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Background. The majority of primary liver cancers in adults worldwide are hepatocellular carcinomas (HCCs, or hepatomas).
Thus, a deep understanding of the underlying mechanisms for the pathogenesis and carcinogenesis of HCC at the molecular
level could facilitate the development of novel early diagnostic and therapeutic treatments to improve the approaches and
prognosis for HCC patients. Our study elucidates the underlying molecular mechanisms of HBV-HCC development and
progression and identifies important genes related to the early diagnosis, tumour stage, and poor outcomes of HCC. Methods.
GSE55092 and GSE121248 gene expression profiling data were downloaded from the Gene Expression Omnibus (GEO)
database. There were 119 HCC samples and 128 nontumour tissue samples. GEO2R was used to screen for differentially
expressed genes (DEGs). Volcano plots and Venn diagrams were drawn by using the ggplot2 package in R. A heat map was
generated by using Heatmapper. By using the clusterProfiler R package, KEGG and GO enrichment analyses of DEGs were
conducted. Through PPI network construction using the STRING database, key hub genes were identified by cytoHubba.
Finally, KM survival curves and ROC curves were generated to validate hub gene expression. Results. By GO enrichment
analysis, 694 DEGs were enriched in the following GO terms: organic acid catabolic process, carboxylic acid catabolic process,
carboxylic acid biosynthetic process, collagen-containing extracellular matrix, blood microparticle, condensed chromosome
kinetochore, arachidonic acid epoxygenase activity, arachidonic acid monooxygenase activity, and monooxygenase activity. In
the KEGG pathway enrichment analysis, DEGs were enriched in arachidonic acid epoxygenase activity, arachidonic acid
monooxygenase activity, and monooxygenase activity. By PPI network construction and analysis of hub genes, we selected the
top 10 genes, including CDK1, CCNB2, CDC20, BUB1, BUB1B, CCNB1, NDC80, CENPF, MAD2L1, and NUF2. By using
TCGA and THPA databases, we found five genes, CDK1, CDC20, CCNB1, CENPF, and MAD2L1, that were related to the
early diagnosis, tumour stage, and poor outcomes of HBV-HCC. Conclusions. Five abnormally expressed hub genes of HBV-
HCC are informative for early diagnosis, tumour stage determination, and poor outcome prediction.
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1. Introduction

Most primary liver cancers among adults worldwide are hepa-
tocellular carcinomas (HCCs, or hepatoma) [1], and HCCs are
the 3rd leading cause of cancer-associated deaths [2]. HCC
generally develops from chronic liver diseases such as chronic
hepatitis B/C virus (HBV or HCV) infection, alcohol abuse
liver disease, nonalcoholic fatty liver disease (NAFLD), and
cirrhosis [3]. Chronic hepatitis infection is the main cause of
the pathogenesis of HCC in sub-Saharan Africa (SSA) and
East Asia [4, 5]. Chronic hepatitis infection with HBV is a
well-known risk factor for HCC metastasis or recurrence [6].
For early-stage HCC patients, curative surgery is the predom-
inant treatment option [7]. For inoperable tumours and
tumour relapses after surgery, the preferred alternatives are
chemotherapy, radiation therapy, and targeted therapy [8].
Unfortunately, not all patients benefit from conventional
medical therapy. Although aggressive therapy measures are
used, patients with advanced HCC have a poor prognosis
[9]. Thus, an improved understanding of the underlying
mechanisms of pathogenesis and carcinogenesis at the molec-
ular level for this cancer could facilitate the development of
novel early diagnostic and therapeutic treatments to improve
the approaches and prognosis of HCC patients.

