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Modeling antigenic variation in influenza (flu) virus A H3N2 using amino acid sequences is a promising approach for improving
the prediction accuracy of immune efficacy of vaccines and increasing the efficiency of vaccine screening. Antigenic drift and
antigenic jump/shift, which arise from the accumulation of mutations with small or moderate effects and from a major, abrupt
change with large effects on the surface antigen hemagglutinin (HA), respectively, are two types of antigenic variation that
facilitate immune evasion of flu virus A and make it challenging to predict the antigenic properties of new viral strains.
Despite considerable progress in modeling antigenic variation based on the amino acid sequences, few studies focus on the
deep learning framework which could be most suitable to be applied to this task. Here, we propose a novel deep learning
approach that incorporates a convolutional neural network (CNN) and bidirectional long-short-term memory (BLSTM) neural
network to predict antigenic variation. In this approach, CNN extracts the complex local contexts of amino acids while the
BLSTM neural network captures the long-distance sequence information. When compared to the existing methods, our deep
learning approach achieves the overall highest prediction performance on the validation dataset, and more encouragingly, it
achieves prediction agreements of 99.20% and 96.46% for the strains in the forthcoming year and in the next two years
included in an existing set of chronological amino acid sequences, respectively. These results indicate that our deep learning
approach is promising to be applied to antigenic variation prediction of flu virus A H3N2.

1. Introduction

Influenza (flu) A virus poses a persistent threat to global
public health because it causes not only the seasonal epi-
demics of flu disease but also the global flu pandemic. Even
the less deadly seasonal epidemics alone accounted for
approximately 24000 deaths in the USA annually from
1976 to 2007 [1], and the latest report estimates that the
number of flu deaths increases to 61000 in 2017-2018 flu
season [2, 3]. It is now known that the homotrimeric surface

glycoprotein hemagglutinin (HA) is responsible for binding
the virus to the host cell surface receptor which leads to virus
entry [4]; HA is thus the primary antigen targeted by the
host immune system [5]. Although there is another glyco-
protein neuraminidase (NA) found on the surface of flu
viruses, NA is generally considered less important in terms
of the antigenicity than HA [6]. The HA protein is synthe-
sized as a single-chain polypeptide precursor, HA0, which
is subsequently cleaved into two subunits (HA1 and HA2)
that form a homotrimeric spike on the virus surface [7].
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Compared to HA2, the HA1 subunit mutates more fre-
quently and faces a stronger selection pressure from the host
immune system, ultimately resulting in the emergence of the
immune-evading variants/strains [8]. Preparation of the flu
vaccine that comprises the viral immunogens capable of eli-
citing neutralizing antibodies against the virus strains most
likely to circulate in the forthcoming flu season is currently
the most effective means of preventing flu infection [9, 10].
However, two kinds of antigenic variation, the antigenic drift
and antigenic shift/jump arising from the rapid evolution of
HA, allow flu viruses to escape host immunity [11]; this pre-
sents continuous challenges for the selection of the vaccine
strains to be matched. Since 1977, the flu A subtypes of
H1N1 and H3N2 and the flu B have been circulating globally
and hence are prior strains included in the vaccine program
[12]. Of note is that the flu A H3N2 is the most common
subtype causing human infection and disease in the past 40
years [13].

For a forthcoming flu pandemic or any other newly
emerging flu strain, it is important to predict the antigenic
property of the causative virus so as to prepare the effective
vaccine. The degree of antigenic similarity in the pairwise
flu strains is examined mainly by the hemagglutination inhi-
bition (HI) test [14, 15] in laboratory. However, the serology
assay, a key step in the HI test, is very time-consuming and
labor-intensive. Consequently, the HI test for newly emerging
strains is severely lagging behind the rapid accumulation of
new strains that spread globally. For example, the numbers of
HA sequences of the H3N2 human flu virus submitted to the
NCBI influenza virus database in 2014, 2015, and 2016 were
1959, 2229, and 1735, respectively, which would require more
than 70 million pairwise comparisons for thoroughly deter-
mining antigenic variation by the HI test, an obviously unreal-
istic task. Indeed, at present, there are only sparse reports of HI
tests in limited literature [16]. Since the virus genomes are rou-
tinely examined by high-throughput sequencing, sequence
comparison has been providing extremely valuable informa-
tion on variations in the antigenicity of flu strains, which will
help to surveil the emergence of novel variants, reduce the
detection time of new antigenic types, and improve the
efficiency of vaccine development and preparation.

