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The prevalence of lung cancer induced by cigarette smoking has increased over time. Long noncoding (lnc) RNAs, regulatory
factors that play a role in human diseases, are commonly dysregulated in lung cancer. Cigarette smoking is closely related to
changes in lncRNA expression, which can affect lung cancer. Herein, we assess the mechanism of lung cancer initiation
induced by smoking. To calculate the impact of smoking on the survival of patients with lung cancer, we extracted data from
The Cancer Genome Atlas and Gene Expression Omnibus databases and identified the differentially expressed genes in the
lung cancer tissue compared to the normal lung tissue. Genes positively and negatively associated with smoking were
identified. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and Cytoscape analyses were performed to determine
the function of the genes and the effects of smoking on the immune microenvironment. lncRNAs corresponding to smoking-
associated genes were identified, and a smoking-related lncRNA model was constructed using univariate and multivariate Cox
analyses. This model was used to assess the survival of and potential risk in patients who smoked. During screening, 562
differentially expressed genes were identified, and we elucidated that smoking affected the survival of patients 4.5 years after
the diagnosis of lung cancer. Furthermore, genes negatively associated with smoking were closely associated with immunity.
Twelve immune cell types were also found to infiltrate differentially in smokers and nonsmokers. Thus, the smoking-associated
lncRNA model is a good predictor of survival and risk in smokers and may be used as an independent prognostic factor for
lung cancer.

1. Introduction

Lung cancer, one of the most frequent malignant neoplasms,
is a leading cause of cancer-related death, with an estimated
1.8 million deaths reported globally in 2020 [1]. The 5-year
survival rate for advanced late-stage lung cancer remains
poor at approximately 5% [2, 3]. Furthermore, lung cancer
has been reported to have the worst prognosis among all
cancers [4]. Survival remains poor because most patients
are diagnosed at an advanced stage [5]. Prior epidemiologi-
cal studies have identified smoking as an important cause
of lung cancer [6, 7]. Notably, among the 4,000 chemicals
identified in cigarette smoke, more than 60 are established
carcinogens, according to the assessments performed by
the International Agency for Research on Cancer [8]. These

chemical carcinogens are the cause of cancer from cigarette
smoke [9]. Challenges exist in predicting smoking-induced
lung cancer, and previous studies on the relationship
between smoking and lung cancer have yielded mixed
results, with some suggesting a close association [10, 11],
whereas others report no relationship [12]. Kadara et al. pro-
vide information on the early events in the molecular path-
ogenesis of lung cancer [13], but to improve prognosis, the
molecular pathogenesis of smoking-induced lung cancer
must be further studied.

Smoking is associated with changes in the expression of
many long noncoding RNAs (lncRNAs) [14], which are
non-protein-coding transcripts that span more than 200
nucleotides in length and are closely related to a variety of
physiological functions [15]. The dysregulation of lncRNA
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Figure 1: Continued.
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expression has been noted in diseases [16, 17]. It has been
reported that the abnormal expression of lncRNA is directly
related to lung cancer [18, 19]. Thus, lncRNAs that are
related to smoking and accurately predict the prognosis of
lung cancer need to be identified through screening and
comparison.

In this study, we divided differentially expressed
smoking-related genes into positively and negatively associ-

ated genes and analyzed their functions to better understand
their role in the development of lung cancer. The discovery
of a relationship between negatively associated genes and
immunity would provide theoretical support for the study
of the immune microenvironment in smoking-induced lung
cancer. We therefore obtained the lncRNAs corresponding
to the positively and negatively associated genes through
screening and built a model to compare the accuracy of
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Figure 1: Differential expression of genes in lung cancer and effect of smoking on the prognosis of patients with lung cancer. (a) Genes
obtained from The Cancer Genome Atlas (TCGA) dataset; blue denotes healthy subjects, pink represents patients with lung cancer, red
represents positive association with high gene expression, and green represents negative association with low gene expression. The top 20
genes with the greatest positive and negative correlations were selected. (b) Genes obtained from the Gene Expression Omnibus (GEO)
dataset, and others are similar to those in (a). (c) Volcano map of all differentially expressed genes identified through TCGA database;
downregulated genes are indicated in green, and upregulated genes are indicated in red. (d) Differentially expressed genes identified in
GEO. (e) The Venn diagram indicates the genes identified in TCGA and GEO databases. The differentially expressed genes are present
in the intersection. Between the two databases, 562 differentially expressed genes were common. (f) Survival curve comparison for
smoking and nonsmoking patients with lung cancer.
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Figure 2: Continued.
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the negative and positive lncRNA models in predicting the
prognosis of lung cancer. Additionally, we compared the
lncRNAs proposed in the previous reports. We expect our
findings to improve our understanding of the mechanisms
by which smoking induces lung cancer and that they will
aid the development of a better prognostic factor for lung
carcinogenesis.

2. Materials and Methods

2.1. Raw Data. The lung cancer-related RNA sequencing
and clinical data used in this study were obtained from
The Cancer Genome Atlas (TCGA; https://portal.gdc
.cancer.gov/; 535 tumor samples and 59 normal samples)
and Gene Expression Omnibus (GEO; gse68465; 442 tumor
samples and 20 normal samples) databases.

2.2. Identification of Differentially Expressed Genes. The
limma and edgeR packages in R (The R Foundation for Sta-
tistical Computing, Vienna, Austria) were used to analyze
lung cancer samples in the two databases. By selecting

logFCfilter = 1 and fdrFilter = 0:05 as the filter conditions,
genes differentially expressed between lung cancer and nor-
mal lung tissues were screened from the two databases.
Graphs were drawn using PheatMap and the ggplot2
package.