During the last several years, with rapid advances in bioin-
formatics tools and high-throughput sequencing technologies
[10], such as microarrays and next-generation sequencing
(NGS), a general view of the occurrence, development, and
metastasis of various types of cancers is possible. Specifically,
widely used high-throughput platforms can be applied to pre-
diction screening, early diagnosis, prognosis, and individual-
ized prevention and therapy [11–15]. Differentially expressed
genes (DEGs) and noncoding RNAs (ncRNAs), which include
microRNAs, small interfering RNAs (siRNAs), long noncod-
ing RNAs, circular RNAs, and differentially methylated CpG
sites, may provide valuable information for the survival
prediction of HBV-associated HCC (HBV-HCC). However,
a number of factors, such as sample heterogeneity, diverse
screening methods, diverse data mining techniques, and the
coupling effect of limited sample size in a single independent
study, may generate false-positive and false-negative findings.
To overcome these limitations, integrated analysis based on
collective datasets has been identified as a promising alterna-
tive. Hence, many recent studies have successfully used public
datasets, such as The Cancer Genome Atlas (TCGA), Gene
Expression Omnibus (GEO), and International Cancer
Genome Consortium (ICGC), to identify new diagnostic and
prognostic molecular markers to treat cancer [16–20]. Thus,
database mining and analysis have become essential first steps
for a wide range of applications in molecular biology. At pres-
ent, reports about HBV-HCC dysregulated genes and HBV-
HCC candidate biomarkers that can be combined with
microarray datasets in the literature are scarce. Therefore,
to provide a new basis for diagnosis and treatment, a com-
prehensive, whole-genome analysis of microarray datasets
must be adopted.

For this purpose, we first explored the key DEGs associ-
ated with HBV-HCC by bioinformatics analysis of the GEO
database and TCGA. This was followed by Gene Ontology

(GO) functional and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis of DEGs,

The predicted protein–protein interaction (PPI) network
was constructed by using the Search Tool for the Retrieval of
Interacting Genes (STRING; https://string-db.org/) database.
Within this, the hub genes were screened. Next, we evaluated
the clinical cancer staging value and prognostic value of the
hub genes in TCGA. Finally, key hub genes were identified
and validated using immunohistochemistry in the Human Pro-
tein Atlas database (THPA, https://www.proteinatlas.org/).
Taken together, this paper had two main purposes. The first
purpose was to elucidate the molecular mechanism by which
HBV contributes to HCC development and progression. The
second purpose was to screen the indicated genes to identify
reliable early diagnostic and prognostic biomarkers and thera-
peutic markers.

2. Methods

2.1. Microarray Data. We downloaded GSE55092 and
GSE121248 gene expression profiling data, which had not
been previously studied simultaneously, from the Gene
Expression Omnibus (GEO) database (https://www.ncbi
.nlm.nih.gov/geo/).

The chip-based platform GPL570 (HG-U133_Plus_2)
Affymetrix Human Genome U133 Plus 2.0 Array was applied
for the mRNA expression profiling of both databases. The
GSE55092 dataset, containing 49 HCC samples and 91 nontu-
mour tissue samples, was obtained at various distances from
the tumour centre in individual livers of 11 HBV-associated
HCC patients [21]. The GSE121248 dataset, containing 70
HCC samples and 37 nontumour tissue samples, was obtained
from chronic hepatitis B-induced HCC and their adjacent
normal tissues [22]. This study was not conducted on human
biological specimens, and two sets of microarray data were
downloaded from the GEO database. Thus, according to
Chinese law, this research did not require an ethical review
board or committee approval or patient consent.

2.2. Identification of DEGs. GEO2R (https://www.ncbi.nlm
.nih.gov/geo/geo2r) is an R-based interactive web tool and
was used to screen for DEGs between HCC and nontumour
tissues. Based on the significance threshold of adj.P value <
0.05 and logFC > 1 (upregulated) or logFC < −1 (downregu-
lated), the significantly DEGs were identified. Volcano plots
and a Venn diagram were drawn by using the ggplot2 pack-
ages in R. The heat map was generated by using Heatmapper
(http://www.heatmapper.ca/) [23].