The last 15 years have witnessed a considerable progress
in predicting the antigenic variation of flu viruses based on
the HA1 amino acid sequence. Lee and Chen made a pio-
neering attempt [17] to model the antigenic variation using
a simple binary indicator to identity whether or not the
number of amino acid mutations exceeds a threshold value
while the prediction results were not satisfactory. Realizing
the nonequivalent importance of the 329 HA1 amino acid
residues in determining the antigenicity, Liao et al. [18]
predicted the contribution of 19-23 selected amino acid
positions to antigenic variation through amino acid classifi-
cation and multiple regression analysis, with the results
showing reasonable prediction sensitivity but poor specific-
ity. Huang et al. [19] improved the agreement over Liao’s
method by constructing a decision tree based on the 19
key amino acid positions selected according to the criteria
of information gain and entropy. Recognizing that different
amino acid substitutions can have distinct effects on the

antigenicity of HA1, Cui et al. [20] proposed a linear
regression-based method where 18 key residue positions
were selected by a significance score, and at each position,
the effects of amino acid substitutions on the antigenic prop-
erty were indicated by 8 physicochemical properties. Based
on a dataset spanning from 1968 to 2007, Sun et al. [21]
selected 39 key positions with bootstrapped ridge regression
and quantitatively measured the antigenic distances through
antigenic mapping [22]; although the accuracies of predic-
tion for the next flu seasons were high, such accuracies
might have been inflated since the 39 key positions were
derived from analyzing the whole dataset that includes the
validation set. Through combining multiple feature matrices
derived from different amino acid similarity matrices to con-
struct decision trees in a random forest algorithm, Yao et al.
[23] proposed a joint random forest regression (JRFR)
method to predict antigenic distances from HA1 sequence
data, with the 10-fold cross-validation results showing that
JRFR outperforms other popular methods in predicting anti-
genic variants.

Essentially all the aforementioned methods have three
characteristic key steps. The first step is to identify amino
acid residues (key positions) that likely contribute to anti-
genic variation using a subset of available data (training
set), the second step is to model the relationship between
antigenic variation and these key positions using the training
set, and the third step is to apply the derived model to both
the training set and validation set to determine the accuracy
of the method.

Although the key-position-based prediction methods
have achieved great success, they often fail to extract com-
plex nonlinear relationships from the entire HA1 sequence.
Fortunately, the recently popular deep learning techniques
are advantageous in automatically representing the original
sequence and learning the hidden patterns through nonlin-
ear transformations and hence are very suitable for the pre-
diction of the antigenic property based on the amino acid
sequence comparison. Deep learning techniques have been
encouraged by their tremendous success in computer vision
[24], speech recognition [25], and sentiment classification
[26] and now are widely applied to many areas of biological
research including protein contact maps [27], drug-target
binding affinity [28], regulatory network [29], and protein
features [30, 31]. Recently, Tan et al. [32] employed the
stacked autoencoder (SAE) model to predict an antigenic
variant of flu A H3N2; however, the results showed that
SAE did not have a distinct advantage over the other
machine learning algorithms.

In this paper, we introduce a deep learning approach to
predict the antigenic variation of flu A H3N2 strains based
on the sequence comparison of HA1 proteins. This approach
incorporates convolutional neural network (CNN) and bidi-
rectional long-short-term memory (BLSTM) neural network,
which are responsible for extracting the local and nonlocal
sequence information, respectively, to predict antigenic
variation of flu A H3N2. The results show that our deep
learning approach achieves the overall best prediction
performance on the validation set as compared to the exist-
ing methods.
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2. Methods

2.1. Dataset. The antigenic distance of pairwise viruses is
defined as the geometric mean of two ratios between the het-
erologous and homologous hemagglutination inhibition
titers characterized by the ferret antiserum cross reactivity
[33]. Let cij be the minimum concentration of the antiserum
that was induced by the flu strain i but can inhibit hemag-
glutination by the virus strain j; then, the antigenic distance
(also known as Archetti-Horsfall distance [34]) between
strains i and j is defined as dij =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cijcji/ciicjj

p
[33]. If the value

of dij is not larger than 4 [34, 35], the inactivated vaccine
prepared with the strain i is considered effective for
preventing infection by the strain j. According to the
Archetti-Horsfall distance definition, every antigenic dis-
tance dij should be derived from four HI tests, which slows
down the progress of vaccine preparation/development.