2.3. Weighted Correlation Network Analysis (WGCNA). Dif-
ferentially expressed genes in the two databases were ana-
lyzed using the WGCNA package (https://www.genetics
.ucla.edu/labs/horvath/CoexpressionNetwork/Rpackages/
WGCNA/) [20]. The gene expression data were used to con-
struct a scale-free network. To ensure the reliability of the
network, the samples with very low gene expression were
excluded. The appropriate soft threshold was determined
according to the standard scale-free network (soft
threshold = 5), and the power function was used to calculate
the correlation between different genes. After determining
the soft threshold, we used the WGCNA algorithm to build
the module.
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Figure 2: Effects of smoking on lung cancer. (a and b) The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets;
each tree fork represents a collection of genes for which the band is a series of modules. (c and d) Relationship between gene modules and
traits in the GEO and TCGA datasets; pink represents positive and green denotes negative relation between traits and genes. The two
databases contain 44 genes that are positively (e) and 80 genes that are negatively (f) associated with smoking.

5Computational and Mathematical Methods in Medicine

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/Rpackages/WGCNA/
https://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/Rpackages/WGCNA/
https://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/Rpackages/WGCNA/


Nuclear division
Organelle fission

Mitotic nuclear division
Chromosome segregation

Nuclear chromosome segregation
Sister chromatid segregation

Mitotic sister chromatid segregation
Microtubule cytoskeleton organization involved in mitosis

Spindle organization
Mitotic spindle organization

Spindle
Chromosomal region

Microtubule
Midbody

Condensed chromosome
Spindle pole

Chromosome, centromeric region
Condensed chromosome, centromeric region

Mitotic spindle
Spindle microtuble

Microtubule binding
Tubulin binding
ATPase activity

Protein serine/threonine kinase activity
Microtubule motor activity

Motor activity
Histone kinase activity

Protein kinase regulator activity
DNA replication origin binding

Cycle-dependent protein serine/threonine kinase regulator activity

Pvalue

0.00025

0.00050

0.00075

Count
5

10

15

20

25

BP
CC

M
F

GeneRatio

0.2 0.4 0.6

BBP
CCCCCCCC

MM
F

(a)

Figure 3: Continued.

6 Computational and Mathematical Methods in Medicine



Cell cycle

Progesterone-mediated oocyte maturation

Oocyte meiosis

Cellular senescence

p53 Signaling pathway

Pyrimidine metabolism

FoxO signaling pathway

Viral carcinogenesis

Human immunodeficiency virus 1 infection

Human T-cell leukemia virus 1 infection

One carbon pool by folate

DNA replication

Platinum drug resistance

Drug metabolism-other enzymes

Apoptosis

GeneRatio

0.20.1 0.3

Pvalue

Count

0.01

0.02

0.03

0.04

2
3
4
5

6

7

8

(b)

Figure 3: Continued.

7Computational and Mathematical Methods in Medicine



Count

Pvalue

GeneRatio

0.05

0.0005

0.0010

0.0015

0.0020

0.10 0.15 0.20

4

8

12

16

Extracellular matrix organization
Extracellular structure organization

Cell-substrate adhesion
Negative regulation of cellular component movement

Negative regulation of cell motility
Negative regulation of cell locomotion

Regulation of cellular response to growth factor stimulus
Platelet degranulation
Cell-matrix adhesion

Glomerulus vasculature development

Collagen-containing

External side of plasma membrane
Focal adhesion

Cell-substrate junction
Platelet alpha granule lumen

Secretory granule lumen
Cytoplasmic vesicle lumen

Muscle myosin complex
Platelet alpha granule membrane

Extracellular matrix platelet alpha granule

Extracellular matrix structural constituent
Glycosaminoglycan binding

Sulfur compound binding
Integrin binding
Heparin binding

Cytokine binding
Growth factor binding

Extracellular matrix binding
Transforming growth factor beta-activated receptor activity

Transmembrane receptor protein kinase activity

(c)

Figure 3: Continued.

8 Computational and Mathematical Methods in Medicine



Cell adhesion molecules

Regulation of actin cytoskeleton

Complement and coagulation cascades

Leukocyte transendothelial migration

Axon guidance

Malaria

Coronavirus disease - COVID-19

Vascular smooth muscle contraction

Tyrosine metabolism

Arachidonic acid metabolism

Count
2

4
63
5

Pvalue

0.01

0.02

0.03

0.04

0.06 0.08 0.120.10 0.14

GeneRatio

(d)

Figure 3: Continued.

9Computational and Mathematical Methods in Medicine



2.4. Sample Subgrouping for Correlation with Smoking.
Using WGCNA, the modules closely related to smoking
and genes in the modules were obtained. The Venn package
was used to retrieve the intersection of the differential genes
in the two datasets and the smoking-associated genes in the
two databases. Genes that were positively and negatively
associated with smoking were obtained. The expression
levels of genes and lncRNAs were compared using the limma
package in R, selecting the conditions CorFilter = 0:4 and
PValueFilter = 0:01 for filtering. lncRNAs positively and
negatively associated with smoking were then selected. The
samples were then divided into high- and low-risk groups
based on the median value of the product, which was
obtained by multiplying the expression level of these
lncRNAs with the corresponding expression coefficients.

2.5. Cytoscape Analysis. The relationship between genes that
were positively and negatively associated with smoking and
lncRNAs was analyzed using Cytoscape (3.8.0) [21].

2.6. Immune Infiltration Analysis. The CIBERSORT algo-
rithm was used to evaluate the composition of 22 different
immune cells by analyzing the gene expression profile data
obtained from the GEO database. Gene expression among
these groups was analyzed using the ggplot2 and ggpubr R
packages. The correlation between genes and immune cells
was assessed using the ggplot2, ggpubr, and ggExtra
packages.

