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Early research shows that disrupting the circadian rhythm increases the risk of various cancers. However, the roles of circadian
clock genes in colorectal cancer, which is becoming more common and lethal in China, remained to be unclear. In conclusion,
the present study has demonstrated that multiple CCGs were dysregulated and frequently mutated in CRC samples by
analyzing the TCGA database. The higher expression levels of REV1, ADCYAP1, CSNK1D, NR1D1, CSNK1E, and CRY2 had
a strong link with shorter DFS time in CRC patients, demonstrating that CCGs had an important regulatory role in CRC
development. Moreover, 513 CRC tumor samples were divided into 3 categories, namely, cluster1 (n = 428), cluster2 (n = 83),
and cluster 3 (n = 109), based on the expression levels of the CCGs. Clinical significance analysis showed that the overall
survival and disease-free survival of cluster 2 and cluster 3 were significantly shorter than those of cluster 1. The stemness
scores in cluster 1 and cluster 2 were significantly higher than those of cluster 3 CRC samples. Clinically, we found that the C3
subtype had significantly higher percentage of T3/T4, N1/N2, and grades III and IV than groups C1 or C2. In addition, we
reported that different CRC clusters had significantly different tumor-infiltrating immune cell signatures. Finally, pancancer
analysis showed that higher expression of CSNK1D was correlated with shorter DFS time in multiple cancer types, such as
COAD and LIHC, and was dysregulated in various cancers. In conclusion, we effectively developed a CCG-related predictive
model and opened up new avenues for research into immune regulatory mechanisms and the development of immunotherapy
for CRC.

1. Introduction

Circadian rhythms are required for several biological activi-
ties, including metabolism, regeneration, immunology, and
endocrinology [1]. Circadian rhythms regulate all human
tissues through incredibly intricate mechanisms [2]. The
molecular clock is comprised of a core clock gene loop. Cir-
cadian rhythm-controlled genes have key roles in tumor
processes such as DNA damage and repair, apoptosis, cell
proliferation, and metastasis [3]. A growing number of stud-
ies have sought to investigate the association between circa-
dian rhythms and cancer in recent years [4, 5]. Early
research shows that disrupting the circadian rhythm
increases the risk of various cancers, including lung, pros-

tate, breast, colon, endometrial, liver, pancreatic, and kidney
cancers [6]. For instance, BMAL1 is vital in the prevention
of breast cancer [7]. PER2 overexpression accelerates the
growth of oral squamous cell carcinoma [8], and overexpres-
sion of NR1D1 may contribute to the development of kidney
cell carcinoma [9]. In the pan renal cell carcinoma, circadian
clock genes (CCGs) govern immunity, the cell cycle, and
apoptosis [9]. Furthermore, persistent jet lag-induced gene
deregulation and liver metabolic inefficiency can enhance
hepatocarcinogenesis [10]. Nine circadian clock genes,
including CCSNK1E, DBP, and NR1D2, were discovered
as major prognostic markers in prostate cancer and were uti-
lized to build a risk score model based on them [11]. Previ-
ous research has also demonstrated that disturbance of
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Figure 1: Continued.
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normal rhythms and malfunction of CCGs contribute to the
formation and progression of various cancer types, as well as
affect the tumor immune cycle function [12]. Previous
research has indicated that cancer chronotherapy or sched-
uled chemotherapy delivery based on circadian rhythm
may lessen drug toxicity [13]. Several animal model-based
investigations have found that medicines targeting circadian

rhythm genes, such as ROR synthesis agonists, can increase
anticancer immunity activation [14]. The significance of the
circadian clock in prognostic evaluation and its clinical con-
sequences in COAD, on the other hand, are rarely studied.
According to one study, CLOCK, CRY1, and NR1D1 mRNA
expression was raised in COAD tissue. A bioinformatic
study revealed that circadian rhythm genes were mostly
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Figure 1: The expression and genetic variation profile of CCGs in CRC. (a) The expression levels of CCGs in CRC and matched normal
samples. (b) Correlation between disease-free survival time and expression of CCGs in CRC was present. (c) The horizontal histogram
presented the genetic variation profile of CCGs in CRC. (d) CRC patients with mutations of CCGs had a shorter DFS time.
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associated with the glucocorticoid receptor pathway [15].
However, the functions of CCGs in the colorectal cancer
remained largely to be unclear.