The above measurement is rarely used directly to deter-
mine the antigenic distance of virus pairs on a large scale due
to the complexity of antiserum preparation in reality. New
strains are commonly detected by the HI test using a series
of standard antisera that could indicate their antigenicity.
If n strains are tested by m standard antisera, one can obtain
a matrix H with n ×m elements, and the element hij is the
HI response data of strain i and serum j. Due to experimen-
tal constraints, matrix H may contain only sparse observa-
tions of the positive response. Smith et al. [36] represented
strains into two-dimensional locations using modified met-
ric ordinal multidimensional scaling on the sparse HI
matrix, thus realizing the characterization of the antigenic
distance of the strain pair with Euclidean distance. Although
these calculated two-dimensional positions were generally
stable, there might be more than one stable state between
some large subgroups. Bedford et al. [37] also proved inac-
curacy in distances between strains with evolution time
greater than 15 years. Smith et al. [36] clustered 253 flu A
H3N2 strains into 11 classes by combining the calculated
positions and known biological knowledge, whereby the
obtained antigenic properties were more credible than the
directly calculated distances.

The above-mentioned 11 antigenic clusters of 253 flu
strains are currently the largest qualitative set of antigenic
properties (hereafter referred to as Smith’s dataset), although
it is composed of quasi-experimental data. The dataset used
in the present study was constructed based on Smith’s
dataset. First, the 253 virus strains in Smith’s dataset were
randomly assigned to the two groups with the number ratio
of 7 : 3; second, the virus pairs in the first and second groups
were removed according to the two criteria proposed by Du
et al. [38]: (i) the paired HA1 protein sequences with more
than nine antigenic variation-causing mutations and (ii)
the redundant virus pairs with the same sequence vectors
but different sequence names/tags; finally, we obtained a
dataset consisting of 5401 virus pairs, out of which 3681
and 1720 are those composed of paired viruses with similar
and altered/varied antigenicity, respectively. The reason for
removing the virus pairs with more than nine antigenic
variation-causing mutations is that the probability of the

antigenic difference between such paired strains is 99%, thus
making it unnecessary to predict antigenic variation between
them [32, 38]. The virus pairs retained in the first and sec-
ond groups were used as the training and validation sets,
respectively, for hyperparameter tuning, feature selection,
and prediction performance evaluation and comparison in
the present study.

The ability of the deep learning approach to predict
vaccine strains was evaluated by predicting the antigenic
profiles of the strains in the forthcoming year and in the next
two years based on the historical chronological data. For a
given year N from 1991 to 1999, the training data are the
strains isolated before the year N (from 1968 to year N − 1),
and the validation data are the strains isolated in the year N
or N + 1. The validation data in the year N and in the years
N and N + 1 were used for predicting the antigenic variation
of the strains in the forthcoming year and in the next two
years, respectively. The prediction results were the sum statis-
tics from 1991 to 1999.

2.2. Coding for Sequence Comparison and Key Features.
Faithfully encoding the symbolic amino acid sequences of
HA1 proteins of a virus pair and the features associated with
the viral antigenicity is an important step for improving the
performance of the deep learning approach. In this study,
the raw amino acid sequence without any explicit feature
engineering was used as the initial input, and each amino
acid was encoded as a one-hot vector using the orthogonal
encoding scheme [39]. Practically, 20 input units were
assigned to describe the corresponding 20 types of amino acid
residues. In the 20-dimensional space, only the digit corre-
sponding to the rank of a residue was marked as 1 and the
other 19 digits were marked as 0 (Table S1). For example,
the vectors ½1, 0, 0, 0,⋯, 0, 0, 0�, ½0, 1, 0, 0,⋯, 0, 0, 0�, and
½0, 0, 0,⋯, 0, 0, 0, 1� represent glycine, alanine, and histidine,
respectively. For the pairwise sequences, each position is
represented by the vector of the corresponding logical
calculation “Ci OR Cj,” where Ci and Cj are vectors of the
two amino acids at the same position, respectively. For
example, if Cm

i and Cm
j are both glycine at a position m, the

vector of the position is ½1, 0, 0, 0,⋯, 0, 0, 0� (½1, 0, 0, 0,⋯, 0
, 0, 0� OR ½1, 0, 0, 0,⋯, 0, 0, 0�); if Cm

i and Cm
j is glycine and

histidine, respectively, the position vector is ½1, 0, 0, 0,⋯, 0, 0,
0, 1� (½1, 0, 0, 0,⋯, 0, 0, 0� OR ½0, 0, 0,⋯, 0, 0, 0, 1�). Since the
change in amino acid residue between pairwise viruses
provides information crucial for assessing antigenic variation,
the residue position where mutation occurs in a HA1
sequence pair was encoded as the “position” feature in our
deep learning approach.

