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Background. Ferroptosis is an iron-dependent form of cell death. In this study, we identified ferroptosis-related long noncoding
RNAs (FRlncRNAs) to investigate their association with hepatocellular carcinoma (HCC) in prognosis, tumor immune
environment, and genome instability. Methods. Transcriptome profile data of HCC were retrieved from a public database.
FRlncRNAs were identified by co-expression analysis. Patients were randomly divided into training and test cohorts.
Univariate Cox analysis and Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression were performed to
construct a risk model. Patients were divided into high- and low-risk groups based on the risk model. AUC and C index were
used to assess the risk model. Survival analysis, immune status, and genome instability were compared between the two
groups. Results. Sixteen FRlncRNAs were identified and used to construct an FRlncRNA signature for the risk model. The
Kaplan-Meier analysis revealed that patients in the high-risk group had poorer overall survival than patients in the low-risk
group. The area under curve of the risk model was 0.879, 0.809, and 0.757 in the training cohort and 0.635, 0.688, and 0.739 in
the test cohort at 1, 2, and 3 years, respectively. The risk model was an independent prognostic predictor and showed excellent
prediction of prognosis compared with clinicopathological features. For the differentially expressed ferroptosis-related genes,
many enriched metabolic pathways were identified in the functional enrichment analysis. Immune cells such as CD8+ T cells,
macrophages M1, natural killer cells, and B cells, which may be associated with antitumor immune responses, differed between
the high- and low-risk groups. Genome instability based on the risk model was also explored. A total of 61 genes were
differently mutated between the two risk groups, and among them, TP53, HECW2, TRIM66, MCTP2, and KIAA1551 had the
most significant mutation frequency differences. Conclusion. The FRlncRNA signature is closely related with overall survival,
tumor immune environment, and genome instability in HCC.

1. Introduction

The Global Cancer Statistics in 2020 (GLOBOCAN 2020)
ranked liver cancer as the sixth cancer among newly diag-
nosed cancers and the third leading cause of cancer death,
with an incidence of 906,000 cases and 830,000 deaths annu-
ally [1]. Hepatocellular carcinoma (HCC) is the most com-
mon liver cancer, accounting for 90% of primary liver
cancer cases, caused mainly by hepatitis B, hepatitis C, alco-

hol, and toxic exposure [2, 3]. Because most patients are
diagnosed when the cancer is at an advanced stage, surgical
removal can be performed on only 5%–15% of patients who
have early-stage cancers, and chemotherapy and immuno-
therapy are better options for the other patients [4]. How-
ever, the problem of drug resistance of chemotherapy is
extremely challenging. The emergence of immunotherapy
provided a new approach to cancer treatment, but immuno-
therapy is not effective in a significant number of patients.
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Therefore, predicting prognostic biomarkers and targeting
patients for whom immunotherapy is most likely to be effec-
tive is important for precision treatment.

In 2012, Dixon et al. [5] were the first to recognize ferrop-
tosis as an iron-dependent form of cell death induced by the
small molecules erastin and RSL3. Compared with other cell
death patterns, such as apoptosis, necrosis, and autophagy,
ferroptosis has specific morphological, biochemical, and
genetic characteristics. Three essential features of ferroptosis
are the loss of lipid peroxide repair capacity by the phospho-
lipid hydroperoxidase GPX4, the availability of redox active
iron, and oxidation of polyunsaturated fatty acid-containing
phospholipids [6]. Many studies have shown that ferroptosis
plays an important role in cancer, including ovarian, lung,
and liver cancers [7–9]. Because of the increased iron demand
of cancer cells during growth, tumor cells are more sensitive
than normal cells to ferroptosis [10]. The tumor suppressor
p53 gene, which is mutated in approximately 50% of cancers,
hypoxia-inducible factors, andmesenchymal-like states, is also
involved in ferroptosis regulation [11]. Although a number of
underlying mechanisms have been uncovered, many chal-
lenges remain, including finding the effector molecule of fer-
roptosis, uncovering the interaction between ferroptotic and
non-ferroptotic regulated cell death, and assessing patient
suitability for proferroptotic therapy [12].