Colorectal cancer is becoming more common and lethal
in China, with 0.37 million new cases and 0.19 million
deaths, respectively [16, 17]. The incidence of colon cancer
has considerably grown, and the majority of patients are
detected in the middle or late stages [16, 17]. As a result,
detecting CRC is a critical duty at the moment. Previous
research has demonstrated that full loss of p53 expression

indicates a poor outcome in CRC [18]. TMED3 expression
has been linked to a poor outcome in CRC [19]. Numerous
research has been conducted to study the association
between microsatellite instability (MSI) and the prognosis
of CRC. The prognosis of CRC with MSI is much better than
that of CRC with intact mismatch repair [20].

Immunotherapy has shown great progression in elimi-
nating malignant cells by using the innate processes of the
host immune system throughout the last decade, transform-
ing the treatment landscape of many malignancies [21].
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Figure 2: Construction and evaluation of the effectiveness of a prognostic signature. (a) LASSO coefficients for PRGs. Each curve represents
a CCG. (b) 1000-fold crossvalidation of variable selection in LASSO regressions. (c) A significant survival benefit for low-risk CRC patients.
(d, e) KM plotter analysis demonstrated that CRC patients with higher risk score had a shorter DFS time with an AUC value of 0.75, 0.71,
and 0.841 for the 1-year, 3-year, and 5-year DFS, respectively.
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Figure 3: Continued.
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Immune checkpoint inhibition (ICI) has proven substantial
effectiveness in cancer treatment techniques. ICI signifi-
cantly increases overall survival (OS) time in patients with
melanoma and lung cancer [21]. ICI stimulates the adaptive
immune system to prevent immune escape caused by the
activation of immune checkpoint cascades such as PD-1 or
PD-L1 or CTLA-4 [22]. PD-1 is found on activated lympho-
cyte cells, which bind to PD-L1 expressed on tumor cells
[22]. When activated, the PD-1/PD-L1 axis generates inhib-
itory signals, resulting in T cell depletion and inactivation
[22]. The FDA-approved PD-1 inhibitors pembrolizumab
for the treatment of dMMR/MSI-H CRC [23]. Recently,
the FDA has also authorized ipilimumab, a CTLA-4 anti-
body, in conjunction with nivolumab in patients with
CRC. Although PD-L1 is the most important prognostic
biomarker for immunotherapy, PD-L1 expression was not
related to better OS in the pembrolizumab phase II study
in MSI-H CRC [24]. As a result, new biomarkers for predict-
ing immunotherapy effectiveness are required.

2. Materials and Methods

2.1. Datasets and Preprocessing. The TCGA database was
utilized to acquire CRC data. The TCGA database included
620 CRC tissues. RNA sequence data and clinicopathological
characteristics were analyzed. R software was used for all
subsequent statistical studies. P < 0:05 was used as the
screening criterion for the differential expression of CCGs.

2.2. Characterization of Molecular Subtypes of CRC. The
gene list of the core circadian clock genes was downloaded
from The Molecular Signatures Database (MSigDB) [25,
26]. We aimed to see whether the expression profile of CCGs
may help us differentiate between CRC subtypes. 29 CCGs
were selected for further ConsensusClusterPlus analysis.
The Euclidean distance metric was used to calculate the sim-
ilarity distance between samples. The samples were clustered
over 1000 iterations using the k-means clustering technique.
The number of clusters ranged from 2 to 8, and the best par-
tition was chosen by assessing the consensus cumulative dis-
tribution function (CDF). The PCA was performed using the
R package for R v3.6.0.

