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Objective. To investigate the mechanism of Folium Ginkgo (FG) against adriamycin-induced cardiotoxicity (AIC) through a
network pharmacology approach. Methods. Active ingredients of FG were screened by TCMSP, and the targets of active
ingredient were collected by Genclip3 and HERB databases. AIC-related target genes were predicted by Genecards, OMIM,
and CTD databases. Protein-protein interaction (PPI) network was constructed by STRING platform and imported into
Cytoscape software to construct the FG-active ingredients-targets-AIC network, and CytoNCA plug-in was used to analyze and
identify the core target genes. The Metascape platform was used for transcription factor, GO and signaling pathway
enrichment analysis. Results. 27 active ingredients of FG and 1846 potential targets were obtained and 358 AIC target genes
were retrieved. The intersection of FG and AIC targets resulted in 218 target genes involved in FG action. The top 5 active
ingredients with most targets were quercetin, luteolin, kaempferol, isorhamnetin, and sesamin. After constructing the FG-active
ingredients-targets-AIC network, CytoNCA analysis yielded 51 core targets, of which the top ranked target was STAT3. Ninety
important transcription factors were enriched by transcription factor enrichment analysis, including RELA, TP53, NFKB1, SP1,
JUN, STAT3, etc. The results of GO enrichment analysis showed that the effective active ingredient targets of FG were
involved in apoptotic signaling, response to growth factor, cellular response to chemical stress, reactive oxygen species
metabolic process, etc. The signaling pathway enrichment analysis showed that there were many signaling pathways involved
in AIC, mainly including pathways in cancer, FOXO signaling pathway, AGE-RAGE signaling pathway in diabetic
complications, signaling by interleukins, and PI3K-AKT signaling pathway,. Conclusions. The study based on a network
pharmacology approach demonstrates that the possible mechanisms of FG against AIC are the involvement of
multicomponents, multitargets, and multipathways, and STAT3 may be a key target. Further experiments are needed to verify
the results.

1. Introduction

Adriamycin is a broad-spectrum, highly effective anthracy-
cline antitumor drug that can be used in the treatment of a
variety of solid and hematologic malignancies, especially
important in the treatment of breast cancer, sarcoma, lym-
phoma, leukemia, and other cancers. However, the time-
and dose-dependent cardiotoxicity caused by adriamycin
has severely limited its clinical application and therapeutic
efficacy. Adriamycin-induced cardiotoxicity (AIC) is
observed at a wide range of 3%-48% in adult and can man-

ifest as both acute irreversible myocardial injury, left ventric-
ular dysfunction, dilated cardiomyopathy, and heart failure
one or more years after the end of treatment [1]. Although
current evidence indicates that AIC is associated with oxida-
tive stress, mitochondrial damage, topoisomerase-2, intra-
cellular environmental imbalance, cellular autophagy, and
apoptosis, the exact mechanism remains unknown [2]. Dex-
razoxane is the only drug recommended by current guide-
lines to mitigate AIC, however, the efficacy is limited [3].
Therefore, it is clinically important to explore effective ther-
apeutic drugs to alleviate AIC.
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Folium Ginkgo (FG) is the dried leaf of Ginkgo biloba, a
plant of the Ginkgo family, which is naturally mild, with a
slight air, slightly sweet, bitter, and astringent taste. FG has
the effects of activating blood circulation, relieving pain,
comforting the lungs and asthma, and reducing lipids, thus
has been used in China as a traditional medicine for the
treatment of asthma, bronchitis, and heart dysfunction for
at least 5000 years [4, 5]. Modern pharmacological research
has found that FG extract contains a variety of medicinal
active ingredients, mainly including flavone glycosides, ter-
pene lactones, ginkgolic acids, etc [6]. These active ingredi-
ents are the material basis for its anti-inflammatory, anti-
polymerization, lipid-regulating, antioxidant, mitochondrial
function protection, and cancer cell apoptosis promotion
[7, 8]. The protective effects of FG extract on ventricular
myocardial hypertrophy, postinfarction myocardial fibrosis,
and ischemia-reperfusion myocardial injury in rats were
reported by previous in-vivo studies [9]. Clinical studies
have also found significant effects of FG extract in the treat-
ment of coronary heart disease, stroke, angina pectoris, and
other cardiovascular diseases [9, 10]. In addition to the wide
use for cardio-cerebro-vascular diseases, previous study
found its myocardial protection effect on cardiomyopathy
as well [11]. Studies on the intervention of FG extracts
against AIC have also been reported, demonstrating a better
therapeutic effect [12]. Nevertheless, the molecular mecha-
nism of FG extract against AIC is still unclear due to its
complex composition and diverse targets. Network pharma-
cology which integrates systems biology and pharmacology,
was widely used to explore the comprehensive mechanism of
Chinese herbal medicine. As an effective and rapid tool, net-
work pharmacology takes advantage of its capability in the
aspect of elucidating the multitargets and multipathway
mechanism to advance the drug discovery [13]. Therefore,
this study adopted a network pharmacology approach to
screen the active ingredients of FG and establish a disease-
target-herbal medicine multilevel network to systematically
investigate the possible mechanisms of FG against AIC and
provide theoretical references for the development of drugs
against AIC.