Long noncoding RNAs (lncRNAs) are a class of non-
protein coding transcripts that are >200-nucleotides long.
They account for almost 80% of the human transcriptome.
Recent studies have shown that lncRNAs interact with DNA,
RNA, and protein and are involved in cancer phenotypes
[13]. The lncRNAs MALAT1, HULC, HEIH, and HOTAIR
are the most studied lncRNAs in HCC; HULC is a potential
prognostic biomarker, and HEIH is closely related to HCC
recurrence [14]. Other lncRNAs have been demonstrated to
regulate ferroptosis during tumor development. Qi et al. [15]
showed that, in HCC, erastin upregulated lncRNA GABPB1-
AS1, which downregulated the translation of the GABPB1
transcription factor, thereby inhibiting the expression of the
gene that encodes peroxidase, leading to cell death. Cases of
predicting protein structures or testing genes based on bioin-
formatic methods have been reported and proved [16–18].
Increasing researches focused on predicting cancer prognosis
and therapy response by transcriptomic analysis [19–21].
The prognostic potential of lncRNAs have been recently
proved via bioinformatic analysis and presented impressive
results [22, 23]. However, there are still limited studies based
on ferroptosis-related lncRNAs and liver cancer. We devel-
oped a ferroptosis-related lncRNA (FRlncRNA) signature
based on the expression of lncRNAs and explored the role of
FRlncRNAs in tumor prognosis, immune infiltration, and
genome instability. A risk model was constructed and vali-
dated in two separated cohorts, which showed the reliability
of the FRlncRNA signature and indicated its potential as a
prognostic biomarker in HCC treatment.

2. Materials and Methods

2.1. Data Collection. Transcriptome profiles converted into
fragments per kilobase million (FPKM) together with clini-

cal data of 364 patients with HCC, and the somatic mutation
data of 350 patients with HCC were downloaded from the
National Cancer Institute GDC Data Portal (Project ID:
TCGA-LIHC [The Cancer Genome Atlas-Liver HCC data-
set]) (https://portal.gdc.cancer.gov/repository). Complete
lncRNA expression levels and survival data (follow-up with
0 day was excluded) were available for the 364 patients
included in the study. The GTF main annotation file was
downloaded from GENCODE (https://www.gencodegenes
.org) and used to differentiate between mRNAs and
lncRNAs. A total of 270 ferroptosis-related genes (FRGenes)
were retrieved from FerrDb (http://www.zhounan.org/
ferrdb/) [24] and previous publications [25, 26]. Full details
of the FRGenes are provided in Table S1. FRlncRNAs were
extracted by co-expression analysis based on the expression
levels of lncRNAs and FRGenes. LncRNAs with correlation
coefficients >0.4 and P < 0:001 were included in further
analysis.

2.2. Construction of Prognostic Ferroptosis-Related lncRNA
Signature. Patients were divided randomly into a training
cohort and a test cohort. A risk model was established based
on the training cohort and validated in test cohort. Cox
regression, also known as proportional hazards model, is a
survival analysis model to analyze the relationship between
various features and survival time [27]. Least Absolute
Shrinkage and Selection Operator (LASSO) is a commonly
used regularization in many regression analysis methods
for variable selection and shrinkage in Cox’s proportional
hazards model [28]. Lasso penalized Cox regression analysis
have been widely used to construct gene expression based
signatures in various cancers [29–31]. In our study, the
FRlncRNAs were used as input of Lasso Cox regression to
construct a FRlncRNA signature. Firstly, we performed uni-
variate Cox analysis using the “survival” R package to iden-
tify FRlncRNAs that may have prognostic value. Then,
LASSO method was carried out by “glmnet” R package to
avoid overfitting. The correlation between the FRlncRNAs
and FRGenes was visualized using Cytoscape [32]. The risk
score is calculated as risk score = esum (expression × corresponding

coefficient for each gene), where expression was the expression
levels of the lncRNAs from the TCGA-LIHC dataset and
the corresponding coefficient was calculated by LASSO
penalized Cox regression analysis. Patients were divided into
high- and low-risk groups based on the medium value of the
risk score. Principal component analysis (PCA) and t-
distributed stochastic neighbor embedding (t-SNE) analysis
were then carried out using the “ggplot2” and “Rtsne” R
packages, respectively. The risk score and survival status of
each patient in the high- and low-risk groups were shown
individually using the “pheatmap” R package.

