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Coinfection of hepatitis B virus (HBV) and COVID-19 is a common public health problem throughout some nations in the world. In
this study, a mathematical model for hepatitis B virus (HBV) and COVID-19 coinfection is constructed to investigate the effect of
protection and treatment mechanisms on its spread in the community. Necessary conditions of the proposed model nonnegativity
and boundedness of solutions are analyzed. We calculated the model reproduction numbers and carried out the local stabilities of
disease-free equilibrium points whenever the associated reproduction number is less than unity. Using the well-known Castillo-
Chavez criteria, the disease-free equilibrium points are shown to be globally asymptotically stable whenever the associated
reproduction number is less than unity. Sensitivity analysis proved that the most influential parameters are transmission rates.
Moreover, we carried out numerical simulation and shown results: some parameters have high spreading effect on the disease
transmission, single infections have great impact on the coinfection transmission, and using protections and treatments
simultaneously is the most effective strategy to minimize and also to eradicate the HBV and COVID-19 coinfection spreading in
the community. It is concluded that to control the transmission of both diseases in a population, efforts must be geared towards
preventing incident infection with either or both diseases.

1. Introduction

Illnesses caused by tiny microorganisms like viruses, bacteria,
fungi, and parasites are known as infectious diseases; for
instance, COVID-19 and hepatitis B diseases are infectious
diseases caused by viruses [1–3]. Hepatitis B caused by the
hepatitis B virus (HBV) is one of the most common infectious
diseases of the human liver. It is highly affecting the function
of the human liver; according to the World Health Organiza-
tion (WHO), it is one of the common and major health prob-
lem and causes chronic liver infection and puts people at high
risk of death from cirrhosis of the liver and liver cancer [1,
3–5]. It is transmitted through blood contact, infected individ-
uals’ body fluids, and from mother to child during birth [6].
According to WHO, in 2019 estimated figure, 296 million
individuals were living with chronic hepatitis B disease with
1.5 million new cases each year [7].

An infectious disease known as COVID-19 is a highly
contagious respiratory infection caused by SARS-CoV-2

virus, and for the first time, its outbreak was investigated
in China at the end of December 2019 [8–19]. On March
11, 2020, WHO declared it as one of the major and danger-
ous worldwide pandemic diseases [13, 20, 21]. Respiratory
air droplets and touching materials contaminated with the
virus are the transmission mechanisms [22–25]. It has been
a great health and economic burden for many nations
throughout the world [16, 22, 26]. Vaccine, washing hands
by alcohol, apply face mask, isolation, quarantine, and
applying social distance are currently control measures
approved by WHO [21, 22, 24, 27].

Literatures of some scholars mentioned in references [1, 3,
14–16, 28–32] investigated that COVID-19 disease highly
affected individuals already infected with either of HIV or
TB or HBV or cholera. Literatures studied by some scholars
mentioned in references [2, 4, 6, 8, 13, 14, 16–18, 20–22,
24–27, 29, 32–50] constructed and examined spreading and
control of communicable disease ordinary differential method;
similarly, scholars mentioned in [3, 28, 51–53] constructed
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and examined fractional derivative model of infectious dis-
eases, and scholar mentioned in [1] constructed and examined
a stochastic model of an infectious disease.