In addition to the position feature, three structure-
related features, which are likely to impact the antigenicity
of flu viruses, were extracted and encoded into the sequence
pair to test their effects on the prediction performance of the
deep learning approach. Specifically, the features named
“epitope,” “RBD,” and “Gly” refer to whether or not a resi-
due resides on the five known epitopes of H3N2 HA1 [40],
belongs to the receptor-binding domain (RBD) [7], and is
at the glycosylation site, respectively. The glycosylation sites
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of each HA1 sequence were predicted using NetNGlyc [41].
The features of epitope, RBD, and Gly for a residue at the
position m are denoted as Em, Rm, and Gm, respectively, with
their values assigned as 0.5 and 0 if the residue meets and
does not meet the corresponding feature conditions, respec-
tively. For the position equivalent residues of the paired
sequences, the features of epitope and RBD are individually
identical and hence are one-dimensional, while the Gly fea-
ture (Gm) may be different and hence is two-dimensional.
Finally, a feature vector matrix A with size of 24 × L:

A =
C1
i E

1 G1 R1

⋮⋮ ⋮ ⋮

CL
j E

L GL RL

2
664

3
775, ð1Þ

where L is the sequence length, can be constructed as the
input of the CNN.

2.3. Framework of the Deep Learning Approach. In the 3D
structure of the HA protein, there are some residues that
are not close in the primary structure but are spatially close
to one another. These residues were nonlocal at the sequence
level, but their co-mutations could greatly affect the antige-
nicity of the flu virus [19]. Since the antigenic phenotype
of a strain can be altered by both the local and nonlocal
changes of the amino acid sequence, in our deep learning
framework, the two layers, CNN and BLSTM, were used to
capture information on these changes [42]. CNN, which is
often applied to image recognition due to its ability of
capturing the spatiotemporal feature, is also competent in
capturing the local and nonlocal information on residue
changes because of adjustable length of the convolution
window [31, 42]. BLSTM is an artificial recurrent neural
network (RNN) architecture with feedback connections,
which is more advantageous in processing the entire
sequence [42, 43]. Figure 1 shows the flowchart of our deep
learning approach, which includes two convolutional layers
connected and followed by two pooling layers and two
BLSTM layers. The relevant features stored in the sequence
pair are encoded into a feature vector matrix and passed to
the fully connected core layers. To avoid overfitting, two
dropout functions are used, with the first dropout located
between the two fully connected layers and second one follow-
ing a fully connected layer. Finally, the sigmoid function is
used for classification. The above deep learning procedure
can easily be implemented by the high-level neural network
API tool, Keras (https://github.com/keras-team/keras), whose
backend is TensorFlow (https://www.tensorflow.org/).

2.3.1. Convolution and Pooling. The feature vector matrix A,
which contains the one-hot encoded input features, is
convolved using one-dimensional CNN with n convolution
filters (Figure 1), with each filter Fj being applied to the
window of f amino acid residues by the activation function
rectified linear unit (ReLU) along the protein sequence
length L. For each filter Fj, the ReLU function on the
windows is applied L times as described by

mi = ReLu Fj•ai:i+f−1 + Br

� �
, i, j ∈ RL, ð2Þ

where • represents the dot product and Br is the bias term.
The feature map mj of the filter Fj is defined by

mj = m1,⋯,mL½ �: ð3Þ

Then, the feature vector M = ½m1;⋯;mj;⋯;mn� is
obtained from the n filters.

1D max-pooling operations are performed on the vector
M to avoid overfitting. This is described by

si = Pm Mi:i+q
� �

, i ∈ RL, ð4Þ

where Pmð·Þ represents the 1D max-pooling function and
q is the pool size. The whole pooling results can be indi-
cated by