2.3. GO and KEGG Pathway Enrichment Analysis of DEGs.GO
analysis, which includes biological process (BP), cellular com-
ponent (CC), and molecular function (MF), was conducted
for features corresponding to DEGs in HBV-associated HCC
samples by using the clusterProfiler [24] R package. We also
used the clusterProfiler [24] R package to perform the func-
tional enrichment analysis of DEGs in KEGG pathways. The
P:adj < 0:05 and q value < 0:2 were set as the threshold for
significantly enriched DEGs.
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Figure 1: Continued.
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2.4. Construction of the Predicted PPI Network. STRING, which
is a large online database of known and predicted PPI, includes
direct (physical) and indirect (functional) associations [25].
First, to analyse PPI among the DEGs by using the STRING
database (version 11.0), a combined score greater than 0.9
was considered significant. Second, PPI network visualization
was constructed by Cytoscape [26] (version 3.8.2). Finally, to
identify hub genes among DEGs, CytoHubba [27], a plug-in
of Cytoscape, was used to filter out genes of the PPI network
using the Maximal Clique Centrality (MCC) method.

2.5. Validation of Hub Gene Expression. To validate the poten-
tial role of the hub genes, we analysed the TCGAdataset which
provided the RNA-Seq (level 3, HTSeq-FPKM) data along
with all clinically relevant information of 424 samples [28].
The relationship between the expression level of hub genes
and the clinical stages was investigated. Cox analysis was con-
ducted to determine the relationships of hub gene expression
with T classification. T classification inHCC patients was eval-

uated according to the tumour nodemetastasis (TNM) staging
system [29]. The expression of hub genes in liver tumour
samples and adjacent normal samples was compared using
the Wilcoxon rank-sum test. Patients with liver tumours were
classified into the high or low expression group based on the
median value of the hub gene expression. The results are
shown with violin plots and boxplots generated using the
ggplot2 package in R.

2.6. Survival Analysis to Screen the Hub Genes. Briefly, survival
analysis was performed by using the R package survival
(https://cran.r-project.org/web/packages/survival/index.html)
and survminer (https://cran.r-project.org/web/packages/
survminer/index.html) to plot Kaplan–Meier (KM) survival
curves. The Kaplan–Meier survival curves were used to repre-
sent the overall survival (OS) distributions between HCC
patients with high and low expression of various hub genes.
The association of gene expression with patient survival out-
come was calculated using the OS time obtained from TCGA.
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Figure 1: Identification of DEGs in HBV-associated HCC. (a, b) Two volcano plots showing all the expressed genes from GSE55092 and
GSE121248. (c) Venn diagram for the overlapping DEGs by R. (d) Heat map of 694 overlapping DEGs. Blue represents downregulated
genes, and red represents upregulated genes. Each column represents one dataset, and each row represents one gene. DEGs: differentially
expressed gene.
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Subsequently, receiver operating characteristic (ROC) curves
were performed to further assess the results of the KM survival
analysis by the R package pROC [30].

2.7. Immunohistochemistry-Based Validation of Hub Genes
in THPA. THPA is a public database that includes over five
million immunohistochemically stained tissues and cells,
and it was a program supported by a grant from the King-
dom of Sweden. THPA can examine normal and carcinomic
tissues by antibody proteomics and was often used to
validate the expression of hub genes. Thus, this pathology
tool was used to evaluate expression levels of hub genes
between normal liver tissues and HCC tissues from THPA.

3. Results

3.1. Identification of DEGs in HCCs. There were 49 HCC
samples and 91 normal tissues in the GSE55092 dataset.
There were 70 HCC samples and 37 normal tissues in the
GSE121248 dataset. By identifying the microarray results
of the GSE55092 and GSE121248 datasets, 1019 upregulated
and 1511 downregulated genes were identified in GSE55092,
and 901 upregulated and 423 downregulated genes were
identified in GSE121248. The volcano plots of each dataset
are depicted for the visualization of DEGs in Figures 1(a)
and 1(b). The Venn diagram shows a total of 694 overlap-
ping DEGs in Figure 1(c). The heat map in Figure 1(d)
was generated by using Heatmapper. It was drawn to show

the differentially expressed genes. In this heat map, blue
indicates downregulation, while red indicates upregulation.