2. Materials and Methods

2.1. Screening of Active Ingredients and Targets of FG. The
TCMSP database (https://tcmspw.com/tcmsp.php) was
searched for the chemical composition of FG using “Folium
Ginkgo” as the keyword. The possible active ingredients in
FG were screened with an oral bioavailability ðOBÞ ≥ 30%
and drug-likeness ðDLÞ ≥ 0:18, and the pharmacologic tar-
gets involved were identified. At the same time, using the
screened active ingredients as keywords, the online tools
Genclip3 (http://ci.smu.edu.cn/genclip3/analysis.php) and
HERB (http://herb.ac.cn/) databases were used to further
collect additional FG targets, and bioDBnet (https://
biodbnet-abcc.ncifcrf.gov/db/db2db.php) was used to per-
form ID conversion of identified target gene. Finally, the
results were summarized and organized to form the FG-
targets database.

2.2. Target Screening of AIC. The targets related to AIC were
obtained by searching the Genecards database (https://www
.genecards.org), the human Mendelian genetic database
(OMIM, https://omim.org/) and CTD (http://ctdbase.org/).
After removing duplicate targets, gene names of targets were
normalized and converted to gene ID by bioDBnet (https://
biodbnet-abcc.ncifcrf.gov/db/db2db.php) to obtain the dis-
ease targets.

2.3. Network Construction of FG-Active Ingredient-Target-
AIC. The active ingredient targets of FG were compared with
the cardiotoxicity targets of anthracycline, and the common
targets were screened using the venn diagram tool. The
above obtained active ingredients of FG and common targets
with AIC were collated, and the Cytoscape 3.7.2 software
was used to construct the FG-active ingredients-targets-
disease network.

2.4. Network Construction of Protein-Protein
Interactions(PPIs) and Core Targets. The obtained common
targets were imported into the STRING database (https://
string-db.org/) to obtain the PPI network file. The species
was selected as “Homo sapiens”, the interaction score
parameter was set to 0.900, and the remaining were set as
default. The “TSV” network file was obtained by removing
the targets that did not interact with other proteins. The
“TSV” file was imported into Cytoscape software, and the
topological parameters of each target of the PPI network
were analyzed by CytoNCA plug-in, and organized in an
excel table, with the following parameters: betweenness,
closeness, degree, local average connectivity (LAC), network
centrality, and eigenvector. The median values of these six
indicators were calculated separately, and the targets were
identified as the core targets when all six indicators of the
targets were greater than the median value. Subsequently,
the core target network was constructed by Cytoscape
software.

2.5. Enrichment Analysis of Gene Ontology, Transcription
Factor and Signal Pathway. The core target genes obtained
above were imported into the online tool Metascape
(https://metascape.org/gp/index.html#/main/step1) to per-
form gene ontology (GO), transcription factor, and signaling
pathway enrichment analysis, with the species setting as “H.
sapiens” and the module setting as “Express Analysis”.

3. Results

3.1. Active Ingredients and Targets of FG. A total of 27 active
ingredients were obtained after screening through the
TCMSP database, including white fruit lactone, luteolin,
quercetin, geranylin, lignan, etc. The basic information is
shown in Table 1. The gene names of potential targets corre-
sponding to each active ingredient were normalized, and a
total of 1846 potential targets were obtained after removing
duplicate targets (no corresponding target for luteolin).