2.7. Survival Analysis. The survival and survminer R pack-
ages were used to analyze the prognostic significance of pos-
itive and negative lncRNAs, respectively. The Kaplan-Meier
method was used to plot survival curves for the high- and
low-risk groups, whereas the log-rank test was used to eval-
uate the statistical significance between the groups. p values
< 0.001 were considered to indicate statistical significance.

2.8. Receiver Operating Characteristic (ROC) Curve Analysis.
We used the positive and negative lncRNAs to construct the
theoretical risk model. To compare their accuracy in evaluat-
ing the effect of smoking, ROC curve analysis was conducted
using the survival, survminer, and timeROC packages in R.
The area under the ROC curve of the positive and negative
correlation lncRNA model represents the prognosis evalua-
tion of the model for patients with lung cancer who smoke.
The larger the area under the curve, the more accurate the
model. We found that the area under the curve increased
gradually and exceeded 0.5 (i.e., the threshold for accurate
prediction of the effect of smoking).

2.9. Cox Regression Analysis. The survival package in R was
applied, and univariate and multivariate Cox regression
analyses were used to screen out positive and negative
lncRNAs closely associated with smoking-induced lung can-
cer prognosis to build the model. Univariate and multivari-
ate prognostic analyses included factors such as age, sex,
tumor-node-metastasis (TNM) stage, and the proposed risk
score. Correlations between gene expression and risk were

(e)

Figure 3: Gene Ontology (GO) analysis for functional enrichment of genes positively (a) and negatively (c) associated with smoking. Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis for determining the function of genes positively (b) and
negatively (d) associated with smoking. (e) Cytoscape analysis showing the major functions of genes negatively associated with smoking.

10 Computational and Mathematical Methods in Medicine



100%

80%

60%

40%

20%

0%

Re
la

tiv
e p

er
ce

nt

B cells naive
B cells memory
Plasma cells
T cells CD8
T cells CD4 naive

T cells follicular helper
T cells regulatory (Tregs)
T cells gamma delta

T cells CD4 memory resting
T cells CD4 memory activated

NK cells resting

NK cells activated
Monocytes
Macrophages M0
Macrophages M1
Macrophages M2
Dendritic cells resting
Dendritic cells activated
Mast cells resting
Mast cells activated
Eosinophils
Neutrophils

(a)

B cells naive
B cells memory

Plasma cells
T cells CD8

T cells CD4 naive

T cells follicular helper
T cells regulatory (Tregs)

T cells gamma delta

T cells CD4 memory resting
T cells CD4 memory activated

NK cells resting
NK cells activated

Monocytes
Macrophages M0

Macrophages M1
Macrophages M2

Dendritic cells resting
Dendritic cells activated

Mast cells resting
Mast cells activated

Eosinophils
Neutrophils

B 
ce

lls
 n

ai
ve

B 
ce

lls
 m

em
or

y
Pl

as
m

a c
el

ls
T 

ce
lls

 C
D

8
T 

ce
lls

 C
D

4 
na

iv
e

T 
ce

lls
 fo

lli
cu

la
r h

el
pe

r
T 

ce
lls

 re
gu

la
to

ry
 (T

re
gs

)
T 

ce
lls

 g
am

m
a d

el
ta

T 
ce

lls
 C

D
4 

m
em

or
y 

re
sti

ng
T 

ce
lls

 C
D

4 
m

em
or

y 
ac

tiv
at

ed

N
K 

ce
lls

 re
sti

ng
N

K 
ce

lls
 ac

tiv
at

ed
M

on
oc

yt
es

M
ac

ro
ph

ag
es

 M
0

M
ac

ro
ph

ag
es

 M
1

M
ac

ro
ph

ag
es

 M
2

D
en

dr
iti

c c
el

ls 
re

sti
ng

D
en

dr
iti

c c
el

ls 
ac

tiv
at

ed
M

as
t c

el
ls 

re
sti

ng
M

as
t c

el
ls 

ac
tiv

at
ed

Eo
sin

op
hi

ls
N

eu
tr

op
hi

ls

StromalScore
ImmuneScore

St
ro

m
al

Sc
or

e
Im

m
un

eS
co

re

1

0.8

0.6

0.4

0.2

– 0.2

– 0.4

– 0.6

– 0.8

– 1

0

(b)

Figure 4: Continued.

11Computational and Mathematical Methods in Medicine



analyzed to understand the effects of age, sex, and other clin-
ical factors on lung cancer. We compared these factors with
the risk score to determine which one had the greater influ-
ence on the prognosis of lung cancer.

2.10. Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) Enrichment Analysis. The GO and
KEGG enrichment of smoking-related genes was studied
using the R packages colorspace, stringi, ggplot2, clusterPro-
filer, http://org.hs.eg.db, and enrichplot. We selected the fil-
tered condition PValueFilter = 0:05 or the filtered condition
QValueFilter = 1.

3. Results

3.1. Differentially Expressed Genes in Smoking-Induced Lung
Cancer. We compared genes expressed in lung cancer tissue
samples with those from normal lung tissue samples from
TCGA and GEO databases and identified 1,136 and 6,597
differentially expressed genes, respectively. The top 40 differ-
entially expressed genes from each of the databases were
selected to be represented in a heat map (Figures 1(a) and
1(b)). Among the 1,136 differentially expressed genes in
TCGA, 786 were downregulated and 350 were upregulated
(Figure 1(c)). Among the 6,597 differentially expressed genes
in the GEO database, 3,177 were downregulated and 3420
were upregulated (Figure 1(d)). We intersected the differen-
tially expressed genes in the two databases and obtained 562
common differentially expressed genes (Figure 1(e)). Addi-
tionally, we conducted a comparative study on the survival
of smoking and nonsmoking patients with lung cancer and
found that the death rate was significantly higher in smokers

than in nonsmokers 4.5 years after tumor diagnosis
(Figure 1(f), p < 0:05).

