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Objective. This study was aimed at developing a model for predicting postoperative biochemical recurrence of prostate cancer
(PCa) using clinical data-CEUS-MRI radiomics and at verifying its clinical effectiveness. Methods. The clinical imaging data of
159 patients pathologically confirmed with PCa and who underwent radical prostatectomy in Xiangyang No. 1 People’s
Hospital and Jiangsu Hospital of Chinese Medicine from March 2016 to December 2020 were retrospectively analyzed.
According to the 2-5-year follow-up results, the patients were divided into the biochemical recurrence (BCR) group (n = 59)
and the control group (n = 100). The training set and test set were established in the proportion of 7/3; 4 prediction models
were established based on the clinical imaging data. In training set, the area under the curve (AUC) and decision curve
analysis (DCA) by R was conducted to compare the efficiency of 4 prediction models, and then, external validation was
performed using the test set. Finally, a nomogram tool for predicting BCR was developed. Results. Univariate regression
analysis confirmed that the SmallAreaHighGrayLevelEmphasis, RunVariance, Contrast, tumor diameter, clinical T stage, lymph
node metastasis, distant metastasis, Gleason score, preoperative PSA, treatment method, CEUS-peak intensity (PI), time to
peak (TTP), arrival time (AT), and elastography grade were the influencing factors for predicting BCR. In the training set, the
AUC of combinatorial model demonstrated the highest efficiency in predicting BCR [AUC: 0.914 (OR 0.0305, 95% CI: 0.854-
0.974)] vs. the general clinical data model, the CEUS model, and the MRI radiomics model. The DCA confirmed the largest
net benefits of the combinatorial model. The test set validation gave consistent results. The nomogram tool has been well
applied clinically. Conclusion. The previous clinical and imaging data alone did not perform well for predicting BCR. Our
combinatorial model firstly using clinical data-CEUS-MRI radiomics provided an opportunity for clinical screening of BCR
and help improve its prognosis.
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1. Introduction

With the acceleration of China’s industrialization process
and the impact of environmental pollution, the incidence
of prostate cancer (PCa) caused by enriched food, smoking,
excessive alcohol use, and alcoholism keeps rising, with a
value of 6.63% increase per year. According to literature,
the recurrence rate of PCa within 3-5 years after treatment
is around 28-34%, mostly presented increased serum
prostate-specific antigen (PSA), that is, biochemical recur-
rence (BCR) [1, 2]. Currently, the American Urological
Association (AUA) guidelines consider biochemical recur-
rence (with PSA ≥ 0:2ng/mL for two consecutive follow-up
tests) as a precursor of clinical recurrence of PCa. In the
absence of effective medical intervention, about 36% of
patients would transform into clinical recurrence, even with
bone metastasis, in 12-36 months after BCR [3, 4]. PCa
patients in China are generally 65+ years old; many patients
and even doctors believe that prostate cancer had a good
prognosis just like thyroid cancer due to the lack of medical
knowledge by patients, the insensitivity of PSA test reagents,
and the incomprehension of PCa guidelines by doctors. Fre-
quent follow-up checks are considered tedious, and the com-
prehensive surveillance and follow-up of BCR are difficult in
practice. Therefore, the selection of BCR target population is
critical. It has been reported that the clinical stage of PCa,
PSA level, radical treatment method, and Gleason score were
the risk factors for BCR in PCa patients. Murata et al.
reported 90% biochemical recurrence in 24 months after
surgery for patients with more than three BCR-related risk
factors above. However, Farkas et al. believed that the
false-positive rate of BCR was 30%. Our team have similar
findings too, indicating that these risk factors were poor pre-
dictors of BCR [4, 5]. Therefore, the development of new
predictive models for patients with large individual differ-
ences is extremely important, but studies in this area have
rarely been reported. Our team has read lots of literatures
on BCR. Many studies’ contents are relatively single and
do not evaluate the diagnostic differences of various imaging
technologies. Moreover, valuable imaging texture parame-
ters cannot be deeply mined to predict BCR. Hence, our
team adopted contrast-enhanced ultrasound (CEUS) com-
bined with magnetic resonance imaging (MRI) radiomics
and clinical data to establish several models/a nomogram
tool to predict BCR and achieved good results, providing
an opportunity for clinically accurate assessment of BCR
for individually different patients (Figures 1 and 2).

