (ml) 2186:02 ± 1074:408

Systolic pressure (predialysis) (mmHg) 142:18 ± 20:941

Diastolic pressure (predialysis) (mmHg) 73:98 ± 12:907

Heart rate (predialysis) 74:82 ± 10:747

Systolic pressure (postdialysis) (mmHg) 130:7 ± 17:204

Diastolic pressure (postdialysis) (mmHg) 71:47 ± 11:094

Heart rate (postdialysis) 74:73 ± 9:676

Blood flow volume (ml/min) 274:36 ± 26:202

Conductivity (ms/cm) 14:50 ± 8:003

Venous pressure (mmHg) 123:70 ± 37:318

Transmembrane pressure (mmHg) 76:22 ± 34:528
Calcium concentration of dialysate (mmol/l) (1.25/1.5/1.75) 51/183/16

Dialysate temperature (°C) (35.5/36/36.5/37) 67/123/49/11

Predialysis weight (kg) 63:73 ± 13:593

Postdialysis weight (kg) 61:75 ± 12:91
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under 10-fold cross-validation (10-CV) [20, 21]. In addition,
Bland-Altman analysis is also used to evaluate the agreement
of two different methods (between clinical methods and
predictive models).

3.1. Selection of Parameters for theModel. In order tomake the
model have the best prediction performance, we use the grid
search method to get the best parameters of the model. G-
TSK-FS has three parameters, includingK, λ, and β. The range
of these parameters is set asK ∈ f1, 2, 3, 4, 5, 6, 7, 8, 9, 10g and
λ, β ∈ f2−10, 2−9, 2−8, 2−7, 2−6, 2−5, 2−4, 2−3, 2−2, 2−1, 20g. First,
we fix β = 20 to search for the best K and λ. The search results
are shown in Figure 2. It can be seen that the RMSE value is the
minimum (0.1950) whenK = 2 and λ = 2−6. Then,K and λ are
set as 2 and 2−6 and β is set from 2−10 to 20 with steps of 2 (in
Figure 3). At last, the best RMSE is obtained under β = 2−5. In
addition, the adjustable parameter of the kernel width of the
Gaussian membership function is h = 2.

3.2. Comparison to Other Predictive Models. To evaluate the
performance of our model, other predictive models are also
tested on our dataset. They are linear regression (LR) [22,
23], support vector regression (SVR) [24], artificial neural
network [25] based on the back propagation algorithm
(ANN), and standard TSK-FS. Table 2 shows the results of
RMSE, R-squared, and adjusted R-squared. In general, the
smaller RMSE (close to 0), the larger R-squared, and adjusted
R-squared (close to 1) indicate that the model has better pre-
diction performance. It can be seen from the table that our
method (G-TSK-FS) obtains the smallest RMSE (0.1578)
and the largest R-squared (0.7523) and adjusted R-squared

(0.7222). In addition, G-TSK-FS has increased by 0.0181 (R
-squared) and 0.0204 (adjusted R-squared) on the basis of
TSK-FS. This shows that the model has better generalization
performance after Laplace regularization. Figure 4 shows the
distribution of predicted values (all models) and true Kt/V .
From the 150th to 160th samples, each model has severe
jitter, which may be caused by the noise during the data
collection process.

3.3. Bland-Altman Analysis. The Bland-Altman plot is a use-
ful tool, which can evaluate the agreement between predictive
methods and the clinical method. Table 3 and Figure 5 show
the results of five models via Bland-Altman analysis. In gen-
eral, the lower the average difference (closer to 0) and the
smaller the error acceptance range (95% confidence zone is
between −1.96 SD and +1.96 SD), the better the agreement
between the model and the clinical method. From the table,
it can be seen that all methods have low average variance
values. Among them, LR has the lowest value (−0.07312).
In addition to LR and ANN, SVR (−18.1914 to 16.0155),
TSK-FS (−18.1955 to 16.7179), and G-TSK-FS (−17.9686 to
16.3001) obtain the smaller range of agreement. It can be
found in Figure 5 that the errors of LR and ANN for some
points are very large, and the differences are greater than
±50%. For LR, ANN, SVR, TSK-FS, and G-TSK-FS, the ratios
of disagreement interval are all close to 5%, which means that
the prediction methods are equivalent to clinical methods.
Generally, when the value is less than 5%, the prediction
model can be completely equivalent to the clinical method.
The results of the evaluation show that G-TSK-FS has the
potential to help clinical evaluation of Kt/V with low cost.
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Figure 1: The frame diagram of TSK-FS.
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Table 2: Comparison on existing methods via 10-fold cross-validation.