3.2. Genes Screened for Smoking History Association. We
used WGCNA to conduct hierarchical cluster analysis on
the 562 differentially expressed genes identified from the
two databases and obtained a cluster tree diagram. By calcu-
lating when the threshold reaches a value of six, the con-
structed network can be made more consistent with the
characteristics of a scale-free network (SFig. 1A, B). The
genes in the lung cancer dataset were identified through
hierarchical clustering based on the dissimilarity matrix,
and a cluster tree was constructed (Figures 2(a) and 2(b)).
The network module was set to contain at least 50 genes.
The dynamic cutting method was used to identify different
gene modules, and the modules with high similarity were
combined. Finally, four and three different gene modules
were obtained from TCGA (Figure 2(c)) and GEO
(Figure 2(d)), respectively. The brown module in TCGA
and GEO was positively correlated with smoking history,
and 44 positively correlated genes were obtained by the
intersection of the differential genes in the two databases
and the genes in the brown module (Figure 2(e)). The tur-
quoise module in TCGA and blue module in GEO were neg-
atively correlated with smoking history. Eighty negatively
correlated genes were obtained via the intersection with dif-
ferential genes in the two databases (Figure 2(f)).

3.3. Function of Genes Associated with Smoking History.
Next, we analyzed the functions of the smoking-associated
genes identified in the study. GO enrichment analysis of
the positively correlated genes demonstrated that they are
involved in nuclear division, organelle fission, and mitotic
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Figure 4: Effects of smoking on the immune microenvironment. (a) Infiltration rate of immune cells in the smoking and nonsmoking
patient groups. (b) Relationship between different immune cell types. A pie diagram showing the positive and negative correlations in
red and blue, respectively. (c) Relationship of different immune cell types observed in smoking and nonsmoking patients with lung cancer.
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nuclear division (Figure 3(a)). KEGG pathway enrichment
analysis revealed significant enrichment of these genes in
the cell cycle, progesterone-mediated oocyte maturation,
oocyte meiosis, and the p53 signaling pathway
(Figure 3(b)). The GO enrichment analysis of negatively cor-
related genes revealed that they are associated with extracel-
lular matrix organization, extracellular structure
organization, cell-substrate adhesion, and adhesion accumu-
lation (Figure 3(c)). In addition, KEGG enrichment analysis

showed that these genes play a role in cell adhesion mole-
cules, the regulation of actin cytoskeleton, complement and
coagulation cascades, and leukocyte transferred migration.
Interestingly, the negatively correlated genes were closely
associated with the coronavirus disease (COVID-19) path-
way (Figure 3(d)).

From the above functional enrichment results, we con-
cluded that the genes negatively associated with smoking
history are closely related to the functions of immunity
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and COVID-19. Next, we used Cytoscape to demonstrate
the functions of negatively correlated genes (Figure 3(e)).
These genes were closely associated with negative regulation
of leukocyte apoptotic process, negative regulation of migra-
tion, and negative regulation of leukocyte immune processes
such as the response to cytokine stimulus.

3.4. Relationship between Smoking and Immunity. Based on
the above KEGG enrichment analysis and Cytoscape results,
genes negatively associated with smoking history were found
to be closely related to immunity. Hence, we assessed
immune cell infiltration in smoking and nonsmoking
patients with lung cancer (Figure 4(a)). Naive CD4 T cells
were most closely correlated with helper T cells and acti-
vated mast cells. Plasma cells and M2 macrophages exhib-
ited the most negative correlation (Figure 4(b)). In
addition, 12 immune cell types (naive and memory B cells,
plasma cells, naive CD4 T cells, resting memory CD4 T cells,
follicular helper T cells, activated natural killer (NK) cells,
monocytes, M2 macrophages, resting and activated dendritic
cells, and resting mast cells) were significantly different
between the smoking and nonsmoking patients with lung
cancer (Figure 4(c)).

3.5. Establishment of Smoking-Related lncRNA Models. We
used Cytoscape to identify the corresponding lncRNAs of
the genes that were positively and negatively associated with
smoking, termed as positive and negative lncRNAs, respec-
tively (Figure 5(a)). Univariate Cox analysis was used to
obtain positive and negative lncRNAs that were closely asso-

ciated with the prognosis of lung cancer (Figures 5(b) and
5(c)). Multivariate Cox analysis was used to identify positive
and negative lncRNAs that could independently affect the
prognosis of lung cancer (Figures 5(d) and 5(e)). Using mul-
tivariate Cox analysis, we identified six positive and six neg-
ative lncRNAs. Using these 12 lncRNAs for the models, the
median of the sum of the product of the expression level of
each lncRNA and the expression coefficient of each lncRNA
were used to divide the samples into high- and low-risk
groups (Figures 5(f) and 5(g)).

Next, we compared the survival of patients in the high-
and low-risk groups and found a significant increase in
death in the high-risk group in both the positive and nega-
tive lncRNA models (Figure 6(a)). To further evaluate the
accuracy of the two models for risk assessment of patients
who smoked, we used the ROC curve. The area under the
curve (AUC) value for negative lncRNA model was 0.706,
the AUC value for positive lncRNA model was 0.665; the
AUC value for negative lncRNA model was larger than the
AUC value for positive lncRNA model; hence, negative
lncRNAs were more accurate in the assessment of
smoking-induced risk. We also compared our model with
that of Chen et al. [19]. In their study, RXFP1, RAMP2-
AS1, LINC00312, and LINC00472 were identified as key
lncRNAs in smoking-associated lung cancer; however, their
area under the curve (AUC) value is 0.608 and is smaller
than that in our study, indicating that our model is more
accurate (Figure 6(b)). The risk values of patients in the
high- and low-risk groups were also calculated
(Figures 6(c) and 6(d)). Notably, patients in the low-risk
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Figure 6: Comparison and risk assessment of the smoking-associated lung cancer prognostic models. (a) Sankey diagram. Half are high risk,
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group had improved prognosis and survived longer than
patients in the high-risk group (Figures 6(e) and 6(f)). Addi-
tionally, more patients survived in the low- than in the high-
risk group. Finally, the expression of lncRNAs identified
using the model in the high- and low-risk groups was visu-
alized using a heat map (Figures 6(g) and 6(h)). Smoking
was found to be positively correlated with certain lncRNAs
(i.e., AL031118.1, AC026462.3, AC008764.2, LINC02802,
AC021016.1, and AC125807.2) and negatively correlated
with other lncRNAs (i.e., AC090541.1, AP000695.1,
LINC01352, FLG-AS1, LINC01537, and AC018647.1).