2.3. Evaluation of Risk Model and Construction of a
Predictive Nomogram.We performed a Kaplan-Meier analy-
sis of the high- and low-risk groups and time-dependent
receiver operating characteristic (ROC) curve to evaluate
the predictive ability of the risk model and visualized the
results using the “survival,” “survminer,” and “timeROC” R
packages. The FRlncRNA signature was estimated and
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compared with the clinicopathological features by ROC, C
index, and decision curve analysis using the “rmda,” “sur-
vival,” and “survivalROC” R packages. The clinical charac-
teristics together with the risk score were used to set up a
predictive nomogram using the “rms,” “foreign,” and “sur-
vival” R packages. The calibration curve to evaluate the
nomogram was carried out by “rms,” “foreign,” and “sur-
vival” R packages.

2.4. Functional Enrichment Analysis. Differentially expressed
FRGenes (DEGs) between the high- and low-risk groups
were identified using the “limma” R package with false
discovery rate ðFDRÞ < 0:05 and the log of the fold change ð
∣logFC ∣ Þ > 1. All the identified DEGs were functionally
annotated with gene ontology (GO) terms and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) pathways using the
“clusterProfiler,” “http://org.Hs.eg.db,” “enrichplot,” and
“ggplot2” R packages.

2.5. Estimation of Immune Status and Genome Instability.
CIBERSORT and single-sample gene set enrichment analy-
sis (ssGSEA) were used to analyze the relationship between
risk score and immune status [33]. We retrieved totally
12584 mutated genes of 350 patients from TCGA-LIHC
database. Patients were divided into high- and low-risk
groups according to the FRlncRNA signature. The mutation
frequency in each group and different mutated genes
between two groups were analyzed and visualized by “maf-
tools” R package. Fisher’s exact test was used to identify
the significance of differently mutated genes.

2.6. Statistical Analysis. Co-expression analysis to identify
FRlncRNAs and the relationships between variables was per-
formed using the Pearson test. P values were adjusted by the
Benjamini-Hochberg method to get the FDR. The chi-

square test was used to compare differences in characteristics
and risk score between the high- and low-risk groups. The
clinical characteristics were analyzed by univariate and mul-
tivariate Cox analyses to identify independent prognostic
factors. R software (version 4.0.3) and SPSS (version 18.0)
were used for the data analysis. P<0.05 was considered sta-
tistically significant, except for those specified mentioned.

3. Results

A total of 364 patients for whom full expression and clinical
data were available were enrolled in this study. A flowchart
of the study design is shown in Figure 1.

3.1. Construction of a Ferroptosis-Related lncRNA Prognostic
Signature. The co-expression analysis identified 626
lncRNAs as FRlncRNAs (Table S2). Patients were divided
randomly into a training cohort (n = 219) and a test cohort
(n = 145). The clinical characteristics of the patients in the
two cohorts are shown in Table 1. The univariate Cox
analysis identified 54 lncRNAs that were significantly
associated with HCC prognosis (Table S3). LASSO
penalized Cox regression analysis was performed to
construct the risk model (Figures 2(a) and 2(b)). Finally,
16 FRlncRNAs that were differentially expressed between
tumor and adjacent normal tissue (AC009779.2, ZFPM2-
AS1, AC009005.1, AC074117.1, AC012467.2, AL031985.3,
AC009403.1, LUCAT1, AC026369.2, AC068580.3,
LINC01871, AL139384.1, TMEM220-AS1, NRAV,
AL365203.2, and MIR210HG) were identified and used to
establish the prognostic FRlncRNA signature. The risk
score was calculated as described in the method section.
The corresponding coefficients of the FRlncRNAs and risk
score for each patient are listed in Table S4. The
interactions between the 16 FRlncRNA and FRGenes are

RNA-seq of 364 LIHC patients
from TCGA database

LncRNA
annotation

LncRNA expression
data

Train cohort (tumor
samples = 219, normal

samples = 27)

NATIONAL CANCER INSTITUTE

GDC Data portal

Ferroptosis-related IncRNA
identified by co-expression

analysis

16-IncRNA signature model
established by univariate cox analysis

and lasso

Survival analysis
and validation
of the model

Genome
instability

Functional
analysis

270 ferroptosis-related
genes expression data

Database and
publications

Test cohort (tumor
samples = 145, normal

samples = 23)