2. Materials and Methods

2.1. Inclusion and Exclusion Criteria. The clinical and imag-
ing data of 159 patients diagnosed with PCa by CEUS-
guided prostate biopsy or postoperative pathological exami-
nation in Xiangyang No. 1 People’s Hospital and Jiangsu
Hospital of Chinese Medicine from March 2016 to Decem-
ber 2020 were retrospectively analyzed. The enrolled
patients were between 63 and 91 years old, with a mean
age of 72:6 ± 16:7. The inclusion criteria were (1) following
the PCa diagnostic criteria of the European Association of

Urology and the American Urological Association; (2) only
single lesions visible by MRI and ultrasound were studied
in order to reduce research bias; (3) patients with untreated
primary prostate cancer; and (4) patients with complete clin-
ical imaging data, good compliance, and long follow-up
period. The exclusion criteria were as follows: (1) patients
with tumors involving other organs; (2) patients with con-
genital heart disease, heart failure, liver and kidney insuffi-
ciency, history of allergies, and contraindications to
enhanced imaging; and (3) patients with cognitive impair-
ment [2, 6]. This study has obtained the signed informed
consents from the patients or their families and was
approved by the Ethics Committee of Xiangyang No. 1 Peo-
ple’s Hospital and Jiangsu Hospital of Chinese Medicine.

2.2. Research Methods

2.2.1. Clinical History Data. The clinical history data
included laboratory parameters, age, prostate volume, tumor
diameter, BMI, clinical T stage, lymph node metastasis, dis-
tant metastasis, Gleason score, preoperative PSA, and treat-
ment mode.

2.2.2. Magnetic Resonance Imaging. The Philips Achieva SE
1.5T Signa HD and Siemens Avanto Class 1.5T MRI scanner
(Netherlands Eindhoven-Amsterdam United Company&
Siemens medical Corporate Technology, Germany)
equipped 6-channel phased array body coils with updated
multi sequence scanning parameters system 4.0.3 were
selected. The patient was required in a supine posture. The
midlower abdomen/pelvis including prostate, bladder, and
surrounding tissues were first covered, followed by scanning
range from ≥2 cm above the bottom of the bladder to the
external genitalia. Then, the transverse, sagittal, and coronal
T2WI and the sagittal T1WI images of the bladder and pros-
tate were stored. The T2WI images were obtained using
single-shot fast spin echo (SSTSE) and balanced steady-
state free precession gradient echo sequences (balance
FFE). The SSTSE parameters included TR 7,500ms, TE
110ms, flip angle 90°, matrix 350 × 350, slice thickness 2-
5mm, and field of view (FOV) 25 × 25 cm. The balance
FFE parameters included TR 3.50ms, TE 1.5ms, flip angle
90°, and slice thickness 3-8mm. DWI (diffusion-weighted
imaging) and ADC (apparent diffusion coefficient) were
obtained with reference to conventional sequences. The
T1WI was acquired by breath-holding fast spin echo
sequence (FSE) using the following variable parameters: TR
850ms, TE 10-15ms, matrix 250 × 250, slice thickness 2-
5mm, and FOV 25 × 25 cm [7, 8].

2.2.3. Radiomics Analysis. The 3D slicer (Version
4.11.20210226, https://www.slicer.org/) image segmentation
software was used to delineate the region of interest (ROI)
of magnetic resonance images, and then, texture analysis
and data extraction were conducted. After determining the
candidate texture data such as firstorder, glcm, shape, and
ngtdm, R X64 (Version 4.1.3, the R Project for Statistical
Computing, version 4.1.3, https://www.r-project.org/) was
used to carry out Lasso regression analysis to extract valid
texture data from the candidate texture data [8].
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2.2.4. CEUS Procedure. The Mindray-Resona R9 and GE
LOGIQ E9 (U.S.) ultrasound scanners were adopted, using
the broadband transrectal convex array transducer (fre-
quency range 4.5-9.5MHz). After the patient did enema
cleaning, the probe was covered with a medical condom or
probe cover and inserted into the patient’s rectum. First,
the routine examination of the prostate through rectum
was performed in which the density distribution and blood
flow signals of the prostate were observed, and the size of