3.2. AIC-Associated Targets. After searching for AIC target
genes in Genecards, OMIM, and CTD databases,
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normalizing gene names and removing duplicate target
genes, a total of 358 target genes were obtained.

3.3. FG-Active Ingredient-Target-AIC Network. The potential
targets of the 27 active ingredients of FG were intersected
with the target genes of AIC by the online venn diagram

tool, resulting in 218 target genes (Figure 1), which indicated
that these 218 targets were considered as potential targets of
FG against AIC. The active ingredients of FG and their com-
mon targets with AIC were imported into Cytoscape 3.7.2
software to generate a FG-active ingredients-target-AIC net-
work, as shown in Figure 2, where the common targets were
in blue and the potential targets corresponding to the active
ingredients in FG were in green. Figure 2 reflected that 27
active ingredients of FG might interfere with AIC through
218 potential targets. Among them, the top 5 active ingredi-
ents with most potential targets were quercetin
(MOL000098, 191 targets), lignan (MOL000006, 146 tar-
gets), kaempferol (MOL000422, 120 targets), isorhamnetin
(MOL000354, 76 targets), and sesquiterpene (MOL001558,
62 targets).

3.4. PPIs and Core Target Networks. The 218 common tar-
gets were imported into the STRING database to obtain
the TSV network file of PPIs with high confidence, which
were then imported into Cytoscape 3.7.2 software and ana-
lyzed by CytoNCA plug-in. According to the established cri-
terion, 51 genes were identified as core targets, with which
the PPI network was constructed as Figure 3. The

Table 1: Active ingredient of Folium Ginkgo.

Mol ID Compounds OB (%) DL

MOL011578 Bilobalide 84.42 0.36

MOL002680 Flavoxanthin 60.41 0.56

MOL001558 Sesamin 56.55 0.83

MOL000492 (+)-Catechin 54.83 0.24

MOL000096 (-)-Catechin 49.68 0.24

MOL000354 Isorhamnetin 49.60 0.31

MOL011589 Ginkgolide M 49.09 0.75

MOL011587 Ginkgolide C 48.33 0.73

MOL000098 Quercetin 46.43 0.28

MOL007179 Linolenic acid ethyl ester 46.10 0.20

MOL011588 Ginkgolide J 44.84 0.74

MOL011586 Ginkgolide B 44.38 0.73

MOL000449 Stigmasterol 43.83 0.76

MOL001490 Bis[(2S)-2-ethylhexyl] benzene-1,2-dicarboxylate 43.59 0.35

MOL001494 Mandenol 42.00 0.19

MOL011597 Luteolin-4′-glucoside 41.97 0.79

MOL000422 Kaempferol 41.88 0.24

MOL011594 Isogoycyrol 40.36 0.83

MOL005043 Campest-5-en-3beta-ol 37.58 0.71

MOL005573 Genkwanin 37.13 0.24

MOL000358 Beta-Sitosterol 36.91 0.75

MOL011604 Syringetin 36.82 0.37

MOL000006 Luteolin 36.16 0.25

MOL003044 Chryseriol 35.85 0.27

MOL009278 Laricitrin 35.38 0.34

MOL002883 Ethyl oleate 32.40 0.19

MOL002881 Diosmetin 31.14 0.27

OB, oral bioavailability; DL, drug-likeness.

1628

Folium ginkgo

140218

AIC targets

Figure 1: Venn diagram of FG active ingredients and AIC targets.
AIC, adriamycin-induced cardiotoxicity; FG, Folium Ginkgo.
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topological characteristics of these 51 core targets were
shown in Table 2, from which it could be seen that the target
with best performance in all parameters was STAT3.

3.5. Enrichment Analysis Results. The 51 core target genes
were imported into Metascape online software for enrich-
ment analysis. Using p < 0:01 as the threshold, the results
of transcription factor enrichment analysis showed that a
total of 90 transcription factors were enriched, of which
the top 20 were shown in Figure 4, including RELA, TP53,
NFKB1, SP1, JUN, STAT3, and other transcription factors,
which were considered to be the most important transcrip-
tion factors involved in FG against AIC. Similarly, the top
20 GO and signaling pathway enrichment analyses were
shown in Figures 5(a) and 5(b), including GO entries for
apoptosis, growth factor stimulation response and cellular
response to chemical stress and reactive oxygen metabolic
processes, and signaling pathways such as cancer-related sig-
naling pathway, FOXO signaling pathway, AGE-RAGE sig-
naling pathway in diabetic complications, interleukin
signaling pathway, and PI3K-AKT signaling pathway, which
were considered to be the most important biological pro-
cesses and signaling pathways involved in FG against AIC.