Figure 1: Flowchart of the data collection and analysis processes used in this study. LIHC: liver hepatocellular carcinoma, TCGA: The
Cancer Genome Atlas.
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shown in Figure 2(c). The training cohort was divided into
high- and low-risk groups based on the medium value of
the risk score, and the patients in the high-risk group were
found to have higher mortality than the patients in the
low-risk group (Figure 3(a)). The PCA and t-SNE analysis
showed the separation of the two groups after features
dimensionality reduction (Figures 3(b) and 3(c)). The
differential expression levels of the FRlncRNAs between
high- and low-risk groups show that most of them were
positively correlated with the risk model (Figure 3(d)). The
Kaplan-Meier analysis indicated that patients in the high-
risk group had poorer overall survival (OS) (Figure 3(e);
P < 0:001). The predictive performance of the risk model
was evaluated by drawing a time-dependent ROC, where
the area under the ROC curve (AUC) at 1, 2, and 3
years was 0.879, 0.809, and 0.757, respectively, in the
training cohort (Figure 3(f)).

3.2. Validation of the FRlncRNA Signature in the Test
Cohort. To test the robustness of the FRlncRNA signature
model, we divided the test cohort into high- and low-risk
groups using the same method that we used to divide the
training cohort. The distribution of OS status and risk scores
is shown in Figure 4(a). The PCA and t-SNE analysis con-
firmed that the patients in high- and low-risk groups were
distributed in discrete directions (Figures 4(b) and 4(c)).
The heatmap showed the detailed expression of the
FRlncRNAs in the test cohort (Figure 4(d)). The Kaplan-
Meier survival curve analysis showed that the patients in
the high-risk group had significantly lower survival rates
than the patients in the low-risk group (Figure 4(e)). AUC
scores of 0.635, 0.688, and 0.739 at 1, 2, and 3 years, respec-
tively, were obtained in the test cohort (Figure 4(f)).

3.3. Survival Analysis and Evaluation of the Ferroptosis-
Related lncRNA Prognostic Signature. Patients in the high-
risk group were correlated with higher tumor stage and
tumor grade than patients in the low-risk group (Table 2).
Then, patients from high- and low risk groups were com-
bined to further evaluate the risk model. Compared with
the prognosis predictions using age (AUC = 0:513 and C
index = 0:512), sex (AUC = 0:504 and C index = 0:510), can-
cer stage (AUC = 0:698 and C index = 0:643), cancer grade
(AUC = 0:478 and C index = 0:506), and the TNM Classifi-
cation of Malignant Tumors staging system (AUC = 0:704,
0.508, and 0.506; C index = 0:647, 0.504, and 0.511), the
prognosis prediction of the FRlncRNA signature was excel-
lent (AUC = 0:779 and C index = 0:733) (Figure 5(a),
Table 3). The decision curve analysis confirmed these results
(Figure 5(b)). To determine the independent prognostic
value of the risk model, the clinical characteristics of
the patients in the high- and low-risk cohorts were exam-
ined by univariate and multivariate Cox analyses. The
results identified the risk model (hazard ratio = 3:064 and 95
%CI = 2:063 – 4:554) and tumor stage (hazard ratio = 2:062
and 95%CI = 1:408 – 3:019) as independent predictors of OS
in patients with HCC (Figure 5(c)). The FRlncRNA signature
and available clinicopathological features were used to
establish a nomogram for OS prediction (Figure 5(d)) for

application in clinical management of HCC. The calibration
curves of 3- and 5-year OS showed good agreement with
the survival prediction and the actual outcomes
(Figures 5(e)–5(f)).

To further evaluate the FRlncRNA signature, we com-
pared our risk model with reported risk models based on
immune- or ferroptosis-related lncRNAs to predict progno-
sis of HCC. The formulae to calculate risk scores were
retrieved from the publications and recalculated in our data-
set [34–36]. Our signature showed better prediction ability
(AUC = 0:779) compared to other three models
(AUC = 0:729, 0.750 and 0.764) (Figure S1). By integrating
risk score with clinicopathological features, our model also

Table 1: Clinical characteristics of the patients obtained from
TCGA-LIHC dataset.