For a better understanding of the spreading of communi-
cable diseases, the concept of mathematical modelling has a
fundamental impact [16]. Different researchers have been
formulated and analyzed mathematical models to suggest
possible control mechanisms of infectious diseases. Tchoumi
et al. [16] constructed malaria and COVID-19 coepidemic to
examine the best control mechanisms. The result suggested
that applying both single infection protection measures simul-
taneously is the best strategy. Teklu and Rao [46] analyzed a
pneumonia and HIV codynamics with intervention measures.
The result suggested that applying both vaccination and treat-
ments has a major effect tominimize the coinfection transmis-
sion in the community. Hezam et al. [29] investigated
coinfection of cholera and COVID-19 in Yemen with mathe-
matical modelling approach. Their analysis examined the
impacts of intervention strategy lockdown method, number
of test kits, social distance, and individuals who are susceptible
and can get CWTs for purification of water. Anwar et al. [27]
investigated the impact of COVID-19 isolation intervention
strategy on the spreading of COVID-19 infection using math-
ematical modelling approach. Ahmed et al. [28] constructed
and examined an ABC-fractional order derivative model on
HIV COVID-19 coepidemic transmission prediction. Ringa
et al. [14] investigated the impacts of intervention strategies
to reduce the burden of HIV and COVID-19 coepidemic
transmission using mathematical modelling approach.
Omame et al. [3] investigated a fractional order hepatitis B
virus and COVID-19 coinfection model using the Atan-
gana–Baleanu fractional derivative approach. The result
shows that preventing incident infection with either or both
diseases is the effective strategy to control the cocirculation
of both infections. Din et al. [1] formulated and examined a
stochastic model on the hepatitis B virus and COVID-19 coin-
fection to predict the effect of white noise intensities. The
results show that persistence and eradication depend on inten-
sity magnitude of the white noise as well as parameter values
involved in the expansion of the disease. Teklu and Terefe
[45] analyze COVID-19 and syphilis codynamics model to
investigate the impacts of interventionmeasures on the disease
transmission. Thangaraj and Easwaramoorthy [53] investi-
gated a generalized fractal dimension-based comparison of
edge detection methods in CT images for estimating the infec-
tion of COVID-19 disease.

Some epidemiological and medical studies proved that
hepatitis B virus and COVID-19 coinfection is a common
public health issue. The main aim of this study is to discover
the most effective control strategy from intervention strategies
applied in the proposed HBV and COVID-19 coinfection
model. Literatures [1, 3] invested much effort in studying
hepatitis B virus and COVID-19 coinfection but did not
considered COVID-19 protection, COVID-19 treatment,
hepatitis B virus protection, and hepatitis B virus treatment
as prevention and control strategies simultaneously in a single
model formulation which makes this study original and
unpublished research work. Hence, we have highly motivated
to undertake this study and fill the gap.

2. Mathematical Model Construction

In this study, we need to construct a deterministic model on the
coinfection of HBV and COVID-19. Consider NðtÞ as a total
humanpopulation in the studyunder consideration anddivided
it into eight distinct groups of individuals with their infection
status as individuals who are susceptible to either of HBV or
COVID-19 given by SðtÞ, who are protected form COVID-19
given by CPðtÞ, protected from HBV given by HPðtÞ, infected
with COVID-19 given by CIðtÞ, infected with HBV given by
HIðtÞ, coinfected with HBV and COVID-19 given by CðtÞ,
recovered from COVID-19 given by CRðtÞ, and treated from
HBV infection given by HTðtÞ so that NðtÞ = SðtÞ + CP ðtÞ +
HPðtÞ +HIðtÞ + CIðtÞ + CRðtÞ + CðtÞ +HTðtÞ:

Individuals who are susceptible will acquire HBV at the
force of infection

λH tð Þ = σ1
N

HI tð Þ + ρ1C tð Þð Þ, ð1Þ

where 1 ≤ ρ1 <∞ is the rate at which HBV infectivity
increases and σ1 is the HBV spreading rate.

Individuals who are susceptible will acquire COVID-19
at the force of infection

λC tð Þ = σ2
N

CI tð Þ + ωC tð Þð Þ, ð2Þ

where 1 ≤ ω <∞ is the rate at which COVID-19 infectivity
increases and σ2 is the COVID-19 spreading rate.

To construct the coinfection of HBV and COVID-19
model, let us assume the following: The parameters γ1, γ2
and ð1 − γ1 − γ2Þ are portions of the human recruitment rate
Γ that enters in the compartment S, CP and HP , respectively.
Population is homogeneously mixing, population is not con-
stant, HBV-treated individuals do not transmit HBV, HBV
is not vertically transmitted, and HBV and COVID-19 do
not transmit simultaneous dually.

Using Table 1 (parameters), Table 2 (state variables), and
given assumptions, the flow chart of the HBV and COVID-
19 coinfection spreading dynamics is illustrated in Figure 1.