S = s1,⋯,sL/q+1
� �

: ð5Þ

2.3.2. Long-Short-Term Memory Networks. The above 2D
data of ðL/q + 1Þ × n is then flatted to 1D data of 1 ×
ðL/q + 1Þ × n suitable for the LSTM layer. In the deep learning
framework, the bidirectional LSTM layer is aimed at extract-
ing the long information from the pseudo sequence compari-
son. The basic unit of LSTM, also called a memory cell,
contains two streams of input: the sequence comparison infor-
mation in a sliding window and the output of the previous
LSTM cell. Then, the output streams are conducted by the
input, forget, and output gates responsible for updating and
outputting the cell state. The input gate controls how much
new information can flow into the unit. The forget gate deter-
mines how much stored information will be kept in the unit.
Then, the cell status is updated by coordination of the input
gate and the forget gate as given in

f t = σ Wf xt +Uf ht−1 + Bf

� �
, ð6Þ

it = σ Wixt +Uiht−1 + Bið Þ, ð7Þ
ct = f t ⊗ ct−1 + it ⊗ tanh Wcxt +Ucht−1 + Bcð Þ, ð8Þ
ot = σ Woxt +Uoht−1 + Boð Þ, ð9Þ
ht = ot ⊗ tanh ctð Þ, ð10Þ

where f t , it , and ot are the activation of the forget gate, input
gate, and output gate, respectively, ⊗ denotes the element-
wise multiplication, σ is the logistic sigmoid function, tanh is
the tanh function to force the values to be between -1 and 1,
Wf , Wi, Wc, Wo, Uf , Ui, Uc, and Uo are weight coefficients,
and Bf , Bi, Bc, a6nd Bo are bias coefficients. Taking a stream
fxt , ht−1g as the input, the LSTM units have the hidden states
fhg and cell states fcg and each unit outputs a sequence fog.

The information of the BLSTM layer is obtained by the

forward h
!

t and backward hidden states h
 
t , which link the
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data sequences in two separate hidden layers (equations
(11)–(13)), respectively:

h
!

t = Bl ht , h
!

t−1

� �
, ð11Þ

h
 

t = Bl ht , h
 

t−1

� �
, ð12Þ

ht = h
!

t , h
 

t

� �
, ð13Þ

where Bl is a bidirectional recurrent neural function.

2.3.3. Fully Connected Layer. The vector H = ½h1,⋯,hT �
responsible for processing features of the paired sequence
is passed through a fully connected hidden layer with f c hid-
den units, and this process is described by

Fc = F HWf c

� �
, ð14Þ

where F is the ReLU function and Wfc is the weight
coefficient.

2.3.4. Sigmoid Decision Unit. Finally, the decision unit gives
a score between 0 and 1, as illustrated by

P y = 1 ∣ xð Þ = 1
1 + exp −FcWað Þ , P y = 0 ∣ xð Þ = 1 − P y = 1 ∣ xð Þ,

ð15Þ

where Wa represents the final output weight matrix.

2.4. Evaluation of Performance. Agreement, a measure of
how close the prediction results are to the experimental
results, is defined by the following equation:

agreement = tp + tn
tp + tn + fp + fn , ð16Þ

where tp is the number of true positives (correctly predicted
antigenic variation), fn is the number of false negatives
(incorrectly predicted antigenic similarity), tn is the number
of true negatives (correctly predicted antigenic similarity),

and fp is the number of false positives (incorrectly predicted
antigenic variation).

Sensitivity, which is the ability to identify true antigenic
variation correctly, is defined by

sensitivity = tp
tp + fn : ð17Þ

Specificity, which is the ability to identify true antigenic
similarity correctly, is defined by

specificity = tn
tn + fp : ð18Þ

The Matthews correlation coefficient (MCC) [44], which
takes into account true and false positives and negatives, is
generally considered a balanced measure of the performance
of a prediction model on the validation set. MCC is defined by

MCC = tp × tn − fp × fnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tp + fpð Þ × tp + fnð Þ × tn + fpð Þ × tn + fnð Þp : ð19Þ

Essentially, MCC is a correlation coefficient between the
observed and predicted binary classifications, with the values
of 1, 0, and −1 indicating a perfect agreement, no better than
random prediction, and total disagreement between predic-
tion and observation, respectively.