No. of patients
Train cohort Test cohort

219 145

Age (median [IQR]) 62.00 [51.00, 70.00] 61.00 [52.00, 68.00]

Sex (%)

Female 73 (33.3) 46 (31.7)

Male 146 (66.7) 99 (68.3)

Stage (%)

Stage I 106 (48.4) 63 (43.4)

Stage II 52 (23.7) 32 (22.1)

Stage III 46 (21.0) 37 (25.5)

Stage IV — 4 (2.8)

Unknown 15 (6.8) 9 (6.2)

T (%)

T1 114 (52.1) 65 (44.8)

T2 54 (24.7) 37 (25.5)

T3 42 (19.2) 36 (24.8)

T4 6 (2.7) 7 (4.8)

Unknown 3 (1.4) —

N (%)

N0 143 (65.3) 104 (71.7)

N1 2 (0.9) 2 (1.4)

Unknown 74 (33.8) 39 (26.9)

M (%)

M0 155 (70.8) 107 (73.8)

M1 — 3 (2.1)

Unknown 64 (29.2) 35 (24.1)

Grade (%)

G1 34 (15.5) 21 (14.5)

G2 110 (50.2) 65 (44.8)

G3 66 (30.1) 51 (35.2)

G4 6 (2.7) 6 (4.1)

Unknown 3 (1.4) 2 (1.4)

Vital status (%)

Alive 140 (63.9) 94 (64.8)

Dead 79 (36.1) 51 (35.2)

TCGA: The Cancer Genome Atlas, LIHC: liver hepatocellular carcinoma,
IQR: interquartile range.
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exhibited better prediction ability than using traditional
pathological features (Table 3) [37, 38].

3.4. Estimation of Genome Instability with the Risk Model.
Considering the crucial role of somatic mutation in tumor
initiation, development, and drug resistance, we also
explored genome instability using the risk model. First,
we compared the tumor mutation burden of liver HCC
in the TCGA-LIHC dataset with that of 32 other cancers
in TCGA (Figure 6(a)). The top 20 FRGenes with high
mutation frequencies in the high- and low-risk groups are
shown in Figure 6(b) and 6(c). Further analysis detected a total
of 61 FRGenes with different mutation frequencies between
the two groups (Table S5). Among them, the mutations in
TP53, HECW2, TRIM66, MCTP2, and KIAA1551 were
significantly different (Figure 6(d); P < 0:01). The HECW2
mutation frequency was higher in the low-risk group, and
the TP53 mutation frequency was the highest in high-risk
group, and the three other FRGenes had higher mutation
rates in the high-risk group than they had in the low-risk
group.

3.5. Functional Analysis of the DEGs. DEGs were identified
between the high- and low-risk groups. GO and KEGG
functional analysis was performed to explore their biolog-
ical characteristics (Tables S6 and S7). Under the GO
biological process category, the highly enriched terms
included small molecule catabolic process, organic acid
biosynthetic process, organic acid catabolic process,
carboxylic acid catabolic process, and carboxylic acid
biosynthetic process (Figure 7(a)). Under the GO cellular
component category, the highly enriched terms included
plasma lipoprotein particle, lipoprotein particle, high-

density lipoprotein particle, protein-lipid complex, and
blood microparticle (Figure 7(a)). Under the GO
molecule function category, the highly enriched terms
included monooxygenase activity, oxidoreductase activity
acting on paired donors, atom of oxygen, steroid
hydroxylase activity, and oxidoreductase activity acting
on CH-OH group of donors (Figure 7(a)). The highly
enriched pathways in the KEGG analysis included the
drug metabolism-cytochrome P450, metabolism of
xenobiotics by cytochrome P450, retinol metabolism,
complement and coagulation cascades, and drug
metabolism—other enzyme pathways (Figure 7(b)).

3.6. Estimation of Immune Status with the Risk Model.
Immunotherapy, which aims to mobilize the immune sys-
tem to fight cancer, has drawn a lot of attention. To assess
the association between the risk model and features of the
immune cells, we performed ssGSEA (Figures 8(a) and
8(b)) and CIBERSORT analysis (Figure 8(c)). By combining
the results, we found that B cells, CD8+ T cells, NK cells, and
macrophages M1 were enriched in the tumor microenviron-
ment of patients in the low-risk cohort. The ssGSEA also
showed better immune function in patients in the low-risk
group (Figure 8(b)).