Based on Figure 1 the system of nonlinear differential
equations of the HBV and COVID-19 coinfection is derived as

dS
dt

= 1 − γ1 − γ2ð ÞΓ + δ1CP + δ2HP + ηCR − λH + λC + μð ÞS,
dCP

dt
= γ1Γ − δλH + δ1 + μð ÞCP,

dHP

dt
= γ2Γ − δ2 + μ + σλCð ÞHP,

dHI

dt
= λHS + δλHCR − μ + μ1 + γ + ϕλCð ÞHI ,

dCI

dt
= λCS + σλCHP − κ + μ + μ2 + φλHð ÞCI ,

dC
dt

= φλHCI + ϕλCHI + ρλCHI − μ + μ3 + θð ÞC,
dCR

dt
= κCI − μ + ηð ÞCR,

dHT

dt
= γHI + θC − ρλCHT − μHT ,

ð3Þ
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with initial data

S 0ð Þ > 0,
CP 0ð Þ ≥ 0,
HP 0ð Þ ≥ 0,
HI 0ð Þ ≥ 0,
CI 0ð Þ ≥ 0,
C 0ð Þ ≥ 0,
CR 0ð Þ ≥ 0,
HT 0ð Þ ≥ 0:

ð4Þ

Adding all differential equations given in (3) gives

dN
dt

= Γ − μN − μ1HI + μ2CI + μ3Cð Þ: ð5Þ

2.1. Qualitative Properties of (3). In this section, we analyzed
the two basic qualitative properties of the coinfection model
(3) known as the nonnegativity and boundedness of the sys-
tem (3) with initial data in (4) with in the feasible region

Ω = S, CP,HP,HI , CI , C, CR,HTð Þ ∈ℝ8
+,N ≤

Γ

μ

� �
: ð6Þ

To justify the model (3) is both mathematically and bio-
logically meaningful; it is crucial to prove that each model var-
iable is nonnegative and bounded in the feasible region (6).

Theorem 1 (solution nonnegativity). For the initial data given
in (4) the model (3) solutions SðtÞ, CPðtÞ, HPðtÞ, HIðtÞ, CIðtÞ,
CðtÞ, CRðtÞ, andHTðtÞ of the dynamical system (3) are nonneg-
ative for each time t > 0.

Proof. Let Sð0Þ > 0, CPð0Þ > 0,HPð0Þ > 0, HIð0Þ > 0, CIð0Þ
> 0, Cð0Þ > 0, CRð0Þ > 0, and HTð0Þ > 0; then for each t >
0, we need to show that S ðtÞ > 0, CPðtÞ > 0,HPðtÞ > 0, HIðtÞ
> 0, CIðtÞ > 0, CðtÞ > 0, CRðtÞ > 0, andHTðtÞ > 0.

Define: τ=sup{t > 0 : S ðtÞ > 0, CPðtÞ > 0,HPðtÞ > 0,HIðtÞ
> 0, CIðtÞ > 0, CðtÞ > 0,CRðtÞ > 0 andHTðtÞ > 0}.

The functions SðtÞ, CPðtÞ,HPðtÞ,HIðtÞ, CIðtÞ, CðtÞ, CR
ðtÞ, andHIðtÞ are continuous so that we assured that τ
> 0. If τ =∞, then the nonnegativity holds. But, if 0 < τ
<∞, SðτÞ = 0 or CPðτÞ = 0 or HPðτÞ = 0 or HIðτÞ = 0
or CIðτÞ = 0 or CðτÞ = or CRðτÞ = 0 orHIð0Þ = 0.

From the first equation of the system (3) we have

dS
dt

+ λH + λC + μð ÞS = 1 − γ1 − γ2ð ÞΓ + δ1CP + δ2HP + ηCR,

ð7Þ

and integrating both sides, we have determined that SðτÞ =
M1Sð0Þ +M1

Ð τ
0 exp

Ð
ðλH+λC+μÞÞdtðð1 − γ1 − γ2ÞΓ + δ1CPðtÞ +

δ2HPðtÞ + ηCRðtÞÞdt > 0, where M1 = exp−ðμτ+
Ð τ

0
ðλHðwÞ+λCðwÞÞ

> 0, Sð0Þ > 0, CPðtÞ > 0,HPðtÞ > 0, CRðtÞ > 0, and by the
definition of τ, the solution SðτÞ > 0; hence, SðτÞ ≠ 0.