2.3. Immune Signature Analysis in CRC Molecular Subtypes.
The CIBERSORT method [27] was used to calculate the

expression scores of microenvironmental variables (tumor,
immunological, and stromal purity). TIMER was used to
examine the correlation between tumor samples and six
tumor-infiltrating cells [28]. The immunological signature
and checkpoint gene expression levels were also examined
in all molecular subtypes. The analysis of variance
(ANOVA) test was used to examine different CRC subtypes.
Bonferroni correction was used for multiple testing.

2.4. Establishment of Prognostic Signature. CRC data from
620 patients from the TCGA database was retrieved for the
identification of prognosis-related CCGs. We constructed a
prediction signature for the CCGs stratified by the risk score
using a univariate Cox proportional regression analysis and
the least-absolute shrinkage and selection operator (Lasso)
regression
(-
risk score = EXPCCGs n coefficientn + EXPCCGs 1
coefficient1 + EXPCCGs 2 coefficient2 +⋯ + EXPCCGs n
coefficientn). The risk score for each CRC patient was then
computed. Based on the median risk score, the CRC patient
was categorized as risk score-high or low group. The ROC
curves were computed using the “survivalROC” program
to evaluate the specificity and sensitivity of the prognosis
model.

2.5. Analysis of mRNAsi Levels and MSI Levels. The mRNAsi
was calculated using the OCLR machine-learning algorithm
[29]. MSI analysis with MANTIS was performed as previ-
ously described [30].

2.6. Statistical Methods. To evaluate the connection between
molecular subtypes and clinical factors, Fisher’s exact test or
the chi-square test was utilized. These statistics were gener-
ated using the R software and were two sided.

3. Results

3.1. The Expression and Genetic Variation Profile of CCGs in
CRC. To begin with, we discovered that ARNTL2, CSNK1E,
TIMELESS, BHLHE40, TIPIN, SERPINE1, NPAS2, SENP3,
NR1D1, and GSK3B were highly upregulated, whereas
VIP, PER3, CRY2, RORB, ARNTL, VIPR2, ADCYAP1,
RORA, KLF10, and PER1 were significantly suppressed in
both colon cancer and rectal cancer (Figure 1(a)). In order
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Figure 3: Clinical profile of the four subtypes. (a–g) The distribution of gender, race, T stage, N stage, M stage, grade, and metastasis was
compared across patients with the three CCG subtypes to evaluate the clinical importance of CCG-related classification.
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Figure 4: Four prognostic CCGs were correlated to immune cell infiltration in CRC. (a–d) The relationship between immune cell
infiltration and expression of NPAS2, ADCYAP1, CRY2, and CSNK1D was analyzed by using TIMER database. (e–h) The expression
levels SIGLEC15, CD274, HAVCR2, PDCD1LG2, LAG3, PDCD1, CTLA4, and TIGIT were analyzed between NPAS2, ADCYAP1,
CRY2, and CSNK1D-high and low groups.
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to further demonstrate the prognostic value of CCGs in
CRC, we analyzed the correlation between disease-free sur-
vival time and the expression of CCGs in CRC. Higher levels
of REV1, ADCYAP1, CSNK1D, NR1D1, CSNK1E, and
CRY2 had a strong link with shorter DFS time in CRC
patients (Figures 1(b)–1(g)). Mutation data was retrieved
and shown using the “maftools” package in R software to
find CCG somatic mutations in CRC. The mutation fre-
quency of CCGs in CRC patients was shown in a horizontal
histogram, such as PER3 (5%), ARNTL2 (4%), PER1 (4%),
REV1 (4%), TIMELESS (4%), ARNTL (3%), CSNK1D
(3%), KLF10 (3%), and NR1D1 (3%) (Figure 1(h)). Of note,
we observed that CRC patients with mutations of CCGs had
a shorter DFS time (Figure 1(i)), demonstrating that CCGs
have an important regulatory role in CRC development.