On the basis of these results, we speculated that the 16
FRlncRNAs in the FRlncRNA signature may be associated
with immune cells. We analyzed the relationship between
FRlncRNAs with NK cells, B cells, CD8+ T cells, and M1
cells. Among the 16 FRlncRNAs, LINC01871 and
AC026369.2 had the strongest correlation with the immune
cells. The results of the correlation analysis are shown in
Table S8.
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4. Discussion

Inducing apoptosis to eradicate cancer cells has been the
mainstay in clinical cancer treatment for a long time.
However, resistance mechanisms have limited its imple-
mentation [39]. Ferroptosis, as an alternative process for
cell death, has become a research hotspot to circumvent
the resistance of cancer cells to apoptosis induction. Fer-
roptosis inducing drugs are associated with OS of cancer
patients, and therefore targeting ferroptosis directly or
triggering ferroptosis in combination with other therapies,
such as immunotherapy or radiotherapy, may help to
broaden the therapeutic armamentarium for anti-cancer
strategies [12].

In this study, we set up an FRlncRNA signature that
combined 16 differentially expressed FRlncRNAs to predict
the prognosis of HCC. Briefly, we identified 626 FRlncRNAs
and analyzed the relationship between the FRlncRNAs and
OS. Sixteen of the FRlncRNAs were selected to establish
the risk model in the training cohort, and the model was val-
idated in the test cohort. The risk model was assessed by
ROC and decision curve analysis. Although most of the
FRlncRNAs in the signature have not previously been
reported, some are associated with cancer development. A
recent study showed that ZFPM2-AS1, which was upregu-
lated in HCC, promoted HCC cell proliferation, invasion,
and metastasis through the ZFPM2-AS1–miR-139–GDF10
axis [40]. LUCAT1 was found to participate in the develop-
ment and drug resistance of various tumors [41]. The
LUCAT1–miR-5582-3p–TCF7L2 axis increased the stem-
like properties of breast cancer cells and stemness of breast
cancer stem cells via the Wnt/β-catenin pathway, and
LUCAT1 expression was related to tumor size, lymph node
metastasis, TNM staging, and shorter OS in breast cancer

[42]. Similarly, data analysis showed that high expression
of LUCAT1 was associated with poor OS and relapse-free
survival in HCC [43]. LUCAT1 was also confirmed to pro-
mote proliferation and metastasis in HCC in vitro and
in vivo and to facilitate tumorigenesis by inhibiting ANXA2
phosphorylation [44]. MIR210HG, which acts as an onco-
gene in multiple tumors, was shown to promote cervical
cancer progression through the MIR210HG–miR-503-5p–
TRAF4 axis, participate in methylation of the CACNA2D2
promoter region to accelerate tumorigenesis of non-small
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Figure 4: Prognostic analysis of the ferroptosis-related signature model in the test cohort. (a) Risk survival status plot. (b) Principal
component analysis plot. (c) t-distributed stochastic neighbor embedding analysis plot. (d) Heatmap of the expression of the lncRNAs.
(e) Kaplan-Meier curves for overall survival. (f) AUC of time-dependent ROC curves, PC: principal component, ROC: receiver operating
characteristic, AUC: area under the ROC curve.

Table 2: Baseline characteristics of the patients in the high- and
low-risk groups.

Characteristics High risk Low risk p value

Total

364

Age (%) 0.471

<60 (year) 75 (43.4) 90 (47.1)

≥60 (year) 98 (56.6) 101 (52.9)

Sex (%) 0.32

Female 61 (35.3) 58 (30.4)

Male 112 (64.7) 133 (69.6)

Stage (%) 0.02

I + II 108 (62.4) 145 (75.9)

III + IV 51 (29.5) 36 (18.8)

Unknown 14 (8.1) 10 (5.2)

Tumor grade (%) <0.001
G1 +G2 90 (52.0) 140 (73.3)

G3 +G4 81 (46.8) 48 (25.1)