the prostate and the diameter of the tumor were measured.
With no sign of patient discomfort, SonoVue, an ultrasound
contrast agent from Bracco (Italy), was injected. The section
with the largest cross-sectional area of the lesion was taken
as the base point, and the observation direction was fre-
quently adjusted. A volume of 2.4-3.0mL of contrast agent
was pulsed injected through the median cubital vein and
then flushed quickly with 5-15mL of 9mg/mL sodium chlo-
ride solution. The real-time enhancement was monitored

Core references Citations

High IF references

Classic references

Figure 1: From the content of references retrieval from 1980 to 2021, BCR has always been a research hotspot, with more research on
molecular mechanism and BCR management and but less on prediction of BCR by multimodal radiomics.
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Figure 2: The technical flowchart of this study. Novelty of the work is a prediction model/nomograph tools established using the
multimodal radiomics (MRI-ultrasound) combined with clinical data, which has not been reported before.
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and recorded during pulsed injection. After 3-5min, the raw
DICOM images and videos were stored in the Neusoft PACS
system. Then, TIC (time-intensity curve), the analysis soft-
ware, was used to record the peak intensity (PI), ascending
branch slope (Σ), descending branch slope (γ), time to peak
(TTP), arrival time (AT), and area under the curve (AUC) of
the time-intensity curve of ROI. All examinations were car-
ried out independently by the two deputy chief sonogra-
phers. For any disagreement, it was resolved by consulting
and discussing with a third independent senior sonogra-
pher [9].

2.2.5. Grading of Pathological Materials. A number of 3-6
pieces of biopsy specimens were taken from the patient’s
rectal ultrasound and sent for pathological examination.
The Gleason grading was performed after the diagnosis of
PCa.

2.2.6. Radical Prostatectomy for PCa. Under general anesthe-
sia, the patient’s posterior of the prostate and rectum was
separated to expose the apex of the prostate, the anterior
bladder space, and the retropubic space. After prostatec-
tomy, the bladder neck reconstruction and urethral anasto-
mosis were conducted.

2.2.7. Endocrine Therapy. Conventional medical castration
using luteinizing hormone-releasing hormone (LH-RH)
analogues was conducted, together with antiandrogen or tes-
ticular surgery followed by goserelin+bicalutamide [10, 11].

2.2.8. Follow-Up Observation and Prognosis. After the oper-
ation, the patients were asked to check the PSA levels regu-
larly in the outpatient department. In the first two years
after surgery, the PSA check and follow-up should be per-
formed one month after the operation and every three
months afterwards. After two years, the PSA check and
follow-up should be performed every six months, and MRI
should be conducted when necessary. During the follow-up
period, the cases with elevated PSA levels of ≥0.2 ng/mL
for two or more consecutive follow-up tests were included
in the study group (the biochemical recurrence group), and
the others were included in the control group.

2.3. Statistical Methods. All statistical analyses were carried
out using the R version 4.1.3 (R Foundation for Statistical
Computing, version 4.1.3; https://www.r-project.org/). The
independent samples t-test or the χ2 test or Fisher’s exact
test was applied for intergroup comparisons following data
normal distribution test (P < 0:05). And then, 4 prediction
models, decision curves, and nomograms were established
by logistic regression or R software 4.1.3 using the above-
mentioned risk factors in the training set. Then, the modi-
fied combined models were validated using test set. The
larger AUC, the higher prediction with the P value < 0.05
(two-tailed) confirmed statistical significance. Other statisti-
cal software was the SPSS 22.0 (IBM SPSS Statistics Grad-
Pack and Faculty Packs, USA; https://www.ibm.com/
products/spss-statistics) [10, 12].

3. Results

3.1. Follow-Up Results. At the end of the follow-up period,
six of the 181 PCa patients were lost to follow-up, five
refused follow-up, and 11 had other tumors or liver and kid-
ney insufficiency. A total of 59 patients were clinically diag-
nosed with BCR (the study group), and 100 patients were
BCR-free for 24-48 months (the control group). The 2-5-
year BCR rate of PCa patients was 37.11% (59/159)
(Figure 3).