3.2. KEGG and GO Enrichment Analysis of DEGs. By GO
enrichment analysis, 694 overlapping DEGs were enriched
for 722 biological process (BP) terms, 34 cellular component
(CC) terms, and 76 molecular functional (MF) terms. Under
BP terms (Figure 2(a)), DEGs were mainly enriched in the
following processes: organic acid catabolic process, carboxylic
acid catabolic process, and carboxylic acid biosynthetic process.
For CC terms (Figure 2(b)), DEGs were primarily enriched in
collagen-containing extracellular matrix, blood microparticle,
and condensed chromosome kinetochore. Enrichment analysis
of MF terms (Figure 2(c)) revealed that most DEGs were
enriched in arachidonic acid epoxygenase activity, arachidonic
acid monooxygenase activity, and monooxygenase activity.
The enrichment analysis of KEGG pathways (Figure 2(d))
included 26 KEGG pathways, and most of the DEGs were sig-
nificantly enriched in chemical carcinogenesis, retinol metabo-
lism, and the p53 signalling pathway.

3.3. PPI Network Construction and Analysis of Hub Genes.
There were a total of 694 DEGs in the PPI network, which
originated from the STRING database. The PPI network was
constructed to predict the interactions of common DEGs,
consisting of 324 nodes and 1189 edges (Figure 3(a)). The cyto-
Hubba plugin selected the top 10 genes (Figure 3(b)) ranked by
the MCC method as hub genes, including cyclin-dependent
kinase 1 (CDK1), cyclin B2 (CCNB2), cell division cycle 20
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Figure 2: KEGG and GO enrichment analysis of DEGs. (a–d) DEGs: differentially expressed genes; GO: Gene Ontology; BP: biological
process; CC: cellular component; MF: molecular function; KEGG: Kyoto Encyclopedia of Genes and Genomes.
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(CDC20), BUB1 mitotic checkpoint serine/threonine kinase
(BUB1), BUB1 mitotic checkpoint serine/threonine kinase B
(BUB1B), cyclin B1 (CCNB1), the NDC80 kinetochore com-
plex component (NDC80), centromere protein F (CENPF),
mitotic arrest deficient 2 like 1 (MAD2L1), and the NUF2 com-
ponent of the NDC80 kinetochore complex (NUF2).

3.4. Hub Gene Expression and the Clinicopathologic Parameters
of HCC Patients. The expression of 10 hub genes was analysed
for its relevance to the clinicopathologic parameters of HCC
patients. The expression of these genes was associated with T
classification (P < 0:05) (Figure 4). Gene expression was
increased in HCC tissues (P < 0:05) (Figure 5).

3.5. Survival Analysis of Selected Hub Genes. To further vali-
date the prognostic value of hub genes, R was used to conduct
survival analysis of the 10 genes in the 424 samples derived

from the TCGA project by using the KM plotter (Figure 6).
According to our KM survival curve analysis, we found that
high expression of CDK1, CDC20, BUB1, BUB1B, CCNB1,
NDC80, CENPF, MAD2L1, and NUF2 predicted worse sur-
vival outcome in patients with HCC (P < 0:05), but CCNB2
did not. Subsequently, ROC curves were generated and ana-
lysed to gain a complete view of the predictive value of the
hub genes. The results showed that all hub genes were able to
distinguish HCC tissues from normal liver tissue (Figure 7).
Moreover, representative images indicated that the expression
of hub genes was upregulated in HCC tissues (Figure 8).

4. Discussion

In recent years, despite great progress in the clinical therapy
and pathogenesis prognosis for HCC, mortality remains
unacceptably high [31]. Chronic HBV infection is the
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Figure 3: PPI network construction and analysis of hub genes. (a) The most significant module was obtained from the PPI network with 324
nodes and 1189 edges. (b) The hub genes were selected from the PPI network using the cytoHubba plugin. DEGs: differentially expressed
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Figure 4: Continued.
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predominant aetiology of HCC, particularly in China [32].
Through performing bioinformatics analysis, we aimed to
provide new insights into the molecular mechanism under-
lying HBV-HCC development and progression.