Unknown 2 (1.2) 3 (1.6)
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Figure 5: Continued.
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cell lung cancer, and increase glycolysis-dependent onco-
genic activity by potentiating the metabolic transcription
factor hypoxia-inducible factor 1α in triple-negative breast
cancer [45–47]. However, the role of MIR210HG in HCC
is still unclear, calling for further exploration. HCC was
found to have high tumor mutation burden, and therefore
we explored its genome instability. We compared the somatic
mutation data of patients in the high- and low-risk groups and
found that the mutation frequency of TP53 was significantly
increased in the high-risk group compared with the frequency
in the low-risk group (45% versus 25%). TP53, which is a
known tumor suppressor gene, had a lower mutation fre-
quency in the low-risk group, which may explain the better
prognosis for patients in the low-risk group. TRIM66 expres-
sion has been shown to promotemalignant progression in sev-
eral types of cancer, including HCC [48, 49], and MCTP2
inhibited cisplatin resistance in gastric cancer [50]. The results
of the KEGG analysis indicated that the drug metabolism
function differed in the high- and low-risk groups, implying
that patients in the high-risk group may potentially be less
sensitive to chemotherapy. KIAA1551 was also annotated as

a tumor suppressor. On the basis of these findings, we believe
that our risk model can predict not only OS but also resistance
of chemotherapy [51].

The GO and KEGG analysis indicated that, as expected,
the DEGs were enriched in fatty acid, lipid and redox reaction,
which are associated with ferroptosis [52]. Among the many
other metabolic processes, drug metabolism ranked first in
the KEGG analysis. Liver is the primary organ of biotransfor-
mation, which involves various biotransformation enzymes.
Members of the cytochrome P450 family (CYP450) are the
main xenobiotic-metabolizing enzymes that play vital roles
in drug metabolism. All the members of the CYP450 super-
family were shown to be significantly downregulated in HCC
tissues compared with their expression in normal tissues
[53], and two isoforms (CYP2C9 and CYP2E1) were found
in lower abundance in high-grade HCC tumors, implying that
substrates such as antitumor drugs may be eliminated more
slowly and achieve higher concentrations [53]. Sorafenib has
been approved as first-line treatment for HCC. Sorafenib
metabolism was shown to be significantly decreased in tumor
hepatic microsomes together with the downregulation of
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Figure 5: Assessment of risk factors and nomogram. (a) AUC values of various risk factors. (b) Decision curve analysis of the risk factors.
(c) Univariate and multivariate Cox analysis for risk factors. (d) Nomogram for risk score and other risk factors. AUC: area under the ROC
curve, T: tumor, N: nodes, M: metastases. (e–f) Calibration curves of nomogram for 3- and 5-year survival.

Table 3: C indexes of nomograms and clinicopathological features.

C index 95% CI

Age 0.512 0.438-0.586

Stage 0.643 0.580-0.706

Grade 0.506 0.435-0.577

Sex 0.510 0.453-0.567

T 0.647 0.584-0.710

N 0.504 0.490-0.518

M 0.511 0.495-0.527

Risk score 0.733 0.672-0.794

Nomogram 0.755 0.700-0.810

Reported nomogram 1 (primary cohort) [37] 0.661 0.633–0.688

Reported nomogram 1 (validation cohort) [37] 0.657 0.626-0.698

Reported nomogram 2 (primary cohort) [38] 0.667 0.653-0.681

Reported nomogram 2 (validation cohort) [38] 0.663 0.640-0.686
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Figure 6: Analysis of genome instability. (a) Comparison of tumor mutation burden (TMB) of LIHC (black dots) with that of other
cancers (grey dots) in The Cancer Genome Atlas. (b) Top 20 mutated ferroptosis-related genes in the high-risk group. (c) Top 20
ferroptosis-related mutated genes in the low-risk group. (d) Top 5 differentially mutated ferroptosis-related genes between the high-
and low-risk groups. ∗∗P < 0:01 and ∗∗∗P < 0:001.
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CYP3A4 andUGT1A9 expression [54]. However, although the
low metabolism of sorafenib increased its bioavailability, it
also caused toxic effects such as hand and/or foot skin reac-
tions under normal drug doses [54]. Therefore, the activity
of the CYP450 family should be considered when prescribing
these drugs, and the FRlncRNA signature may guide clinical
treatments.