3. Results

3.1. Hyperparameter Tuning. Our deep learning approach
for antigenic variation prediction contains some hyperpara-
meters, which should be tuned to achieve good performance.
As seen from Table 1, in the deep learning approach, Convo-
lution1D layers contain different filter numbers and kernel
sizes and BLSTM layers contain different numbers of mem-
ory cells, while other parameters were set to fixed values. At
first, we explored for an optimal combination of filter num-
bers (8, 16, 32, and 64) and kernel sizes (2, 5, 10, and 15)
when the number of memory cells was set to a fixed value
of 128. The results (Table S2) show that although the
combination of filter number of 32 and kernel size of 10
has the best prediction effect (i.e., the highest MCC value,
0.960), the model with the kernel size of 15 obtains better
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Figure 1: The flowchart of our deep learning approach using the one-dimensional CNN and BLSTM module.
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and more stable prediction effects regardless of the filter
number. It appears that the change in the filter number has
an uncertain impact on the prediction effect (Table S2).
Therefore, we set the kernel size to a fixed value of 15 while
tuning the hyperparameters of the filter number and
memory cell number to optimize the prediction effect. The
results (Table S3) reveal a trend of improved prediction
effect with increased filter number, and in particular, the
filter number of 64 gives the best prediction effect regardless
of the memory cell number. Furthermore, it appears that the
too large (256) and too small (32) numbers of memory cells
are not conducive to the prediction effect; however, the
approach achieves stable and excellent prediction effects with
128 memory cells (Table S3). To this end, in our deep
learning approach, the parameters of the kernel size, filter
number, and memory cell number were set to 15, 64, and
128, respectively, for the final prediction.

3.2. Feature Selection. It is well known that the antigenic
phenotype of flu viruses is determined by both the sequence
and structural features of the HA protein; nevertheless, the
extracted structural features can be mapped to the protein
primary sequence through appropriate coding and, hence,
can be tested by the deep learning approach. Since it appears
infeasible to test all the features potentially involved in the
viral antigenicity, here only four key features accounting
for antigenic variation were tested using the current deep
learning framework, i.e., position (HA1 sequence position
where mutation occurs), epitope (whether a residue resides
on the antibody-specific epitopes or not), RBD (whether a
residue belongs to RBD or not), and Gly (whether a residue
is at the glycosylation site or not).

Since mutation plays a crucial role in altering antigenic-
ity, the position feature was used in all models, and the other
three features were used as auxiliary information to improve
the prediction performance. Here, four deep learning models
with position feature alone and in combination with each of
the other three features were tested to select the best predic-
tion model. As shown in Table 2, the model using only the

position feature (position model) provides good prediction
results in terms of the agreement, sensitivity, specificity,
and MCC. Compared to the position model, the model with
the additional epitope feature (position-epitope model)
notably improves the prediction results, with agreement,
sensitivity, specificity, and MCC reaching up to 97.16%,
96.85%, 97.34%, and 0.939, respectively. Surprisingly, the
models with additional features of Gly (position-Gly) and
RBD (position-RBD) produced the results no better than
those from the position model (with the exception of speci-
ficity by the position-RBD model). Therefore, only the two
features, position and epitope, were incorporated into the
deep learning approach for the subsequent antigenic varia-
tion prediction.

3.3. Performance. The performance of our deep learning
approach can be evaluated by comparing its prediction
results with those of the other existing methods. Since the
existing methods and our deep learning approach were
trained on quantitative antigenic distances and qualitative
antigenic characters, respectively, it is unreasonable to per-
form direct comparisons between the prediction results pro-
duced through different training sets; this is circumvented by
comparing the prediction results obtained from the same or
similar validation set(s), regardless of the difference between
the training sets. Of note is that the four machine learning
methods, i.e., Multiple regression [18], Multiple regression
on physicochemical properties [20], Decision tree [19], and
Joint random forest method [23] (see Table 3), collectively
used the complete Smith’s dataset [36] as the validation
set. Since this dataset contains abundant virus pairs in which
there are more than nine residue mutations capable of caus-
ing antigenic variations with a probability of 99%, the pre-
diction results by these methods show relatively high
agreements and sensitivities. However, the prediction speci-
ficities of the two methods, multiple regression on physico-
chemical properties and joint random forest, are very low,
thus leading to low MCC values. In order to avoid inflating
the prediction effect, Tan et al. [32] constructed a concise
dataset through removing from Smith’s dataset the virus
pairs with more than nine antigenic variation-causing muta-
tions and further the redundant pairs. Although the concise
dataset makes it more realistic and challenging for the pre-
diction of changes in the antigenicity, the application of
the stacked autoencoder (SAE) model, a deep learning
method developed by Tan et al. [32], to the concise dataset
achieved a considerably improved specificity (93%)

Table 1: The main layers and their optional parameters in the deep
learning approach.

Layer Parameter

Convolution1D_1
Filter (8, 16, 32, and 64), kernel size

(2, 5, 10, and 15), strides (1)

MaxPooling_1 Pool size (2), strides (1)

Convolution1D_2
Filter (8, 16, 32, and 64), kernel size

(2, 5, 10, and 15), strides (1)

MaxPooling_2 Pool size (2), strides (1)

BLSTM_1 Memory cell (32, 64, 128, and 256)

BLSTM_2 Memory cell (32, 64, 128, and 256)

Dense_1 Output space (64)

Dropout_1 Rate (0.6)

Dense_2 Output space (25)

Dropout_2 Rate (0.6)

Softmax Output space (1)

Table 2: The prediction results obtained from different deep
learning models with the position feature alone and in
combination with the other three features.