To overcome the disadvantages of the small sample size
and heterogeneity of the studied group, we analysed several
public databases, such as GEO and TCGA, through data
mining approaches. In the present study, we analysed two
GEO datasets (GSE55092 and GSE121248) by an integrated
bioinformatics analysis. In the GSE55092 dataset, we exam-
ined 49 HCC samples and 91 normal tissues. There were
1019 upregulated and 1511 downregulated genes. In the
GSE121248 dataset, we analysed 70 HCC samples and 37
normal tissues. An average of 901 upregulated and 423
downregulated genes were identified from GSE121248. We

identified 694 DEGs by comparing HCC tissues and normal
tissues. Next, the 694 DEGs were subjected to GO and
KEGG pathway enrichment analyses. BP analysis of DEGs
showed that the genes were related to the organic acid cata-
bolic process, carboxylic acid catabolic process, and carbox-
ylic acid biosynthetic process. The BP GO terms showed that
genes were related to the organic acid catabolic process,
carboxylic acid catabolic process, and carboxylic acid
biosynthetic process. The CC GO terms showed that the
genes were associated with the collagen-containing extracel-
lular matrix, blood microparticle, and condensed chromo-
some kinetochore. The MF GO terms showed that the
genes were related to arachidonic acid epoxygenase activity,
arachidonic acid monooxygenase activity, and monooxygen-
ase activity. By analysing KEGG enrichment analysis, DEGs
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Figure 4: Clinicopathologic parameters of HCC patients associated with T classification: (a) CDK1 (P = 0:001); (b) CCNB2 (P = 0:011); (c)
CDC20 (P = 0:019); (d) BUB1 (P = 0:003); (e) BUB1B (P = 0:004); (f) CCNB1 (P = 0:007); (g) NDC80 (P = 0:005); (h) CENPF (P = 0:003);
(i) MAD2L1 (P = 0:001); (j) NUF2 (P = 0:004). CDK1: cyclin-dependent kinase 1; CCNB2: cyclin B2; CDC20: cell division cycle 20; BUB1:
BUB1 mitotic checkpoint serine/threonine kinase; BUB1B: BUB1 mitotic checkpoint serine/threonine kinase B; CCNB1: cyclin B1; NDC80:
NDC80 kinetochore complex component; CENPF: centromere protein F; MAD2L1: mitotic arrest deficient 2 like 1; NUF2: NUF2
component of NDC80 kinetochore complex.
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Figure 5: Continued.
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were involved in chemical carcinogenesis, retinol metabo-
lism, and the p53 signalling pathway. By using the STRING
database, we built PPI networks and found that CDK1,
CCNB2, CDC20, BUB1, BUB1B, CCNB1, NDC80, CENPF,
MAD2L1, and NUF2 were hub genes.

According to the TCGA database, the expression of the 10
hub genes was found to be related to the HCC stage and was
significantly higher in the tumour tissues. Further survival
analyses, ROC curve analysis and representative image analy-
sis, selected 5 hub genes, including CDK1, CDC20, CCNB1,
CENPF, and MAD2L1, that were associated with early diag-
nosis, tumour stage, and poor outcomes of HCC.

CDK1 is a member of the serine-threonine protein kinases.
Because it is crucial for mitosis, the aberrant expression of the
CDK1 gene correlates with various tumours [33–35]. The study

of Tian et al. [36] confirmed that miR-31/CDK1 can regulate
the growth, migration, and invasion of bladder cancer. The
research by Yang et al. [37] confirms that CDK1 is associated
with cancer growth and the survival rate of epithelial ovarian
cancer. Recent findings [38] show that CDK1 affects 5-Fu
resistance in colorectal cancer. Moreover, another study
reported that the CDK1/CCNB1 axis can regulate hepatocar-
cinogenesis [39].