3.2. Construction and Evaluation of the Effectiveness of
Prognostic Signatures. The circadian clock gene-related sig-
nature was then created by further downscaling the CCGs
using Lasso regression (Figures 2(a)–2(b)). The risk score
was calculated for each CRC case, risk score = ð0:0184Þ ∗
ADCYAP1 + ð0:2999Þ ∗ CRY2 + ð0:5958Þ ∗ CSNK1D + ð
0:0797Þ ∗NPAS2 + ð0:1034Þ ∗NR1D1 + ð−0:0141Þ ∗ RORC
. Patients were divided into low- and high-risk groups based
on the median risk score of all CRC cases, and the analysis
revealed a significant survival benefit for low-risk CRC

patients (Figure 2(c)). KM plotter analysis demonstrated
that CRC patients with a higher risk score had a shorter
DFS time (Figure 2(d)) with an AUC value of 0.75, 0.71,
and 0.841 for the 1-year, 3-year, and 5-year DFS, respectively
(Figure 2(e)).

3.3. Four Prognostic CCGs Were Correlated to Immune Cell
Infiltration in CRC. Figure 3(e) depicts the relationship
between immune cell infiltration and expression of
ADCYAP1, CRY2, NPAS2, and CSNK1D by using TIMER
database. NPAS2 expression was considerably positively cor-
related with CD4+ T cell infiltration but dramatically nega-
tively correlated to CD8+ T cell infiltration (Figure 4(a)).
In CRC, ADCYAP1 expression was substantially associated
with the levels of infiltration of CD4+ T cell, CD8+ T cell,
macrophage, neutrophil, and dendritic cell (Figure 4(b)).
CRY2 and CSNK1D expression was found to be substan-
tially linked with levels of CD4+ T cell, macrophage, neutro-
phil, and dendritic cell infiltration in CRC (Figures 4(c) and
4(d)).

Moreover, we observed that SIGLEC15, CD274,
HAVCR2, PDCD1LG2, LAG3, PDCD1, CTLA4, and TIGIT
were higher in ADCYAP1 and NPAS2-high CRC samples
than in ADCYAP1 and NPAS2-low CRC samples
(Figures 4(e) and 4(g)). HAVCR2, TIGIT, and SIGLEC15
were higher in CRY2-high CRC samples than in CRY2-low
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Figure 5: Four CRC subtypes were delineated based on the CCGs. (a, b) Consensus clustering cumulative distribution function (CDF) and
relative change in the area under the CDF curve (CDF delta area) were analyzed. (c) Finally, 513 CRC tumor samples were divided into 3
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analysis of 3 cluster. (d) Clusters 2 and 3 had significantly shorter overall and disease-free survival time than cluster 1. (e) The results
showed that the stemness scores in cluster 1 and cluster 2 were significantly higher than those in cluster3 CRC samples.
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CRC samples (Figure 4(f)). However, CD274, HAVCR2,
and PDCD1LG2 were lower in CSNK1D-high CRC samples
than in CSNK1D-low CRC samples (Figure 4(h)).