Model
Agreement

(%)
Sensitivity

(%)
Specificity

(%)
MCC

Position 95.73 95.18 96.12 0.914

Position-epitope 97.16 96.85 97.34 0.939

Position-Gly 95.02 93.84 95.75 0.895

Position-RBD 94.74 92.42 96.44 0.892

6 Computational and Mathematical Methods in Medicine



compared to those by the two models, multiple regression
on physicochemical properties (82.30%) and joint random
forest (77.7%). Encouragingly, the application of our deep
learning approach to our more concise dataset (see Section
2.1) further improves the prediction specificity (97.34%)
relative to that by SAE. Moreover, among all the existing
methods/models listed in Table 3, our deep learning
approach also achieves the best prediction performance in
terms of the agreement and MCC, indicating that our
approach is far superior to the others and is suitable for
the sequence-based prediction of antigenic variation.

The difference in antigenic properties between the
circulating flu viruses and the strains prevalent in previous
seasons provides the evidence basis for selecting flu vaccine
strains. Thus, an effective approach capable of predicting
the vaccine strains should correctly predict, on the basis of
historical training data, the antigenic profile of the strains
that will circulate in the upcoming season. Here, the accu-
racy of our deep learning approach for predicting antigenic
variation of the strains in the following year was evaluated
by using the historical training data. As shown in Table 4,
our deep learning approach achieves an average agreement
of 99.20% for predicting antigenic variation of the strains
in the forthcoming year. Such excellent prediction accuracy
is significantly higher than that by the Antigen-Bridges
method [21] using different residue sets (Table 5). Although
the agreement value of our approach decreases to 96.46% for
the strains in the next two years, it is still much higher than
that of the Antigen-Bridges method. In addition, our
approach shows a smaller reduction in the prediction accu-
racy for the strains between the forthcoming year and the
next two years than that of the Antigen-Bridges method

(Table 5). Finally, when taking a comprehensive look at the
performance measures, it can be found that our deep learning
approach also achieves both the high sensitivities and specific-
ities for the strains in the next year and next two years; further-
more, a better balance between the sensitivity and specificity
for the prediction of the next-year strains than for that of the
next-two-year strains leads to a higher MCC value for the
prediction of the next-year strains (Table 4).

Table 3: The prediction performance of our deep learning approach and other existing approaches.

Approaches Training set Validation set
Agreementa

(%)
Sensitivitya

(%)
Specificitya

(%)
MCCa

Multiple regression [18] 181 HI experiments
31878 pairs in Smith’s

datasetb
89.89 — — —

Multiple regression on
physicochemical
properties [20]

394 HI experiments
31878 pairs in Smith’s

datasetb
96.96 99.55 82.30 0.877

Decision tree [19] 181 HI experiments
31878 pairs in Smith’s

datasetb
96.20 — — —

Joint random forest
methodc [23]

28690 pairs in Smith’s dataset
31878 pairs in Smith’s

datasetb
96.4 98.1 77.7 0.758

Stacked autoencoderd [32]
80% of the 8097 pairs in a
concise version of Smith’s

dataset

20% of the 8097 pairs in a
concise version of Smith’s

dataset
95 95 93 —

Our deep learning
approache

The filtered virus pairs
formed by 70% of 253 strains

in Smith’s dataset

The filtered virus pairs
formed by 30% of 253 strains

in Smith’s dataset
97.16 96.85 97.34 0.939

aThe mark “—“means that there is no relevant data in literature. bSmith’s dataset contains 31878 pairwise comparisons among 253 viral strains that belong to
11 clusters; out of the 31878 virus pairs, 27098 pairs composed of the strains from different clusters contain antigenic variations, whereas 4780 pairs composed
of the strains from the same clusters possess similar antigens [36]. cYao et al. performed 10-fold cross-validation on Smith’s dataset. dThe stacked autoencoder
model was developed based on a concise dataset obtained by removing from Smith’s dataset the sequence pairs that contain more than 9 antigenic variation-
causing mutations followed by further removing the redundant pairs. eOur deep learning method was developed based on a more concise dataset built from
Smith’s dataset (for details of constructing the dataset, see Section 2.1); the advantage of our dataset is that the virus pair-constituting strains in the training set
and validation set are completely nonoverlapping or different.