4. Discussion

Chemotherapy-induced cardiotoxicity is classified as “drug
toxicity” in traditional Chinese medicine (TCM), of which
anthracyclines are highly toxic. Therefore, patients receiving
anthracycline chemotherapy often impair their vital energy

with clinical symptoms including palpitations, chest tight-
ness, shortness of breath, and weakness [14, 15]. Studies of
TCM syndromes and syndrome elements suggest that the
cardiotoxicity syndrome of anthracyclines is characterized
by combination of deficiency and abundance, and the path-
ogenesis includes deficiency, dampness, stasis, and Qi-
stagnation. “Deficiency” is the root of the disease, and “toni-
fying deficiency” is the basic treatment in the practice of
TCM, with benefiting Qi and nourishing Yin, invigorating
blood and resolving blood stasis as the main treatment
method [16].

FG is a common Chinese medicine with the efficacy of
activating blood circulation and removing blood stasis. A
large number of basic and clinical studies have revealed a
wide range of therapeutic effects of FG extract on cardiovas-
cular and cerebrovascular diseases [9]. FG has also shown
great potential in the prevention and treatment of AIC. Xu
et al. found that FG extract was able to improve cardiac
function and myocardial energy metabolism in rats
experiencing AIC, and further studies showed that the
mechanism may be associated with the increased expression
of ghrelin peptide [17]. Li et al. also showed that FG extract
could treat anthracycline-induced cardiomyopathy [12].
Ding et al. found that FG extract (EGb761) could antagonize
AIC in rats without affecting its antitumor activity [18]. Sim-
ilarly, the cardioprotective effect of FG extract (EGb761)
reducing anthracycline-induced oxidative stress and apopto-
sis in rat and mouse cardiomyocytes was also confirmed by
both in vivo and in vitro studies [19–24]. Nevertheless, FG
extracts are mixtures containing multiple compounds with

AIC

Folium ginkgo

Figure 2: FG-active ingredient-target-adriamycin cardiotoxicity network. AIC, adriamycin-induced cardiotoxicity; FG, Folium Ginkgo;
common targets between Ginkgo biloba active ingredients and AIC in blue oval; FG active ingredient compounds and their numbers in
green rectangles.
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diverse targets, and the mechanisms of action often involve
multiple signaling pathways. Therefore, even for the stan-
dardized FG extract EGb761 (containing 24% ginkgolide
and 6% terpene lactone), the several studies to explore its
anti-anthracycline cardiotoxicity are mostly concentered on
phenotypic exploration, the specific mechanism of action
remains to be further investigated.

Unlike the traditional “single compound-disease”
approach, network pharmacology is suitable for studying
the multiple components and mechanisms of action of
TCM from a holistic perspective [25]. Therefore, this study
was conducted to investigate the mechanism of action of
FG on AIC using a network pharmacology approach. The
results of this study showed that a total of 27 candidate
active ingredients of FG were screened by TCMSP, most of
which were flavonol glycosides, indicating that the main
components of FG against AIC may rely on flavonol glyco-
sides. Of the candidate active ingredients, the five with most
targets were quercetin, lignan, kaempferol, isorhamnetin,
and sesquiterpene. Moreover, 218 potential targets of AIC
were also predicted. According to several studies, quercetin