3.2. Data Extraction. Our team extracted a total of 874 sets
of texture data based on the prostate cancer ROI delineated
by 3D slicer and then screened out a total of 14 sets of useful
data based on the Lasso regression conducted by R. After
normal distribution test and independent sample t-test,
three sets of effective data were finally obtained, the gray-
level size zone matrix (SmallAreaHighGrayLevelEmphasis
and RunVariance) and the neighborhood gray-tone differ-
ence matrix (Contrast) (Figure 4 and Table 1).

3.3. Comparative Analysis of Clinical CEUS Characteristics of
PCa Patients between the Study Group and the Control
Group. Univariate analysis demonstrated that in the study
group, clinical T stage, lymph node metastasis or distant
metastasis, tumor size, Gleason score, preoperative PSA
level, treatment method, TTP, PI, and AT of the time-
intensity curve of CEUS were significantly higher/lower than
those of the control group (P < 0:05) (Tables 2 and 3).

3.4. Multivariate Analysis of Biochemical Recurrence of PCa
after Treatment. Multivariate logistic regression analysis
showed that Gleason score, preoperative PSA level, treat-
ment method, elastography grade, and gray-level size zone
matrix (SmallAreaHighGrayLevelEmphasis and RunVar-
iance) were the independent risk factors for biochemical
recurrence of PCa after surgery (all P < 0:05) (Table 4).

3.5. Establishment of Multiple Predictive Models and External
Validation. Based on the above risk factors, a variety of pre-
dictive models (the general data model, CEUS model, MRI
radiomics model, and combinatorial model) were estab-
lished using R in the training set. The MedCalc (Version
20.0.22) was used to compare their predictive performance.
The results demonstrated that the combinatorial model
was superior regarding the predictive value, with an AUC
of 0.914 (OR 0.0305, 95% CI: 0.854-0.974), significantly
higher than the general data model [AUC: 0.769 (OR
0.0480, 95% CI: 0.675-0.863), P = 0:0008], CEUS model
[AUC: 0.783 (OR 0.0461, 95% CI: 0.692-0.873), P = 0:0035
], and MRI radiomics model [AUC: 0.730 (OR 0.0513, 95%
CI: 0.629-0.830), P = 0:0002]. The subsequent decision curve
analysis conducted by R also confirmed that the net benefit
of the combinatorial model was significantly higher than
the other models. Finally, the expected results were also ver-
ified in the test set. The combinatorial model exhibited the
highest predictive performance [AUC: 0.920 (OR 0.0362,
95% CI: 0.849-0.991])], significantly higher than the general
data model [AUC: 0.716 (OR 0.0701, 95% CI: 0.578-0.853),
P = 0:0007], CEUS model [AUC: 0.814 (OR 0.0533, 95%
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CI: 0.709-0.918), P = 0:0461], and MRI radiomics model
[AUC: 0.764 (OR 0.0621, 95% CI: 0.642-0.885), P = 0:0109]
(Figures 5 and 6).

The nomogram tool and calibration curve of biochemi-
cal recurrence of PCa patients were made by R and then
applied clinically (Figure 7).

4. Discussion

According to the World Health Organization (WHO) data,
in European and American countries, 230,000 to 250,000
males are diagnosed with prostate cancer every year. About
40% of PCa patients underwent radical prostatectomy.
Although the overall success rates for localized prostate can-
cer control were high clinically, 20-30% of patients experi-

enced biochemical or clinical recurrence, which initially
presented as elevated PSA without specific clinical distant
or radiographic metastases. The biochemical recurrence
shows the presence of residual prostate epithelial tissue in
the body and is thought to indicate cancer [11, 12]. In addi-
tion, the clinical course of PCa patients varied a lot. Some
patients experienced rapid disease progression to metastasis,
while a small number of patients had long-term survival
because of activated immune system accompanying PSA
fluctuations, but with shortened life expectancy. And in rare
cases, no survival impact was observed. Therefore, for PCa
patients, the postoperative PSA levels should be closely
monitored. It has been reported that the early diagnosis of
biochemical recurrence and effective medical intervention
could significantly prevent or reduce the incidence of clinical

Patients confirmed AKI combined with ARDS from
March 2016 to December 2020 (n=181)

6 cases lost follow-up/5 refused follow-up;

Inclusion criteria (n=170)
(1) Following the PCa diagnostic criteria of the European Association of Urology
and the American Urological Association;
(2) Only single lesions visible by MRI and ultrasound were studied in order to reduce resarch bias;
(3) Patients with untreated primary prostate cancer; and
(4) Patients with complete clinical-imaging data, good compliance and long follow-up period.