3.6. Comparison of the Model with Other Clinical Traits and
Identification of Pathways Associated with the Model. We
compared the prognostic significance of the positive and
negative lncRNA models with that of other clinical traits.
Univariate Cox analysis showed that both models, together
with stage and TNM, could influence the prognosis of
patients (Figures 7(a) and 7(b)). Multivariate Cox analysis
showed that both models could be used as independent
prognostic factors for patients (Figures 7(c) and 7(d)). The
positive lncRNA model was associated with the B cell recep-
tor signaling pathway, intestinal immune network for IgA

production, the p53 signaling pathway, and other immuno-
logical and tumor-related pathways (Figure 7(e)). Similarly,
the negative lncRNA model was associated with the B cell
receptor signaling pathway, the chemokine signaling path-
way, intestinal immune network for IgA production, the
JAK-STAT signaling pathway, the MAPK signaling path-
way, and other immunological and tumor-related pathways
(Figure 7(f)).

4. Discussion

Smoking remains a leading risk factor for early death and
disability worldwide [22]. In this study, we investigated the
relationship between smoking and lung cancer in silico, hop-
ing to further elucidate their relationship. Genetic changes
play an important role in lung cancer [23]. Notably, gene
expression changes have been reported in the lung cancer
tissues of smokers and nonsmokers with lung adenocarci-
noma [24]. In our study, we identified 562 differentially
expressed genes from lung cancer and normal tissues from
the TCGA and GEO databases. Two of the genes identified
in our study were ROS1 [25, 26], which is widely studied
in the treatment of lung cancer, and IL-6 [27], which plays
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Figure 7: Relationship between the risk model and clinical factors. (a and b) Single factor prognostic analysis included age, sex, tumor-node-
metastasis (TNM) stage, and the risk scores of patients with lung cancer with positive and negative long noncoding (lnc) RNAs. (c and d)
Multifactor prognostic analysis included age, sex, TNM stage, and the risk scores of patients with lung cancer with positive and negative
lncRNAs. (e and f) Pathways identified using the positive and negative lncRNA model.
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a role in tumor microenvironment changes. To further elu-
cidate the relationship between smoking and lung cancer,
we analyzed the prognosis of smoking and nonsmoking
patients with lung cancer. The 5-year survival rate of lung
cancer patients has increased significantly with advances in
early diagnosis and treatment [28]. However, continuing to
smoke after the diagnosis of lung cancer is associated with
higher therapeutic toxicity, risk of recurrence, and poor
prognosis [29]. In our study, although no difference in sur-
vival was detected between the patient groups initially, dif-
ferences were noted 4.5 years after the diagnosis of lung
cancer. Hence, we concluded that there was a significant sur-
vival difference between the groups after 4.5 years.

Several genes were found to be associated with smoking.
Using WGCNA, we divided the genes into those that were
positively and negatively associated with smoking. This divi-
sion was conducive to the subsequent study of gene function.
Cigarette smoke contains various chemicals, and smoking-
related diseases can occur through the effects on gene
expression that occur via DNA methylation [30]. Through
GO and KEGG enrichment analysis, we found that genes
negatively associated with smoking were closely related to
immunity. When chemicals in cigarettes enter the airway,
they prompt macrophages to launch an inflammatory
response for their removal [31]. Immune cells in the bron-
chus regulate the inflammatory response through DNA
methylation, secretion regulation, and proinflammatory sig-
naling molecules [32, 33]. Hence, smoking is closely related
to a variety of immune diseases [34, 35].

We also used Cytoscape to analyze the function of genes
inversely associated with smoking. We found that these
genes were involved in the negative regulation of leukocyte
apoptotic process, chemokine-mediated signaling pathway,
and negative regulation of response to cytokine stimulus.
da Silva D. et al. reported that the number of leukocytes
and neutrophils increases in the airways of mice exposed
to cigarette smoke [36]. Consistently, we noted a negative
regulation of gene function in leukocyte apoptosis in smok-
ing patients with lung cancer. Alshehri et al. demonstrated
that smoking induces chemokine production, which affects
airway inflammation by regulating interleukin- (IL-) 8
[37]. In our study, we found significant differences in CD4
T cell infiltration between smoking and nonsmoking
patients. Previous studies on CD4 T cells in patients with a
smoking habit have reported similar results. For example,
Wasén et al. found that smoking induces the apoptosis of
CD4+ T cells in patients with rheumatoid arthritis [38]. Fur-
thermore, Wang and Guo found decreased infiltration of
resting memory CD4 T cells and increased infiltration of fol-
licular helper T cells in patients with lung squamous cell
cancer who smoked or had quit smoking for less than 15
years [39]. The results of our study are consistent with those
of these studies.