Table 4: The results of the antigenic variation prediction for flu A
H3N2 in the forthcoming year and in the next two years using our
deep learning approach.

Prediction
duration

Agreement
(%)

Sensitivity
(%)

Specificity
(%)

MCC

Next year 99.20 98.59 99.32 0.972

Next two years 96.46 98.58 96.24 0.830

Table 5: Comparison between the agreements obtained by our
deep learning approach and the Antigen-Bridges method with
three residue sets [21] for the strains in the forthcoming year and
in the next two years.

Approaches (amino acid number)
Next year

(%)
Next two years

(%)

Antigen-Bridges (39-residue set) 83.78 75.10

Antigen-Bridges (44-residue set) 79.75 72.48

Antigen-Bridges (25-residue set) 80.51 71.51

Our deep learning approach 99.20 96.46
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4. Discussion

In the current study, we incorporated the information on
amino acid residue changes and several other features asso-
ciated with antigenicity into a deep learning framework to
predict the antigenic variation of flu A H3N2. Due to the
deep combination of CNN and BLSTM, it can be expected
that our deep learning approach has the capacity to capture
and process both the local and nonlocal information.
Indeed, our deep learning approach achieves very competi-
tive prediction results in terms of the agreement, sensitivity,
specificity, and MCC on the subset of a stricter and more
concise Smith’s dataset, respectively (Table 3). More encour-
agingly, based on the existing set of chronological amino acid
sequences, our deep learning approach achieves 99.20% of
agreement for antigenicity prediction of the strains in the forth-
coming year and at the same time improves the sensitivity and
specificity to 98.59% and 99.32%, respectively (Table 4). When
compared to previous studies [21, 23], our approach improves
or maintains the specificity without impairing the sensitivity,
thus leading to a very high performance score of MCC
(0.972) for the strains in the forthcoming year. As for the
strains in the validation sets of the next two years, our approach
obtains a relatively low MCC value (0.830) due to the slightly
impaired balance between the sensitivity and specificity; never-
theless, our approach still offers excellent performance in terms
of the agreement, sensitivity, and specificity (Table 4).

The results of hyperparameter tuning show that our
deep learning approach gains the most optimal performance
using the kernel size of 15 in Convolution1D layers and
memory cell number of 128 in BLSTM layers (Tables S2
and S3). The kernel size of 15 means that the CNN is able
to capture more local complex features in protein
sequences using 15 adjacent amino acid residues than
using fewer residues. The memory cell number of 128
means that the long-distance dependency encoding module
is able to learn more long-distance dependency based on
the local features (captured by the local feature encoding
module) when the LSTM output dimension is 128. In
general, more memory cells imply that more information
will be extracted and learned from a complete sequence
pair. Indeed, there is a trend of increasing the performance
of our approach as the number of memory cells increases
from 32 to 128, and a similar trend was also observed in a
previous study aimed at improving the accuracy of protein
secondary structure prediction with a hybrid deep learning
framework [45]. However, when the number of memory
cells increases to 256, the performance of our deep
learning approach becomes slightly worse and more
unstable compared to that with the memory cell number of
128, and this may be due to the difficulty in convergence
arising from too many parameters. Previous studies have
also shown that the deep learning frameworks with
moderate numbers of BLSTM memory cells, 50-150, were
able to achieve optimal performance in their respective
prediction applications [42, 45–47].

The deep learning approach has a huge advantage in
processing large amounts of complex information. In
general, the more information the training set can provide,

the better prediction performance the deep learning model
will achieve. In this work, in addition to the sequence-
based position feature, information on several structure-
derived features involved in antigenic variation was also
encoded and tested using deep learning models with differ-
ent combinations of the position feature and each of the
other features (i.e., epitope, RBD, and Gly), and the results
show that only in the case of the combined position and
epitope features can the model achieve the best prediction
performance among all the models (Table 2). It is speculated
that this may be due to the limitations of our feature extrac-
tion method and of the qualitative set of quasi-experimental
HI data. A further study is needed to examine the effects of
the combinations of more than two features on the
prediction performance of our deep learning approach. It
should also be noted that the HI experimental data of pair-
wise viruses are currently very limited, and therefore, we
only tested the prediction effect of our deep learning
approach using the quasi-experimental HI data in both the
training and validation sets. We anticipate that the accuracy
and performance of our deep learning method will be fur-
ther improved if adequate high-quality data of HI assays
are available.
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