Exclusion criteria (n=11)

Enrolled patients (n=159)

Study group (n=59) Control group (n=100)

(1) Patients with tumors involving other organs;
(2) Patients with congenital heart disease, heart
failure, liver and kidney insufficiency, history of
allergies, and contraindications to enhanced
imaging 
(3) Patients with cognitive impairment;

Figure 3: The simplified inclusion and exclusion criteria for patient enrollment in the present study.
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Table 1: Regression analysis results of establishing MRI model based on MRI radiomics to predict the BCR, ∗P < 0:05.

MRI radiomics model
Univariate analysis Multivariate analysis

P Hazard ratio P Hazard ratio

Median...86 0.247 0.714 (0.404-1.262)

DifferenceVariance...105 0.754 0.962 (0.758-1.223)

SmallDependenceEmphasis...133 0.637 1.067 (0.815-1.396)

DifferenceAverage...227 0.123 1.274 (0.937-1.731)

SumEntropy...240 0.061 1.299(0.989-1.708)

SmallDependenceHighGrayLevelEmphasis...321 0.293 0.632 (0.268-1.488)

Maximum...329 0.645 1.081 (0.776-1.506)

Variance...338 0.495 1.231 (0.678-2.237)

Idm...350 0.797 1.017 (0.896-1.154)

InverseVariance...354 0.695 1.031 (0.887-1.201)

SmallAreaHighGrayLevelEmphasis...665 0.045∗ 1.322 (1.006-1.737) .021∗ 1.418 (1.054-1.906)

RunVariance...758 0.021∗ 0.484 (0.262-0.897) .017∗ 0.443 (0.227-0.865)

Contrast...866 0.047∗ 0.772 (0.598-0.996) .034∗ 0.748 (0.571-0.979)

Strength...872 0.366 1.068 (0.926-1.231)

Table 2: Regression analysis results of establishing general data model based on clinical features to predict the BCR, ∗P < 0:05.

General data model
Univariate analysis Multivariate analysis

P Hazard ratio P Hazard ratio

Age (year) 0.549 1.027 (0.941-1.123)

Prostate volume (cm3) 0.772 0.994 (0.956-1.034)

Tumor diameter (mm) 0.038∗ 1.431 (1.021-2.003) 0.081 1.441 (0.956-2.174)

BMI (kg/m2) 0.815 0.985 (0.869-1.117)

Clinical T stage 0.027∗ 1.839 (1.071-3.159) 0.219 1.518 (0.781-2.953)

Lymph node metastasis 0.017∗ 1.469 (1.072-2.013) 0.027∗ 1.526 (1.049-2.221)

Distant metastasis 0.041∗ 1.404 (1.015-1.942) 0.621 1.107 (0.739-1.659)

Gleason score 0.049∗ 2.331 (1.004-5.409) 0.050 2.788 (0.998-7.788)

Preoperative PSA (μg/L) 0.031∗ 2.248 (1.075-4.701) 0.035∗ 2.571 (1.070-6.178)

Treatment mode 0.022∗ 2.667 (1.152-6.172) 0.022∗ 3.263 (1.189-8.955)

Table 3: Regression analysis results of establishing CEUS model based on CEUS features to predict the BCR, ∗P < 0:05.