NK cells [40, 41], monocytes [42], macrophages [43], B
cells [44], dendritic cells [45], and mast cells [46] have also
been associated with smoking. In our study, we found signif-
icant differences in plasma cell infiltration between smoking
and nonsmoking patients, which has rarely been reported.
Thus, our study provides a new direction for further

research: to determine the influence of smoking on the
immune microenvironment. Notably, we identified that the
genes negatively associated with smoking were closely
related to the COVID-19 pathway. Thus, we propose that
smoking can increase the possibility of respiratory tract
infections; however, owing to the small number of cases in
this study, there is no favorable evidence to support the rela-
tionship between COVID-19 and smoking [47]. In conclu-
sion, this bioinformatic study will provide theoretical
support for further research focused on clarifying the rela-
tionship between COVID-19 and smoking.

lncRNAs play an important role in a variety of diseases
and a huge role in smoking-induced tumors [48]. We iden-
tified lncRNAs that were positively and negatively associated
with smoking and constructed the smoking-associated
lncRNA model through univariate and multivariate Cox
analyses. Upon survival analysis, we found that the model
is a faithfully prognostic factor of lung cancer. Currently,
there are relatively few reports on the prediction of tumor
prognosis based on lncRNAs. Gong et al. reported that
LINC01537 plays an important role in energy metabolism,
as well as in the prognosis of lung cancer [49]. This lncRNA
was also identified using our model. However, there are few
reports on the synergistic effect of lncRNAs on tumor prog-
nosis and even fewer studies on the prognosis of lung cancer
based on lncRNAs. We constructed a prognostic lncRNA
model for lung cancer, evaluated the influence of the model
on the risk of lung cancer, and performed comparisons with
other clinical traits. We found that lncRNAs can effectively
be considered as an independent risk factor for lung cancer.
Thus, our study acts as a foundation for future research on
the role of lncRNAs in lung tumor prediction.

5. Conclusions

Throughout our study, we screened out the smoking-related
genes and analyzed their functions to better understand their
role in the development of lung cancer. The discovery of a
relationship between negatively associated genes and immu-
nity would provide theoretical support for the study of the
immune microenvironment in smoking-induced lung can-
cer. In addition, the current study focused on elucidating
the role of smoking-related lncRNAs in lung cancer progres-
sion. The findings of the study revealed that smoking-related
lncRNAs are a good prognostic marker of survival and risk
in patients with lung cancer. The accuracy and advantages
of our model were further highlighted by comparing it with
the lncRNAs reported in the previous studies. However, this
study still had some limitations. For example, the research
was limited to the TCGA and GEO databases, and more
databases and different population samples are needed for
verification.

Data Availability

The data that support the findings of this study were
obtained from TCGA (https://portal.gdc.cancer.gov/) and
GEO (gse68465) databases.

18 Computational and Mathematical Methods in Medicine

https://portal.gdc.cancer.gov/


Conflicts of Interest

The authors declare that there is no conflict of interest
regarding the publication of this paper.

Acknowledgments

This work was supported by the Science and Technology
Developing Plan of Jilin Province (grant number
20200201258JC).

Supplementary Materials

SFig. 1A and 1B: determination of soft-thresholding power
in weighted gene coexpression network analysis (WGCNA)
in (A) the TCGA dataset and (B) the GEO datasets.
(Supplementary Materials)

References

[1] H. Sung, J. Ferlay, R. L. Siegel et al., “Global cancer statistics
2020: GLOBOCAN estimates of incidence and mortality
worldwide for 36 cancers in 185 countries,” CA: a Cancer Jour-
nal for Clinicians, vol. 71, no. 3, pp. 209–249, 2021.

[2] P. Goldstraw, D. Ball, J. R. Jett et al., “Non-small-cell lung can-
cer,” Lancet, vol. 378, no. 9804, pp. 1727–1740, 2011.

[3] R. S. Herbst, J. V. Heymach, and S. M. Lippman, “Lung can-
cer,” The New England Journal of Medicine, vol. 359, no. 13,
pp. 1367–1380, 2008.

[4] C. Allemani, T. Matsuda, V. Di Carlo et al., “Global surveil-
lance of trends in cancer survival 2000-14 (CONCORD-3):
analysis of individual records for 37 513 025 patients diag-
nosed with one of 18 cancers from 322 population-based reg-
istries in 71 countries,” Lancet, vol. 391, no. 10125, pp. 1023–
1075, 2018.

[5] National Cancer Institute, “SEER stat fact sheets: lung and
bronchus cancer,” 2018, http://seer.cancer.gov/statfacts/html/
lungb.html.

[6] M. Furrukh, “Tobacco smoking and lung cancer: perception-
changing facts,” Sultan Qaboos University Medical Journal,
vol. 13, no. 3, pp. 345–358, 2013.

[7] R. D. Neal, F. Sun, J. D. Emery, and M. E. Callister, “Lung can-
cer,” BMJ, vol. 365, article l1725, 2019.

[8] D. Hoffmann, I. Hoffmann, and K. El-Bayoumy, “The less
harmful cigarette: a controversial issue. A tribute to Ernst
L.Wynder,” Chemical research in toxicology, vol. 14, no. 7,
pp. 767–790, 2001.

[9] S. S. Hecht, “Cigarette smoking and lung cancer: chemical
mechanisms and approaches to prevention,” The Lancet
Oncology, vol. 3, no. 8, pp. 461–469, 2002.

[10] J. T. Lariscy, “Smoking-attributable mortality by cause of death
in the United States: an indirect approach,” SSM-population
health, vol. 7, 2019.

[11] L. A. Loeb, V. L. Ernster, K. E. Warner, J. Abbotts, and
J. Laszlo, “Smoking and lung cancer: an overview,” Cancer
Research, vol. 44, no. 12, pp. 5940–5958, 1984.

[12] M. Torres-Durán, A. Fernández-Villar, and A. Ruano-Raviña,
“Lung cancer unrelated to smoking,” Arch Bronconeumol
(Engl Ed), vol. 54, no. 6, pp. 301-302, 2018.