3.4. Four CRC Subtypes Were Delineated Based on the CCGs.
Next, 29 circadian clock gene expressions were used to cate-
gorize the TCGA CRC data into different CRC subtypes.
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Figure 6: Distinct characteristics of immunogenicity of the CRC subtypes. (a) Tumor-infiltrating lymphocyte inflation among CRC
subtypes was analyzed by using RNA expression data. (b) The expression levels of 8 immune checkpoint targets, which are critical for
immunological control, were also evaluated, including SIGLEC15, CD274, HAVCR2, PDCD1LG2, LAG3, PDCD1, CTLA4, and TIGIT.
(c) The MSI levels in CCG-related subtypes were analyzed.
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Figure 7: Pancancer analysis of CSNK1D. (a) Forest plot of CCGs in pan cancers. The graphic depicts the P value, hazard ratio, and
associated 95 percent confidence interval for CCGs. (b) CSNK1D expression between tumor samples and normal samples were analyzed
in pancancers. (c) Pancancer immune inflation analysis showed that CSNK1D was correlated to multiple types of immune cell inflation
in various cancer types.
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According to the CDF curves of the consensus score, a value
of k = 3 was chosen to reflect stable clusters (Figures 5(a) and
5(b)). Finally, 620 CRC tumor samples were divided into 3
categories, namely, cluster1 (n = 428), cluster2 (n = 83), and
cluster 3 (n = 109), based on the expression levels of the
CCGs (Figures 5(c)–5(d)). Clusters 2 and 3 had significantly
shorter overall and disease-free survival time than cluster 1
(Figures 5(e)). Cancer progression involves the progressive
loss of a differentiated phenotype and the acquisition of pro-
genitor/stem cell-like characteristics. Thus, we calculated the
stemness of CRC samples in different subtypes using the
logistic regression machine learning algorithm (OCLR) pro-
vided by Malta et al. based on the mRNA expression signa-
ture. The stemness score in cluster 1 and cluster 2 was
considerably higher than that in the cluster 3 CRC samples
(Figure 5(f)).

3.5. Clinical Profiles of the Four Subtypes. The distribution of
gender, race, T stage, N stage, M stage, grade, and metastasis
was compared across patients with the three CCG subtypes
to evaluate the clinical importance of CCG-related classifica-
tion. Clinically, we found that the C3 subtype had a consid-
erably higher percentage of T3 and T4 than groups C1 or C2.
In addition, we revealed that the C3 subtype had a consider-
ably higher percentage of N1 and N2 samples than groups
C1 or C2. However, the C1 subtype had a highest percentage
of N0 samples than groups C2 or C3. Moreover, groups C3
had a higher percentage of grades III and IV and a lower
proportion of grades I and II than cluster 1 and cluster 2.
However, the distribution of gender, race, M stage, and
metastasis does not have a significant difference among these
clusters (Figures 3(a)–3(g)).

3.6. Distinct Characteristics of Immunogenicity of the CRC
Subtypes. We next investigated microenvironmental vari-
ables and tumor-infiltrating lymphocyte inflation among
CRC subtypes using RNA expression data. We observed that
T cell CD4+ Th1, T cell NK, T cell CD4+ effector memory, T
cell CD4+ central memory, and eosinophil cells were consid-
erably enriched in cluster 2 CRC samples. Hematopoietic
stem cell, endothelial cell, myeloid dendritic cell activated,
M1 and M2 macrophages, monocyte, and myeloid dendritic
cells were considerably enriched in cluster 3 CRC cases com-
pared to those of clusters 1 and 2. Meanwhile, we observed
that naive CD8+ T cell, common lymphoid progenitor cells,
CD4+ memory T cells, CD4+ Th2 T cells, and T cell gamma
delta were substantially more abundant in cluster 1 CRC
samples than those of clusters 2 and 3 (Figure 6(a)).

Moreover, the expression levels of 8 immune checkpoint
targets, which are critical for immunological control, were
also evaluated, including SIGLEC15, CD274, HAVCR2,
PDCD1LG2, LAG3, PDCD1, CTLA4, and TIGIT. As pre-
sented in Figure 7, we observed that these immune check-
point markers in cluster 3 CRC samples were substantially
higher than those in cluster 1 and 2 CRC samples
(Figure 6(b)). Immune therapy was only approved for
MSI-H/dMMR CRC. Thus, the destitution of MSI levels in
3 CCG subtypes was also evaluated. However, we do not
observe a significant difference among 3 CCG subtypes.