CEUS model
Univariate analysis Multivariate analysis

P Hazard ratio P Hazard ratio

PI (dB) 0.025∗ 0.794 (0.648-0.971) 0.083 0.827 (0.667-1.025)

Σ 0.395 1.441 (0.622-3.336)

γ 0.533 1.308 (0.562-3.042)

TTP 0.044∗ 1.010 (1.000-1.019) 0.074 1.009 (0.999-1.020)

AT 0.028∗ 1.165 (1.017-1.334) 0.079 1.144 (0.984-1.329)

AUC 0.753 0.877 (0.386-1.989)

Enhanced level 0.872 0.934 (0.408-2.137)

Enhanced uniformity 0.781 0.891 (0.394-2.013)

Elastography grade 0.013∗ 2.515 (1.218-5.191) 0.019∗ 2.581 (1.771-5.692)

Notes: PI: the peak intensity; Σ: ascending branch slope; γ: descending branch slope; TTP: time to peak; AT: arrival time.
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recurrence of PCa and metastasis [13, 14]. In this study, the
prediction tool based on clinical-CEUS-MRI radiomics
parameters achieved better prediction outcomes, and the
combinatorial model based on the above influencing factors
was also dramatically better than the other models.

The PubMed database has few studies (<20 articles) on
the prediction of biochemical recurrence of PCa based on
ultrasound combined with MRI, while the studies on bio-
chemical recurrence based on radiomics were barely

reported. This study followed up the medical records of
159 patients with PCa in Xiangyang No. 1 People’s Hospital
and Jiangsu Hospital of Chinese Medicine. The results
showed that the BCR rate of PCa within 2-5 years was as
high as 37.11%, slightly higher than the data reported by
post JM. Presumably, it is because that this study was a
single-center study with a short follow-up period. Therefore,
it is necessary to closely follow up the prognosis of patients
after radical prostatectomy and build a model for early

Table 4: Regression analysis results of establishing combinatorial model based on CEUS-MRI-clinical features to predict the BCR, ∗P < 0:05
.

Combinatorial model B S.E. Wals Sig. Exp (B)
Exp (B) 的 95% C.I.

Lower limit Upper limit

SmallAreaHighGrayLevelEmphasis .706 .248 8.144 .004∗ 2.027 1.248 3.293

RunVariance .913 .472 3.746 .037∗ .401 .159 1.012

Contrast .360 .208 3.002 .083 .698 .464 1.048

Tumor diameter (mm) .606 .276 4.818 .068 1.833 1.067 3.148

Clinical T stage .086 .420 .042 .838 1.090 .479 2.482

Lymph node metastasis .444 .262 2.873 .090 1.558 .933 2.603

Distant metastasis .573 .320 3.201 .074 1.773 .947 3.321

Gleason score 1.245 .657 3.596 .048∗ 3.474 .959 12.583

Preoperative PSA (μg/L) 1.425 .579 6.044 .014∗ 4.156 1.335 12.941

Treatment mode 1.580 .707 4.992 .025∗ 4.854 1.214 19.410

PI (dB) .177 .156 1.279 .258 .838 .617 1.138

TTP .008 .007 1.120 .290 1.008 .994 1.022

AT .175 .113 2.391 .122 1.191 .954 1.487

Elastography grade 1.324 .579 5.234 .022∗ 3.757 1.209 11.675
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Figure 5: DeLong nonparametric method was used to estimate the area under the curve of ROC between different prediction models of
training set (a) and test set (b) and compare its effectiveness in predicting the BCR. The area under the curve of the combined model
was the largest.
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prediction of biochemical recurrence of PCa. In order to dig
out effective parameters for accurate prediction of the bio-
chemical recurrence of PCa, our team firstly compared the
clinical history-CEUS-MRI radiomics data between the
study group and the control group. Then, the univariate
regression results demonstrated significant differences
between the two groups (P < 0:05) regarding clinical T stag-
ing, lymph node/distant metastasis, tumor size, Gleason
score, preoperative PSA level, treatment method, PI and
AT of the time-intensity curve of CEUS, the gray-level size
zone matrix (SmallAreaHighGrayLevelEmphasis and Run-