[13] H. Kadara, P. Scheet, I. I. Wistuba, and A. E. Spira, “Early
events in the molecular pathogenesis of lung cancer,” Cancer
Prevention Research, vol. 9, no. 7, pp. 518–527, 2016.

[14] H. Zhang, D. Sun, D. Li et al., “Long non-coding RNA expres-
sion patterns in lung tissues of chronic cigarette smoke
induced COPD mouse model,” Scientific Reports, vol. 8,
no. 1, p. 7609, 2018.

[15] X. Wan, W. Huang, S. Yang et al., “Identification of androgen-
responsive lncRNAs as diagnostic and prognostic markers for
prostate cancer,” Oncotarget, vol. 7, no. 37, pp. 60503–60518,
2016.

[16] Q. Sun, Q. Hao, and K. V. Prasanth, “Nuclear long noncoding
RNAs: key regulators of gene expression,” Trends in Genetics,
vol. 34, no. 2, pp. 142–157, 2018.

[17] C. Lin and L. Yang, “Long noncoding RNA in cancer: wiring
signaling circuitry,” Trends in Cell Biology, vol. 28, no. 4,
pp. 287–301, 2018.

[18] S. Li, X. Sun, S. Miao, J. Liu, and W. Jiao, “Differential protein-
coding gene and long noncoding RNA expression in smoking-
related lung squamous cell carcinoma,” Thorac Cancer, vol. 8,
no. 6, pp. 672–681, 2017.

[19] Y. Chen, Y. Pan, Y. Ji, L. Sheng, and X. Du, “Network analysis
of differentially expressed smoking-associated mRNAs,
lncRNAs and miRNAs reveals key regulators in smoking-
associated lung cancer,” Experimental and Therapeutic Medi-
cine, vol. 16, no. 6, pp. 4991–5002, 2018.

[20] P. Langfelder and S. Horvath, “WGCNA: an R package for
weighted correlation network analysis,” BMC Bioinformatics,
vol. 9, no. 1, p. 559, 2008.

[21] P. Shannon, A. Markiel, O. Ozier et al., “Cytoscape: a software
environment for integrated models of biomolecular interac-
tion networks,” Genome Research, vol. 13, no. 11, pp. 2498–
2504, 2003.

[22] GBD 2015 Tobacco Collaborators, “Smoking prevalence and
attributable disease burden in 195 countries and territories,
1990-2015: a systematic analysis from the global burden of dis-
ease study 2015,” Lancet (London, England), vol. 389,
no. 10082, pp. 1885–1906, 2017.

[23] V. Masciale, F. Banchelli, G. Grisendi et al., “New perspectives
in different gene expression profiles for early and locally
advanced non-small cell lung cancer stem cells,” Frontiers in
Oncology, vol. 11, article 613198, 2021.

[24] C. A. Powell, A. Spira, A. Derti et al., “Gene expression in lung
adenocarcinomas of smokers and nonsmokers,” American
Journal of Respiratory Cell and Molecular Biology, vol. 29,
no. 2, pp. 157–162, 2003.

[25] M. Duruisseaux, “Lorlatinib: a new treatment option for
_ROS1_ -positive lung cancer,” The Lancet Oncology, vol. 20,
no. 12, pp. 1622-1623, 2019.

[26] H. Y. Zou, Q. Li, L. D. Engstrom et al., “PF-06463922 is a
potent and selective next-generation ROS1/ALK inhibitor
capable of blocking crizotinib-resistant ROS1 mutations,”
Proc Natl Acad Sci USA, vol. 112, no. 11, pp. 3493–3498,
2015.

[27] M. S. Caetano, H. Zhang, A. M. Cumpian et al., “IL6 blockade
reprograms the lung tumor microenvironment to limit the
development and progression of K-ras-mutant lung cancer,”
Cancer Research, vol. 76, no. 11, pp. 3189–3199, 2016.

[28] N. L. S. T. R. Team, “Reduced lung-cancer mortality with low-
dose computed tomographic screening,” The New England
Journal of Medicine, vol. 365, no. 5, pp. 395–409, 2011.

19Computational and Mathematical Methods in Medicine

https://downloads.hindawi.com/journals/cmmm/2022/7169353.f1.zip
http://seer.cancer.gov/statfacts/html/lungb.html
http://seer.cancer.gov/statfacts/html/lungb.html


[29] E. R. Gritz, B. A. Toll, and G. W. Warren, “Tobacco use in the
oncology setting: advancing clinical practice and research,”
Cancer Epidemiology, Biomarkers & Prevention, vol. 23,
no. 1, pp. 3–9, 2014.

[30] R. Joehanes, A. C. Just, R. E. Marioni et al., “Epigenetic signa-
tures of cigarette smoking,” Circulation. Cardiovascular Genet-
ics, vol. 9, no. 5, pp. 436–447, 2016.

[31] T. Hussell and T. J. Bell, “Alveolar macrophages: plasticity in a
tissue-specific context,” Nature Reviews. Immunology, vol. 14,
no. 2, pp. 81–93, 2014.

[32] R. A. Philibert, R. A. Sears, L. S. Powers et al., “Coordinated
DNA methylation and gene expression changes in smoker
alveolar macrophages: specific effects on VEGF receptor 1
expression,” Journal of Leukocyte Biology, vol. 92, no. 3,
pp. 621–631, 2012.

[33] M. M. Monick, S. R. H. Beach, J. Plume et al., “Coordinated
changes in AHRR methylation in lymphoblasts and pulmo-
nary macrophages from smokers,” American Journal of Medi-
cal Genetics. Part B, Neuropsychiatric Genetics, vol. 159B, no. 2,
pp. 141–151, 2012.