Similarly from the second equation of system (3) we
have determined that

dCP

dt
+ δλH + δ1 + μð ÞCP

= γ1ΔCP τð Þ =M1CP 0ð Þ
+M1

ðτ
0
exp
Ð

δ1+μ+δλH tð Þð Þdtγ1Δdt > 0,

ð8Þ

where M1 = exp−ðδ1τ+μτ+
Ð τ

0
ðδλHðwÞÞ > 0, CPð0Þ > 0, and from

the definition of τ , we proved that CPðτÞ > 0; hence,
CPðτÞ ≠ 0.

Table 2: Interpretation of state variables.

Variable Interpretation

S Susceptible group

CP COVID-19-protected group

HP HBV-protected group

HI HBV-infected group

CI COVID-19-infected group

C HBV and COVID-19 coinfected group

CR COVID-19-recovered group

HT HBV-treated group

Table 1: Definitions of the model parameters.

Parameter Definition

μ1 HBV death rate

μ2 COVID-19-induced death rate

μ3 Death rate by HBV and COVID-19 coinfection

δ1 Protection lose rate of COVID-19

δ2 Protection lose rate of HBV

σ1 Spreading rate of HBV

σ2 Spreading rate of COVID-19

γ HBV infection treatment rate

d Modification parameter

η Immunity lose rate of COVID-19

θ Treatment rate of the coinfected group

κ Recovery rate of COVID-19

μ Natural death rate

σ1 Portion entered to the COVID-19 protection group

σ2 Portion entered to the HBV protection group

ρ Modification parameter

σ Modification parameter

φ Modification parameter

Φ Modification parameter

Γ Individual recruitment rate
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In the same manner, we have all the following results:
HPðτÞ > 0; hence, HPðτÞ ≠ 0; HIðτÞ > 0; hence, HIðτÞ ≠ 0;
CIðτÞ > 0; hence, CIðτÞ ≠ 0; CðτÞ > 0; hence, CðτÞ ≠ 0; CRðτÞ
> 0; hence, CRðτÞ ≠ 0; and HIðτÞ > 0; hence, HIðτÞ ≠ 0.

Eventually, we can conclude that τ =∞, and using
definition of the constant τ, all the model (3) solutions are
nonnegative.

Theorem 2 (model solution boundedness). The feasible
region Ω stated in (6) is bounded in the spaceℝ8

+.

Proof. Using the proof of Theorem 1, equation (5) and in the
absence of infections, we have determined that dN/dt ≤ Δ
− μN . Applying the standard comparison theorem criteria,
we derived the integral

Ð ðdN/ðΔ − μNÞÞ ≤ Ð dt and the
result −ð1/μÞ ln ðΔ − μNÞ ≤ t + k, where k is an arbitrary
constant. After a number of steps of computations, we have
determined that the final result 0 ≤N ðtÞ ≤ Δ/μ means the
dynamical system (3) solutions with initial data (4) are
bounded in the region (6).

3. Mathematical Analysis of the
Dynamical Systems

To analyze the complete dynamical system (3) we need the
following basic information about the HBV and COVID-
19 single infection spreading dynamics.

3.1. Mathematical Analysis of the HBV Submodel. The HBV
submodel of the dynamical system (3) at CP = CI = C = CR
= 0 is derived as

dS
dt

= 1 − γ2ð ÞΓ + δ2HP − λH + μð ÞS,

dHP

dt
= γ2Δ − δ2 + μð ÞHP ,

dHI

dt
= λHS − μ + μ1 + γð ÞHI ,

dHT

dt
= γHI − μHT ,

ð9Þ

where the total number of individuals in the HBV submodel
is represented by N1ðtÞ = SðtÞ +HPðtÞ +HIðtÞ +HTðtÞ, with
infection rate λH = ðσ1/N1ÞHI and initial data Sð0Þ > 0,
HPð0Þ ≥ 0, HIð0Þ ≥ 0, and HTð0Þ ≥ 0. In Ω1 =
ðS,HP ,HI ,HTÞ ∈ℝ4

+,N1 ≤ Γ/μ
È É

, it is not difficult to
prove that the region Ω1 is both positive invariant and global
attractor of each nonnegative solution of the HBV infection
system (9). Therefore, one can consider that the dynamical
system (9) is both biologically and mathematically meaning-
ful in the region Ω1.