3.7. Pancancer Analysis of CSNK1D. The present study has
demonstrated the significant correlation between immune
inflation and prognosis and CSNK1D in CRC. Next, we eval-
uated the clinical importance of CSNK1D across human
cancers using the TCGA database. As presented by the forest
plot, we observed that higher levels of CSNK1D were corre-
lated to shorter DFS time in CHOL (cholangiocarcinoma),
COAD (colon cancer), LIHC, and PRAD (prostate cancer);
however, higher expression of CSNK1D was correlated to
longer DFS time in BRCA and OV (ovarian cancer)
(Figure 7(a)). By analyzing CSNK1D expression between
tumor samples and normal samples, we revealed that
CSNK1D was downregulated in ACC, BLCA, BRCA, CESC,
COAD, DLBC, ESCA, LUAD, LUSC, PRAD, READ, STAD,
TGCT, THCA, UCEC, and UCS but was increased in
CHOL, GBM, HNSC, KIRP, LGG, LIHC, PAAD, and PCPG
(Figure 7(b)).

Pancancer immune inflation analysis showed that
CSNK1D was correlated to multiple types of immune cell
inflation in various cancer types, such as LGG, COAD,
KIRP, LIHC, PRAD, THCA, BLCA, BRCA, THYM, and
UCEC (Figure 7(c)).

4. Discussion

The circadian system’s significance in carcinogenesis is well
recognized, and numerous studies have found differential
clock gene expression in cancers compared to healthy tis-
sues. By analyzing the TCGA database, the present study
demonstrated that multiple CCGs were dysregulated and
frequently mutated in CRC samples. The higher expression
levels of REV1, ADCYAP1, CSNK1D, NR1D1, CSNK1E,
and CRY2 had a strong link with shorter DFS time in CRC
patients, demonstrating that CCGs had an important regula-
tory role in CRC development. ADCYAP1 is known to mod-
ulate the immune system and is involved in cell proliferation
and apoptosis in normal cells [31]. ADCYAP1 upregulation
or downregulation has been identified in a variety of malig-
nancies [31]. A significant percentage of ADCYAP1 hyper-
methylation is frequently reported in ovarian cancer [32].
ADCYAP1 promoter hypermethylation levels have been
linked to cervical cancer development [31]. The low rate of
ADCYAP1 hypermethylation in early-stage lesions and its
increase with the tumor stage suggest that ADCYAP1 hyper-
methylation may hinder ADCYAP1’s apoptotic action. Cry1
expression was increased in right colon cancers but not in
left colorectum tumors [33]. CRY2NK1 upregulation is asso-
ciated with a worse outcome in patients with hepatocellular
cancer. NPAS2 is a circadian gene that has attracted the
interest of researchers due to its various effects on cells and
various roles in disease development, especially cancer. Dif-
ferential NPAS2 expression has been associated with patient
outcomes in tumors, lung tumors, non-Hodgkin’s lym-
phoma, and other diseases [34], and nucleotide variants in
the NPAS2 gene were related to cancer patients’ outcomes.
In endometrial cancer of the uterus, the circadian gene
NPAS2 operates as a potential tumor stimulator. NPAS2
increases liver fibrosis in hepatocellular carcinoma by direct
transcriptional activation of Hes1 in hepatic stellate cells and
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induces glucose metabolism reprogramming and cell sur-
vival by transactivating CDC25A in liver cancer cells. Here,
we constructed a prognostic signature based on CCG expres-
sion in CRC. Risk score = ð0:0184Þ ∗ADCYAP1 + ð0:2999Þ
∗ CRY2 + ð0:5958Þ ∗ CSNK1D + ð0:0797Þ ∗NPAS2 + ð
0:1034Þ ∗NR1D1 + ð−0:0141Þ ∗ RORC. KM plotter analysis
demonstrated that CRC patients with a higher risk score had
a shorter DFS time.