[34] H. Källberg, B. Ding, L. Padyukov et al., “Smoking is a major
preventable risk factor for rheumatoid arthritis: estimations
of risks after various exposures to cigarette smoke,” Annals of
the Rheumatic Diseases, vol. 70, no. 3, pp. 508–511, 2011.

[35] A. K. Hedström, E. Sundqvist, M. Bäärnhielm et al., “Smoking
and two human leukocyte antigen genes interact to increase
the risk for multiple sclerosis,” Brain, vol. 134, no. 3,
pp. 653–664, 2011.

[36] D. A. da Silva, T. M. L. Correia, R. Pereira, R. A. A. da Silva,
O. Augusto, and R. F. Queiroz, “Tempol reduces inflammation
and oxidative damage in cigarette smoke-exposed mice by
decreasing neutrophil infiltration and activating the Nrf2
pathway,” Chemico-Biological Interactions, vol. 329, article
109210, 2020.

[37] M. Alshehri, O. Brand, A. Alqarni, A. Pasini, and L. Pang,
“RAGE partially mediates cigarettes smoke extract induced
cytokine and chemokine production in human bronchial epi-
thelial cells,” The European Respiratory Journal, vol. 52,
p. PA4246, 2018.

[38] C. Wasén, M. Turkkila, A. Bossios et al., “Smoking activates
cytotoxic CD8+ T cells and causes survivin release in rheuma-
toid arthritis,” Journal of Autoimmunity, vol. 78, pp. 101–110,
2017.

[39] Y. Wang and J. Guo, “Immune cell landscape analysis reveals
prognostic immune cells and its potential mechanism in squa-
mous cell lung carcinoma,” PeerJ, vol. 8, article e9996, 2020.

[40] A. Andersson, C. Malmhall, A. Linden, and A. Bossios,
“Tobacco smoke causes release of IL-16 protein from NK cells
in vitro,” The European Respiratory Journal, vol. 46, p. A5102,
2015.

[41] J. Li, H. Li, C. Zhang, C. Zhang, and H. Wang, “Integrative
analysis of genomic alteration, immune cells infiltration and
prognosis of lung squamous cell carcinoma (LUSC) to identify
smoking-related biomarkers,” International Immunopharma-
cology, vol. 89, article 107053, 2020.

[42] S. Perez-Rial, L. del Puerto-Nevado, R. Terron-Exposito,
A. Giron-Martinez, N. Gonzales-Mangado, and G. Peces-
Barba, “Role of recently migrated monocytes in cigarette
smoke-induced lung inflammation in different strain of mice,”
PLoS One, vol. 8, no. 9, article e72975, 2013.

[43] Y. Le, Y. Wang, L. Zhou et al., “Cigarette smoke-induced
HMGB1 translocation and release contribute to migration
and NF-κB activation through inducing autophagy in lung
macrophages,” Journal of Cellular and Molecular Medicine,
vol. 24, no. 2, pp. 1319–1331, 2020.

[44] C. C. J. Zavitz, G. J. Gaschler, C. S. Robbins, F. M. Botelho,
P. G. Cox, and M. R. Stampfli, “Impact of cigarette smoke on
T and B cell responsiveness,” Cellular Immunology, vol. 253,
no. 1-2, pp. 38–44, 2008.

[45] S. L. Qiu, H. Zhang, Q. Y. Tang et al., “Neutrophil extracellular
traps induced by cigarette smoke activate plasmacytoid den-
dritic cells,” Thorax, vol. 72, no. 12, pp. 1084–1093, 2017.

[46] E. Mortaz, C. Silva, G. Folkerts, J. Garssen, and R. Redegeld,
“Cigarette smoke suppresses mast cell maturation and cyto-
kine release independent of TLR4 signaling,” The European
Respiratory Journal, vol. 40, p. 1425, 2012.

[47] R. N. van Zyl-Smit, G. Richards, and F. T. Leone, “Tobacco
smoking and COVID-19 infection,” The Lancet Respiratory
Medicine, vol. 8, no. 7, pp. 664-665, 2020.

[48] A. R. Banday, B. W. Papenberg, and L. Prokunina-Olsson,
“When the smoke clears m6A from a Y chromosome-linked
lncRNA, men get an increased risk of cancer,” Cancer
Research, vol. 80, no. 13, pp. 2718-2719, 2020.

[49] W. Gong, L. Yang, Y. Wang et al., “Analysis of survival-related
lncRNA landscape identifies a role for LINC01537 in energy
metabolism and lung cancer progression,” International Jour-
nal of Molecular Sciences, vol. 20, no. 15, p. 3713, 2019.

20 Computational and Mathematical Methods in Medicine


	Role of Long Noncoding RNAs in Smoking-Induced Lung Cancer: An In Silico Study
	1. Introduction
	2. Materials and Methods
	2.1. Raw Data
	2.2. Identification of Differentially Expressed Genes
	2.3. Weighted Correlation Network Analysis (WGCNA)
	2.4. Sample Subgrouping for Correlation with Smoking
	2.5. Cytoscape Analysis
	2.6. Immune Infiltration Analysis
	2.7. Survival Analysis
	2.8. Receiver Operating Characteristic (ROC) Curve Analysis
	2.9. Cox Regression Analysis
	2.10. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) Enrichment Analysis

	3. Results
	3.1. Differentially Expressed Genes in Smoking-Induced Lung Cancer
	3.2. Genes Screened for Smoking History Association
	3.3. Function of Genes Associated with Smoking History
	3.4. Relationship between Smoking and Immunity
	3.5. Establishment of Smoking-Related lncRNA Models
	3.6. Comparison of the Model with Other Clinical Traits and Identification of Pathways Associated with the Model

	4. Discussion
	5. Conclusions
	Data Availability
	Conflicts of Interest
	Acknowledgments
	Supplementary Materials