A study by Cai et al. [40] suggests that CDK1 is a prog-
nostic and therapeutic target for HBV-HCC. In our research,
we performed GO function and KEGG analysis, survival
analysis, ROC curve analysis, and representative image anal-
ysis of CDK1. The results from these analyses support the
above conclusion. CDK1 may play a role in early diagnosis,
tumour stage, and poor outcomes of HBV-HCC.
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Figure 5: Expression of various genes in the tumour samples and normal samples. “Tumour free” represents the normal tissue, and “With
tumour” represents the tumour samples: (a) CDK1 (P = 0:004); (b) CCNB2 (P = 0:003); (c) CDC20 (P = 0:002); (d) BUB1 (P = 0:004); (e)
BUB1B (P = 0:003); (f) CCNB1 (P = 0:004); (g) NDC80 (P = 0:017); (h) CENPF (P = 0:004); (i) MAD2L1 (P < 0:001); (j) NUF2
(P = 0:009). CDK1: cyclin-dependent kinase 1; CCNB2: cyclin B2; CDC20: cell division cycle 20; BUB1: BUB1 mitotic checkpoint
serine/threonine kinase; BUB1B: BUB1 mitotic checkpoint serine/threonine kinase B; CCNB1: cyclin B1; NDC80: NDC80 kinetochore
complex component; CENPF: centromere protein F; MAD2L1: mitotic arrest deficient 2 like 1; NUF2: NUF2 component of NDC80
kinetochore complex.
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Figure 6: Continued.
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CDC20 acts as a regulating protein in the cell cycle [41].
Many studies suggest that CDC20 is overexpressed in many
cancers [42]. It is related to the prognosis and progression in
prostate, glioma, breast, and other cancers [43–46]. In par-
ticular, CDC20 expression is associated with the develop-
ment and progression of HBV-HCC [47, 48]. By using GO
function and KEGG analyses, survival analysis, ROC curve
analysis, and representative image analysis of CDC20, our
findings demonstrate that CDC20 may play a role in early
diagnosis, tumour stage, and poor outcomes of HBV-HCC.

CCNB1, which encodes a regulatory protein involved in
mitosis called CCNB1, is an influential member of the con-
served cyclin B family [49]. Abnormal expression of the
CCNB1 gene can influence the cell cycle and cell proliferation,
leading to various malignant tumours [50–53]. The study by
Zhang et al. [54] found that silencing CCNB1 can influence
cell cycle, senescence, and apoptosis in pancreatic cancer.
Research by Lin et al. [55] showed that overexpression of

CCNB1 can enhance chondrosarcoma progression. Particu-
larly for HCC, the growth, proliferation, migration, and inva-
sion were strongly associated with CCNB1 [56, 57]. The study
by Weng et al. [58] demonstrated that CCNB1 also has the
potential to become a candidate biomarker and therapeutic
target for HBV-HCC. In this study, GO function and KEGG
analyses, survival analysis, ROC curve analysis, and represen-
tative image analysis of CCNB1 were performed. These
findings support the above conclusion. CCNB1 plays a signif-
icant role in the early diagnosis, tumour stage, and poor
outcomes of HBV-HCC.

CENPF encodes a protein that associates with the
centromere-kinetochore complex and influences cell cycle,
division, and differentiation [59]. It has been reported that
CENPF is related to multiple kinds of malignancies such as
prostate and breast cancer [60, 61]. In particular, the
research of Yang et al. found that CENPF could promote
the tumour growth of HCC [31]. Thus, CENPF could serve

Effect of NDC80 expression level on patient survival

Overall survival
HR = 1.76 (1.24 – 2.51)
P = 0.002

0
0.00

0.25

0.50

0.75

1.00

1000 2000

Su
rv

iv
al

 p
ro

ba
bi

lit
y

3000
Time (days)

NDC80
Low
High

(g)