Cancers not only consist of malignant cells but also
recruit other cells such as stromal cells, extracellular matrix,
and immune cells, which together make up the tumor
microenvironment (TME) [55]. Immune cells, including
innate and adaptive immune cells, have recently become
the focus of much attention in the context of cancer, and T
cells have been deemed to play a vital role in the anti-
cancer immune response. For a long time, CD8+ T cells have
been considered to mediate antitumor responses in the
tumor immune microenvironment, indicating that patients
in the low-risk group tended to have a better antitumor
response [56]. We also found more T helper cells and NK
cells in the low-risk group. T helper cells and NK cells are
vital parts of the immune system and components of the
TME and their roles have been elucidated in many studies
[57, 58]. Interestingly, we also found more B cell infiltration
in the low-risk group, and recent studies have shown that B
cells also participate in the immune response [59–61]. Frid-
man et al. [60] considered that enrichment of B cells and ter-
tiary lymphoid structures was the strongest prognostic factor

of prolonged survival and was positively correlated with the
response to PD-1 blockade in soft-tissue sarcomas. Together,
these studies showed that B cells were not just bystanders in
antitumor immunotherapy; indeed, the presence of B cells
has provided a new target for immunotherapy and could
be a strong weapon against tumors. Nevertheless, the
detailed mechanisms of immune cells in the TME are still
unclear, although some studies have shown that lncRNAs
participate in various processes of the immune response in
the TME [62]. For example, overexpression of lncRNA
HOTAIR in HCC cell lines promoted CCL2 secretion, which
is necessary for tumor-associated macrophages and recruit-
ment of myeloid-derived suppressor cells [63]. Given the
prominence of tumor-associated macrophages, the lncRNAs
GNAS-AS1, Xist, and MMA2P were also shown to regulate
M2 polarization, thereby contributing to tumorigenesis
[64–67]. Although T cell infiltration is a major property of
the TME, lncRNAs have been demonstrated to be involved
in the regulation of cytotoxic T lymphocytes. Upregulation
of the lncRNAs NEAT1, lnc00473, and SNHG14 was associ-
ated with immune evasion by inhibiting T cell infiltration
and suppressing the activation of cytotoxic T lymphocytes
[68–70]. In this study, we also showed the association
between FRlncRNAs and immune cells. Indeed, all the
FRlncRNAs were involved in the association with immune
cells to some extent, and LINC01871 and AC026369.2
showed the most significant correlations, especially with
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Figure 8: Estimation of the immune responses with the risk model. (a, b) Risk scores of immune cells (a) and immune-related functions (b)
based on the single-sample gene set enrichment analysis. (c) Risk scores of immune cells based on the CIBERSORT analysis. ∗P < 0:05,
∗∗P < 0:01, and ∗∗∗P < 0:001.
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CD8+ T cells and B cells. The antitumor effect of CD8+ T
cells is clear, and their reported presence suggests that mem-
ory B cells and germinal center B cells might be involved in
the ongoing formation of tertiary lymphoid structures. Our
results provide evidence that the prognostic FRlncRNA sig-
nature may have the potential to predict efficacy of immuno-
therapy and are worth further study to improve the TME.

Overall, as ferroptosis has become a new therapeutic tar-
get to attack tumors, numerous studies have been conducted
or are underway. In this study, we explored the association
between FRlncRNAs and OS of patients with HCC. An
FRlncRNA signature that combined 16 FRlncRNAs was
established to predict the prognosis of HCC. However, the
risk model needs to be validated in more cohorts. The deeper
mechanisms among FRlncRNAs, immunity, and genome
instability are still unclear. The potential capability of the
FRlncRNA signature to instruct clinical treatment also
deserves further study. In addition, it is worth promoting
application of analyzing a few gene data to reduce the cost
of sequencing [71]. It would be much better if the outcome,
mutated and immune related events can be predicted only
by measuring these FRlncRNAs expression. Earlier studies
have proposed database to predict prognosis, such as a
Human papillomavirus (HPV) genotype prediction tool,
which can predict HPV carcinogenic or non-carcinogenic
risk genotypes [72]. In the future, we would further design
similar database to better show our signature.

5. Conclusion

The risk model of 16 ferroptosis-related lncRNAs is closely
related with overall survival, tumor immune environment,
and genome instability in hepatocellular carcinoma.
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