CRC is the leading cause of cancer mortality worldwide.
CRC, similar with many other cancers, is a heterogeneous
disease, making it a clinical challenge to enhance treatment
efficacy to reduce morbidity and mortality. CRC can be
caused by a number of pathogenic mechanisms, such as
DNA mismatch repair failure (MMR), and epigenetic
changes. A greater understanding of biology, particularly
the clinical features that distinguish CRC patients, is
required for more robust targeted therapy development
and the application of personalized therapy. A rising corpus
of research has addressed the topic of molecular categoriza-
tion of CRC in recent decades in order to supplement the
current staging systems, enhance therapy options, and better
predict survival following treatment. The application of
high-throughput sequencing has heralded a new age in sub-
typing research; for example, the CRC Subtyping Consor-
tium reported the finding of four consensus molecular
subtypes (CMS) in 2015, giving the most rigorous CRC clas-
sification system to date [35]. The colorectal cancer molecu-
lar classification consists mostly of mutation-centered CRC
classification and transcriptome-centered CRC classification
[35]. According to recent studies, intratumoral heterogeneity
is best described at the transcriptome level, as it provides
more comprehensive genomic information about the disor-
der process. The classification of CRCs based on transcrip-
tomes has switched from supervised to unsupervised.
Transcriptome-based techniques, as opposed to histopathol-
ogical subtypes and traditional mutation-oriented stratifica-
tion, use genome-wide expression profiling for
unsupervised data processing [35]. This approach has been
utilized successfully in a wide range of malignancies, includ-
ing lung cancer, prostate cancer, and gastric cancers. Recent
efforts have been made, like with other malignancies, to sub-
type CRC. Wang and colleagues, for example, used fresh-
frozen tissue samples from a large multicenter cohort (CIT
cohort) of 566 CRC patients to perform gene expression
analysis, identifying six CRC subgroups with distinct molec-
ular signatures and clinical correlations [35]. In this study,
513 CRC tumor samples were divided into 3 categories,
namely, cluster 1 (n = 203), cluster 2 (n = 296), and cluster
3 (n = 296), based on the expression levels of the CCGs
(Figure 2(a)). Clinical significance analysis showed that clus-
ters 2 and 3 had significantly shorter overall and disease-free
survival time than cluster 1. The stemness scores in cluster 1
and cluster 2 were significantly higher than those of cluster 3
CRC samples. Clinically, we found that the C3 subtype had a
higher percentage of T3/T4, N1/N2, and grades III and IV
than groups C1 or C2.

A growing body of evidence supports the importance of
immune infiltration in cancer, which comprises lympho-
cytes, dendritic cells, and macrophages, demonstrating a

wide range of patient-patient variability [36]. TILs reflect
the host immune response to tumor cells, which is related
to CRC patients’ prognosis [37]. CD8+ cytotoxic T cells
can directly destroy tumor cells. CTL is activated by type 1
helper T lymphocytes (Th1s), whereas humoral immunity
is stimulated by type 2 helper T lymphocytes (Th2s).
Immune responses and TILs have been studied in CRC as
a strategy of classifying tumors and as prognostic indicators.
TILs situated near the tumor boundary are activated and
assault the tumor when PD-1 is suppressed. Most tumor-
infiltrating lymphocyte types have recently been investi-
gated, and it appears that CD8+ T cells have the greatest
impact on patient outcome [38]. More than a decade ago,
researchers looked into the prognostic relevance of CD8+
CTLs in a large CRC cohort. According to several studies,
increased CTL levels in the tumor microenvironment have
been linked to antitumor effects and improved prognosis
in a variety of malignancies, including CRC. The dMMR
group had more CD56+ cells, CD4+ cells, and higher CD8
protein levels than the pMMR group, according to Bai and
colleagues [39]. In the present study, we observed that T cell
CD4+ Th1, T cell NK, T cell CD4+ effector memory, T cell
CD4+ central memory, and eosinophil cells were enriched
in cluster 2 CRC samples. Hematopoietic stem cell, endothe-
lial cell, myeloid dendritic cell activated, M1 and M2 macro-
phages, monocyte, and myeloid dendritic cells were
considerably enriched in cluster 3 CRC cases compared to
clusters 1 and 2. Meanwhile, we observed that CD8+ naive
T cell, common lymphoid progenitor, and CD4+ memory/
Th2 T cells were substantially more abundant in cluster 1
CRC samples than in clusters 2 and 3. Immune therapy
was only approved for MSI-H/dMMR CRC. Thus, the distri-
bution of MSI levels in 3 CCG subtypes were also evaluated.
However, we do not observe a significant difference among 3
CCG subtypes. These results indicate that microsatellite-
stable (mss) CRC patients may also benefit from immune
therapy by using CCG-related biomarkers.