Method RMSE R-squared Adjusted R-squared

ANN 0.2200 0.5184 0.4598

LR 0.1992 0.6051 0.5571

SVR 0.1615 0.7405 0.7089

TSK-FS 0.1634 0.7342 0.7018

G-TSK-FS 0.1578 0.7523 0.7222
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Figure 2: The RMSE under different K and λ.
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4. Discussion

The kinetics of urea removal is very complicated [26], and
blood is usually drawn to calculate Kt/V . What is more, strict
blood collection procedures should be followed during dialy-
sis. It is greatly affected by many factors, which will directly
affect the calculation accuracy of the Kt/V value [27]. In
our research, we found that adequate dialysis is related to
age, gender [28], ultrafiltration [29], dry weight, dialyzer sur-
face area, blood flow [30], DBP, SBP, and heart rate before
and after dialysis. It is consistent with a previous study [31].
This indicates that these clinical features can be used to assess
the ability of dialysis.

LR, ANN, and SVR are regression methods, which have
been widely used in many fields. In our work, the TSK-FS
method achieves better results. It is more suitable for our
task. The results show that the value of Kt/V predicted by
the G-TSK-FS is close to the clinical approach. G-TSK-FS
obtains the smallest RMSE (0.1578) and the largest R
-squared (0.7523) and adjusted R-squared (0.7222). In

addition, the smaller range of agreement (−17.9686 to
16.3001) and the ratio of disagreement interval (close to
5%) show that it is a potential computational model to
replace clinical methods.

Although clinical attention has been paid to the value of
Kt/V in patients. Few scholars have used G-TSK-FS predic-
tion and patients’ clinical characteristics to predict patients’
dialysis adequacy. In the field of precision medicine, more
scholars pay attention to clinical prediction models [32–36].
Assessing the adequacy of dialysis requires repeated blood
tests, which increases patient costs. In addition, the results
of the adequacy test are affected by many factors, such as
the quality of blood sample collection, the time of blood
sample submission, and the reliability of test results. We
study machine learning based on big data. Data related to
the prediction model are clinical characteristics of patients.
We use machine learning and other clinical data of the
patient, which is convenient for clinical collection and
noninvasive operation and will not increase the patient’s
payment, to calculate Kt/V .

Table 3: Bland-Altman plot analysis for different models.

Model Average difference with true Kt/V (%)
Limits of agreement (%)

Lower limit Upper limit Number of disagreement interval

LR −0.07312 −26.5869 26.4407 15/250

ANN 0.5469 −27.6568 28.7505 14/250

SVR −1.0880 −18.1914 16.0155 14/250

TSK-FS −0.7388 −18.1955 16.7179 18/250

G-TSK-FS −0.8342 −17.9686 16.3001 15/250

Index of samples

0 50 100 150 200 250

Kt
/V

–1

–0.5

0

1

2

2.5

1.5

0.5

3

True Kt/V
LR
ANN
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Figure 4: The predicted and true values of Kt/V .
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Figure 5: Continued.
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5. Conclusions

Our method has made some progress in predicting Kt/V .
However, we do not take the noise samples or the character-
istics of the noise into account. In addition, the number of
samples collected has not yet reached a certain scale. In
future work, we will introduce other machine learning tech-
niques such as sample filtering and feature selection [37,
38] to deal with various types of noise. At the same time,
further expanding the patient sample size is also the work
of the next step.
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