can improve myocardial energy metabolism, inhibit oxida-
tive stress, improve myocardial mitochondrial function,
and reduce myocardial apoptosis in rats, thus antagonizing
AIC [26–28]. Studies on lignocaine, kaempferol, isorhamne-
tin, and sesquiterpene also showed cardioprotective effects
against AIC [29–32]. Therefore, it was hypothesized that
quercetin, lignan, kaempferol, isorhamnetin, and sesquiter-
pene might play important roles in the pharmacological
mechanism of FG against AIC. In addition, 51 core targets
were identified by PPI network analysis. Meanwhile, tran-
scription factor enrichment analysis was performed on these
core targets, resulting in 90 potentially important transcrip-
tion factors, the top 20 of which were illustrated in Figure 4,
including RELA, TP53, NFKB1, SP1, JUN, STAT3, etc.
Notably, STAT3 was both one of the most important genes
in the core target and one of the most important transcrip-
tion factors enriched. Previous study has shown that inacti-
vation of the JAK2/STAT3 signaling pathway significantly
reduced myocardial reactive oxygen species and lipid oxida-
tion levels, inhibited myocardial apoptosis and fibrosis, and
promoted autophagy, thereby antagonizing AIC [33, 34],
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Figure 3: Core target networks of FG against AIC.
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Table 2: Topological parameters of FG-active ingredient-target-AIC network.

Gene Betweenness Closeness Degree Eigenvector LAC NC

STAT3 3613.524 0.141538 41 0.25225 8.487805 25.03794

HSP90AA1 4155.85 0.140673 38 0.216973 6.210526 16.68387

TP53 3109.456 0.139924 36 0.202642 6.722222 18.50258

AKT1 3549.988 0.14143 36 0.225162 7.666667 19.34911

SRC 2349.084 0.139288 35 0.221844 8.057143 19.30701

MAPK1 2233.733 0.140888 35 0.217537 6.857143 16.91455

EP300 3296.193 0.140673 33 0.196503 7.151515 16.27721

PIK3CA 1124.138 0.136600 31 0.188837 6.451613 16.56008

ESR1 927.866 0.139394 27 0.220745 9.851852 15.0709

EGFR 622.7751 0.136803 26 0.193300 8.538462 14.81648

CTNNB1 861.7669 0.137519 25 0.184046 7.360000 11.47712

FOXO3 1100.573 0.137519 25 0.172923 7.520000 13.81911

FOS 1658.016 0.137519 24 0.166604 6.750000 10.6718

MYC 612.8622 0.13845 23 0.184177 8.695652 12.46751

FOXO1 1242.73 0.136499 22 0.144507 6.272727 11.44315

CAV1 957.2685 0.136803 20 0.134328 4.800000 6.392411

HIF1A 247.0885 0.137007 20 0.177245 9.100000 12.04197

MAPK8 780.4704 0.136397 19 0.119740 3.789474 5.508794

RAC1 374.3938 0.135294 19 0.152714 7.263158 9.57265

EDN1 988.8267 0.136095 19 0.128492 5.052632 6.761953

MAPK14 480.6648 0.137416 19 0.153469 6.736842 7.919192

VEGFA 603.2804 0.135195 19 0.141028 6.421053 8.723443

TNF 851.584 0.134897 19 0.093954 4.421053 7.889854

RXRA 2372.955 0.137007 18 0.086172 3.333333 7.43355

EGF 511.6375 0.134209 17 0.126609 6.352941 8.987879

MDM2 193.1254 0.134405 14 0.103356 5.428571 6.945177

CXCR4 274.9352 0.132279 14 0.086078 4.571429 6.542025

PPARA 1177.08 0.135693 13 0.072716 3.846154 6.213203

CASP3 669.0858 0.132374 13 0.071404 2.461538 4.450000

AGT 1014.253 0.131994 12 0.060731 2.666667 5.11039

BCL2 691.7133 0.135095 12 0.091332 4.666667 6.916667

INS 808.0313 0.131617 12 0.075362 2.833333 3.336364

IL1B 341.9638 0.13343 12 0.063619 3.833333 4.931061

ABL1 104.5201 0.131241 11 0.078031 3.818182 4.838095

CXCL8 166.0439 0.132184 11 0.058389 4.545455 5.835714

PTEN 250.5796 0.131805 11 0.083429 4.000000 4.933333

IL2 498.0181 0.133624 11 0.086090 3.454545 4.725000

IGF1 77.82508 0.130127 11 0.091381 5.090909 5.722222

CDK2 74.20501 0.130035 10 0.069160 4.600000 6.023810

CAT 1212.973 0.129852 10 0.035067 2.400000 4.611111

MMP2 204.2059 0.131148 10 0.064443 3.600000 5.238095

BRCA1 415.0989 0.130868 9 0.065461 3.777778 4.928571

CSF2 79.61738 0.130127 9 0.056202 4.000000 5.375000

ATM 49.85902 0.129944 8 0.051793 4.250000 5.428571

ADRBK1 262.6582 0.129123 8 0.038637 2.500000 2.952381

HSPA1A 222.7726 0.132852 8 0.054802 2.750000 3.761905

POMC 527.4912 0.127336 8 0.036912 2.500000 3.657143

FGFR3 69.17835 0.132565 8 0.074942 4.500000 6000000

6 Computational and Mathematical Methods in Medicine



and FG extract was found able to suppress STAT3-mediated
inflammatory signal in heart, brain, and liver tissue for pro-
tection purpose [35–37], implying that STAT3 may be an
important target for FG to treat AIC.