Effect of CENPF expression level on patient survival

0
0.00

0.25

0.50

0.75

1.00

1000 2000

Su
rv

iv
al

 p
ro

ba
bi

lit
y

3000
Time (days)

CENPF
Low
High

Overall survival
HR = 1.59 (1.13 – 2.26)
P = 0.008

(h)

Effect of MAD2L1 expression level on patient survival

Overall survival
HR = 1.57 (1.11 – 2.22)
P = 0.011

0
0.00

0.25

0.50

0.75

1.00

1000 2000
Time (days)

Su
rv

iv
al

 p
ro

ba
bi

lit
y

3000

MAD2L1
Low
High

(i)

Effect of NUF2 expression level on patient survival

Overall survival
HR = 1.96 (1.38 – 2.78)
P < 0.001

0
0.00

0.25

0.50

0.75

1.00

1000 2000
Time (days)

Su
rv

iv
al

 p
ro

ba
bi

lit
y

3000

NUF2
Low
High

(j)

Figure 6: Overall survival (OS) curves of the 10 hub genes. Overall survival (OS) curves by high and low expression of various genes in HCC
patients: (a) CDK1; (b) CCNB2; (c) CDC20; (d) BUB1; (e) BUB1B; (f) CCNB1; (g) NDC80; (h) CENPF; (i) MAD2L1; (j) NUF2. CDK1:
cyclin-dependent kinase 1; CCNB2: cyclin B2; CDC20: cell division cycle 20; BUB1: BUB1 mitotic checkpoint serine/threonine kinase;
BUB1B: BUB1 mitotic checkpoint serine/threonine kinase B; CCNB1: cyclin B1; NDC80: NDC80 kinetochore complex component;
CENPF: centromere protein F; MAD2L1: mitotic arrest deficient 2 like 1; NUF2: NUF2 component of NDC80 kinetochore complex.
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Figure 7: Continued.
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Figure 7: Receiver operating characteristic curves for the 10 hub genes: (a) CDK1 (AUC = 0:977,CI = 0:962 – 0:992); (b) CCNB2 (AUC = 0:976
, CI = 0:962 – 0:989); (c) CDC20 (AUC = 0:980, CI = 0:967 – 0:993); (d) BUB1 (AUC = 0:969, CI = 0:953 – 0:985); (e) BUB1B (AUC = 0:961,
CI = 0:942 – 0:981); (f) CCNB1 (AUC = 0:981, CI = 0:969 – 0:993); (g) NDC80 (AUC = 0:982, CI = 0:967 – 0:996); (h) CENPF
(AUC = 0:979, CI = 0:967 – 0:991); (i) MAD2L1 (AUC = 0:953, CI = 0:93 – 0:976); (j) NUF2 (AUC = 0:983, CI = 0:972 – 0:993). CDK1:
cyclin-dependent kinase 1; CCNB2: cyclin B2; CDC20: cell division cycle 20; BUB1: BUB1 mitotic checkpoint serine/threonine kinase;
BUB1B: BUB1 mitotic checkpoint serine/threonine kinase B; CCNB1: cyclin B1; NDC80: NDC80 kinetochore complex component; CENPF:
centromere protein F; MAD2L1: mitotic arrest deficient 2 like 1; NUF2: NUF2 component of NDC80 kinetochore complex.
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as a novel target for early diagnosis, tumour stage, and poor
outcomes in HBV-HCC.

MAD2L1 is a component of the mitotic spindle assembly
checkpoint [62] and has been reported to be linked to various
types of cancers, such as rhabdomyosarcoma and gastric can-
cer [63, 64]. In parallel, MAD2L1 correlates with proliferation,
progression, and metastatic risk in HBV-HCC [65, 66]. Con-
sequently, MAD2L1 is also an important indicator of the early
diagnosis, tumour stage, and poor outcomes of HCC.