Variance), and the neighborhood gray-tone difference
matrix (Contrast) from radiomics. The binary logistic
regression analysis confirmed that Gleason score, preopera-
tive PSA level, treatment method, and gray-level size zone
matrix (SmallAreaHighGrayLevelEmphasis and RunVar-
iance) were independent risk factors for biochemical recur-
rence of PCa. It was suggested that the tumor volume and
CEUS arrival time, etc., would perform poorly on indepen-
dent predication of the biochemical recurrence of PCa. It
has been reported that the treatment method, Gleason score,
preoperative PSA level, and distant lymph node metastasis
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were known important factors for the biochemical recur-
rence of PCa. However, in this study, the independent pre-
diction performances of the above factors were poor.
Furthermore, it was unable to provide effective early warn-
ing for patients with large individual differences, which was
also related to the evolution of the disease. Preoperative
PSA level was an available quantitative indicator, but with
poor specificity. It was easily affected by reagent sensitivity,
age, and other diseases (such as urinary infection, prostatitis,
and endocrine and metabolic diseases); therefore, PSA was a
weak independent predictor of biochemical recurrence of
PCa [15–17].

From a statistical point of view, many indicators in
CEUS-elastography displayed large comparative differences
in sample size, and they may serve as effective indicators
for predicting biochemical recurrence. In particular, it was
revealed in this study that the rapid enhancement in the
arterial phase of the study group was significantly higher
than that of the surrounding normal prostate area. There-
fore, it may be a potential indicator for predicting biochem-
ical recurrence. In addition, the TTP of the study group was
significantly smaller than that of the control group, whereas
the PI was significantly larger than that of the control group
(both P < 0:05). These may be related to the rich blood sup-
ply and the low tumor differentiation of PCa in the study
group, similar to those reported in the literature [18, 19].
The concept of radiomics was first proposed by the Dutch
scholar Lambin in 2012 and was first applied to X-ray, and
computer vision is dramatically better than human vision.
At present, the 3D slicer and ITK-snap software developed
by Harvard University and others have extended the concept
of omics to ultrasound, computed tomography (CT), MRI,
and pathology. In the past decade, various high impact fac-
tor and high-quality omics studies have sprung up rapidly
like bamboo shoots after the rain. Therefore, in the study
of PCa biochemical recurrence, we also introduced radio-
mics parameters and achieved good outcomes. After delin-
eating the ROI of preoperative MRI data of the 159 PCa
cases and screening, we extracted a total of three sets of reli-
able radiomics data, the gray-level size zone matrix (Smal-
lAreaHighGrayLevelEmphasis and RunVariance) and the
neighborhood gray-tone difference matrix (Contrast). These
data represented the signal intensity and density of the lesion
and gradient variance, respectively. Our team then con-
structed four prediction models based on all the above-
mentioned risk factors and chose a training set and a test
set for training verification and obtained consistent results.
Finally, based on DeLong nonparametric and the decision
curve analysis, it was confirmed that the combinatorial
model had a good prediction outcome, with AUC signifi-
cantly higher than the other models. The developed nomo-
gram prediction tool has also been well applied clinically.
This may be because that this nomogram prediction tool
combined the clinical-CEUS-MRI radiomics indicators and
then obtained PCa patient-based individualized parameters,
thereby improving the accuracy of prediction [20, 21]. The
combinatorial model is helpful for early prediction of bio-
chemical recurrence and early adjustment of intervention
and treatment plans in clinical practice, suppressing the

malignant progression of biochemical recurrence and
improving the quality of life and survival rate of patients.

5. Limitations

The data size of this study was small. In the future, multicen-
ter studies involving multiple hospitals will be needed. This
study also lacked pathomics studies and lacked radiomics
extraction based on CEUS results; therefore, the mining of
ultrasound-pathology data was not deep enough. In addi-
tion, predictive models have been widely used in clinical
research and risk decision-making but based on the strict
linear relationship and normal distribution of data. In order
to solve these limitations, our team will use advanced
machine learning algorithms (XGboost, LightGBM, or Cat-
Boost) to establish an ensemble modeling in the future to
further improve the prediction accuracy. And we will con-
duct multicenter research to verify our prediction tools [22].

6. Conclusion

In conclusion, the combined model established based on
clinical-CEUS-MRI parameters provided a better opportu-
nity for predicting biochemical recurrence in PCa patients,
and it can also serve as a basis for early adjustment of inter-
ventional treatment plans for individualized clinical cases.
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