The results of GO enrichment analysis showed that the
active ingredients of FG are involved in biological pro-
cesses such as apoptosis, growth factor stimulation
response, and cellular response to chemical stress and
reactive oxygen metabolic processes, suggesting that the
targets of FG are involved in apoptosis and oxidative stress
regulation. Signaling pathway enrichment analysis showed
that numerous signaling pathways, including cancer-
related signaling pathway, Foxo signaling pathway, AGE-
RAGE signaling pathway in diabetic complications, inter-
leukin signaling pathway, and PI3K-AKT signaling path-
way were involved in the mechanism of FG against AIC.
Among them, as a classical pathways to maintain cell sur-
vival cycle, activation of PI3K-AKT signaling was demon-
strated to effectively attenuate myocardial apoptosis and
fibrosis induced by anthracycline [38–40]. Consistently,
the therapeutic effect of FG active ingredients ginkgolide
A, ginkgolide B, and isorhamnetin has been recently vali-
dated via their synergistic effect on PI3K-AKT activation
in vitro [12]. Interleukin-mediated regulation of inflamma-
tion has an important role in anthracycline cardiotoxicity,
and different interleukin signaling may play different roles.

Previous studies have found that doxorubicin induces pro-
inflammatory factor IL-1β overexpression and promotes
myocardial inflammation and apoptosis through activation
of NF-κB signaling [41], while activating NF-κB signaling
accelerated doxorubicin-induced apoptosis and fibrosis in
cardiac cells [42]. In support of this, FG has been also
found to show a protective effect against AIC by inhibiting
NF-κB signaling [12], however, that whether this effect on
NF-κB was mediated by interleukin signaling remained
unclear. Foxo signaling is important for the regulation of
cardiomyocyte development and survival. Doxorubicin
has been shown to induce cardiomyocyte apoptosis and
atrophy through CDK2-mediated activation of FOXO1
signaling [43], while overexpression of Foxo3A attenuates
AIC by inhibiting MIEF2 and mitochondrial disintegration
in cardiomyocytes [44], and activation of FOXO3A signal-
ing reduces anthracycline-induced apoptosis in rat cardio-
myocytes [45], indicating the diversity of FOXO signal in
cardiomyocytes. In addition, PI3K-AKT activation was
found to upregulate FOXO3A signaling to antagonize
AIC [46]. According to the results of the current study,
STAT3, FOXO1, and FOXO3 are both the core targets
of FG against AIC and the core genes in the aforemen-
tioned key signaling, suggesting that there may be syner-
gistic effects among multiple targets and signaling
pathways for FG in intervening AIC cardiotoxicity.

Table 2: Continued.

Gene Betweenness Closeness Degree Eigenvector LAC NC

BAX 166.4043 0.128942 7 0.038510 2.857143 4.250000

MCL1 57.92171 0.13266 7 0.061129 3.428571 4.000000

SOD2 327.0613 0.128045 7 0.034584 3.142857 4.566667

LAC, local average connectivity; NC, network centrality.
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Figure 4: Enrichment analysis of transcription factor of core targets.
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5. Conclusion

In summary, this study systematically investigated the active
ingredients, targets, and signaling pathways of FG against
AIC based on a network pharmacology approach. Quercetin,
lignan, kaempferol, isorhamnetin, and sesquiterpene were
identified as key components of FG in the treatment of
AIC and STAT3 was identified as the key target. The syner-
gistic effects of multiple ingredients, targets, and pathways
may be implicated in FG action. Given the limitations of net-
work pharmacology, further experimental validation of the
effect of the key compounds of FG on important targets
and signal such as STAT3 and FOXO signal AIC model is

needed in the future, which could provide more support
for our finding.
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