In the current study, DEGs were screened between two
datasets, and the TCGA database was used for the survival
analysis of the hub genes. This approach decreased random
errors caused by using a single dataset and improved the reli-
ability and quality of bioinformatic analysis. However, there
were also certain limitations to this study. First, a limitation
of this study is the small sample size, which limits the general-
ization of the results. Second, because of the limitations of
medical conditions in Chongming District, the 5 hub genes
indicated here have not been confirmed in clinical studies. In
future studies, we will collect samples in Shanghai to test hub
genes by performing experiments in a clinical sample size.
After clinical experiments, the associations and mechanisms

of action of the candidate genes will also require confirmation
by in vitro and in vivo trials.

5. Conclusion

In conclusion, our study identified 694 DEGs in HBV-HCC
by bioinformatics analysis. DEGs provided an insight into
the mechanisms of HBV-HCC and increase our understand-
ing of the mechanisms of pathogenesis and prognosis. Based
on downstream analysis, 5 hub genes, including CDK1,
CDC20, CCNB1, CENPF, and MAD2L1, that could play a
critical role in the early diagnosis, tumour stage, and poor
outcomes of HBV-HCC were identified.

Data Availability

The gene expression profiling data supporting this study are
from previously reported studies and datasets, which have
been cited. The processed data are available at the Gene
Expression Omnibus (GEO) database.

Hepatocellular carcinoma

CDK1

CCNB2

CDC20

CCNB1

CENPF

MAD2L1

Normal liver tissue

Figure 8: Representative histological images from the Human Protein Atlas database (THPA, https://www.proteinatlas.org/). Normal liver
tissue with staining for CDK1 was obtained from a female subject aged 32 years (patient ID: 1846; staining: not detected; intensity: negative;
quantity: none; location: none; magnification: not available), and HCC tissue was obtained from a female patient aged 73 years (patient ID:
2279; staining: medium; intensity: strong; quantity: <25%; location: cytoplasmic/membranous nuclear; magnification: not available). Normal
liver tissue with staining for CCNB2 was obtained from a male subject aged 55 years (patient ID: 2429; staining: not detected; intensity:
negative; quantity: none; location: none; magnification: not available), and HCC tissue was obtained from a female patient aged 52 years
(patient ID: 2399; staining: medium; intensity: moderate; quantity: 75%-25%; location: cytoplasmic/membranous; magnification: not
available). Normal liver tissue with staining for CDC20 was obtained from a male subject aged 67 years (patient ID: 1720; staining: not
detected; intensity: negative; quantity: none; location: none; magnification: not available), and HCC tissue was obtained from a male
patient aged 57 years (patient ID: 1175; staining: medium; intensity: strong; quantity: <25%; location: cytoplasmic/membrane nuclear;
magnification: not available). Normal liver tissue with staining for CCNB1 was obtained from a female subject aged 32 years (patient ID:
1846; staining: not detected; intensity: negative; quantity: none; location: none; magnification: not available), and HCC tissue was
obtained from a female patient aged 65 years (patient ID: 937; staining: medium; intensity: strong; quantity: <25%; location:
cytoplasmic/membranous; magnification: not available). Normal liver tissue with staining for CENPF was obtained from a female subject
aged 32 years (patient ID: 1846; staining: not detected; intensity: negative; quantity: none; location: none; magnification: not available),
and HCC tissue was obtained from a female patient aged 65 years (patient ID: 937; staining: medium; intensity: strong; quantity: <25%;
location: cytoplasmic/membranous; magnification: not available). Normal liver tissue with staining for MAD2L1 was obtained from a
male subject aged 55 years (patient ID: 2429; staining: not detected; intensity: negative; quantity: none; location: none; magnification: not
available), and HCC tissue was obtained from a female patient aged 67 years (patient ID: 3334; staining: medium; intensity: moderate;
quantity: >75%; location: cytoplasmic/membranous; magnification: not available). CDK1: cyclin-dependent kinase 1; CCNB2: cyclin B2;
CDC20: cell division cycle 20; CCNB1: cyclin B1; NDC80: NDC80 kinetochore complex component; CENPF: centromere protein F;
MAD2L1: mitotic arrest deficient 2 like 1; NUF2: NUF2 component of NDC80 kinetochore complex.
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