Here, we for the first time demonstrated the significant
correlation between immune inflation and prognosis and
CSNK1D in CRC. CK1δ is a member of the CK1 family.
The role of CK1 has been increasingly described during the
last few decades, both physiologically and pathologically.
Indeed, dysregulated CK1 expression and activity have been
identified in several cancers as well as neurological illnesses
such as Alzheimer’s disease. CSNK1D has been identified
as a possible gene driver in cutaneous squamous cell cancer
[40]. In patients with superficial and invasive bladder cancer,
the CSNK1D gene is elevated. In bladder cancer cells, CK1
knockdown reduced catenin expression and hindered cell
proliferation. Next, we evaluated the clinical importance of
CSNK1D across human cancers using the TCGA database.
Pancancer analysis indicates that the expression of CSNK1D
was correlated to shorter DFS time in multiple cancer types,
such as COAD and LIHC, and was dysregulated in various
cancers, which was consistent previous reports. For example,
Liu et al. reported that CSNK1D levels are strongly upregu-
lated in HCC samples [41]. Upregulation of CSNK1D is
associated with a poor prognosis for HCC patients.
CSNK1D expression was higher in hepatocellular carcinoma
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(HCC) with distant metastasis than in HCC without metas-
tasis [42]. According to the GSEA enrichment analysis,
CSNK1D influences the HCC prognosis mostly through
the cell cycle and the WNT pathway. In prostate cancer, 9
CCGs, including CSNK1D, were identified as key prognostic
genes [11]. These results showed that CSNK1D may serve as
an important cancer regulator.

Several limitations should also be noted in this study.
First, only the TCGA database was used for the analysis of
CCGs. More datasets should be analyzed and used to con-
firm the TCGA results. Secondly, the clinical samples would
also be collected for further validation of the correlation
between tumor-infiltrating lymphocytes and CCGs in the
future study. Thirdly, the molecular functions of CCGs in
CRC remained to be confirmed with experimental assays.

In conclusion, the present study has demonstrated that
multiple CCGs were dysregulated and frequently mutated
in CRC samples by analyzing the TCGA database. Higher
expression levels of REV1, ADCYAP1, CSNK1D, NR1D1,
CSNK1E, and CRY2 had a strong link with shorter DFS time
in CRC patients, demonstrating that CCGs had an impor-
tant regulatory role in CRC development. Moreover, 513
CRC tumor samples were divided into 3 categories, based
on the expression levels of the CCGs. Clinical significance
analysis showed that clusters 2 and 3 had significantly
shorter overall and disease-free survival time than cluster
1. Stemness scores in cluster 1 and cluster 2 were signifi-
cantly higher than that of cluster 3 CRC samples. Clinically,
we found that the C3 subtype had a significantly higher per-
centage of T3/T4, N1/N2, and grades III and IV than groups
C1 or C2. In addition, we reported that different CRC clus-
ters had a significantly different tumor-infiltrating immune
cell signature. Finally, pancancer analysis showed that higher
expression of CSNK1D was correlated with shorter DFS
time in multiple cancer types, such as COAD and LIHC,
and was dysregulated in various cancers. In conclusion, we
effectively developed a CCG-related predictive model and
opened new avenues for research into immune regulatory
mechanisms and the development of immunotherapy for
CRC.
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