3.1.1. Dynamical System (3) DFE Stability. The disease-free
equilibrium (DFE) point of the HBV infection submodel
(9) is calculated by putting every equation of (9) as zero in
the absence of infections and treated groups. After some
computation steps, we have determined the DFE
as E0

H = ðΔ/μððα2 + μð1 − π2ÞÞ/ðα2 + μÞÞ, Δπ2/ðα2 + μÞ, 0, 0Þ.
Using the van den Driessche and Warmouth well-

known method illustrated in [54] we can calculate the
submodel (9) reproduction number and linear stability
of its DFE. In a similar manner of [54] we computed
the matrices

CP

𝜆H
𝜎𝜆C

𝜑𝜆H

𝛿𝜆H

𝛿1

𝛾1Γ
𝛾2Δ(1 – 𝛾1 – 𝛾2)Γ

𝛿2

𝜆C

Ф𝜆C

HP

HI CIC

𝜇

𝜇+𝜇1
𝜇+𝜇2

𝜇

𝜇+𝜇3

𝜇

𝜇

CR

HT

S

𝛾 𝜃

𝜅

𝜇

𝜂

Figure 1: The flow chart of the coinfection of HBV and COVID-19 spreading dynamics with λHðtÞ and λCðtÞ given in (1) and (2),
respectively.
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F =
σ1
N0

1
S0 0

0 0

0
B@

1
CA =

σ1δ2 + σ1μ 1 − γ2ð Þ
δ2 + μ

0

0 0

0
B@

1
CA,

V =
μ + μ1 + γ 0

−γ μ

 !
:

ð10Þ

Finally, using the method in [54] and after some steps
of computations, we have determined that the submodel
(9) reproduction number as the maximum eigenvalue in
magnitude of the product matrix FV−1 represented by

RH = σ1 μ 1 − γ2ð Þ + δ2ð Þ
γ + μ + μ1ð Þ μ + δ2ð Þ : ð11Þ

Because the calculated reproduction number of HBV
submodel given by RH is defined as the average number
of secondary infections caused by a single infected person
during his life infectious period in a susceptible group,

the submodel has a local stable DFE, E0
H = ðΓ/μððδ2 + μ

ð1 − γ2ÞÞ/ðδ2 + μÞÞ, Γγ2/ðδ2 + μÞ, 0, 0Þ whenever RH < 1
and unstable whenever RH > 1:

3.1.2. Endemic Equilibrium Existence and Uniqueness.Making
the submodel (9) equation right-hand side as zero and calcu-
lated for the nonzero solution, we derived the following results:

S∗ = 1 − γ2ð ÞΓ δ2 + μð Þ + δ2γ2Γ

δ2 + μð Þ μ + λ∗Hð Þ ,

H∗
I =

γ2Γ δ2 + μð Þλ∗H + δ2γ2Γλ
∗
H

μ + μ1 + γð Þ δ2 + μð Þ μ + λ∗Hð Þ ,

H∗
T = 1 − γ2ð ÞμΓγ δ2 + μð Þλ∗H + δ2γ2μΓγλ

∗
H

μ + μ1 + γð Þ δ2 + μð Þ μ + λ∗Hð Þ :

ð12Þ

Let us put m1 = δ2 + μ and m2 = μ + μ1 + γ and substitute
H∗

I in the incidence rate of HBV and calculated as

and simplifying the result, we determined the nonzero linear
equation given by

L1λ
∗
H + L0 = 0, ð14Þ

where

L1 = −γ2Γm2 − 1 − γ2ð ÞΓm1 − δ2γ2Γ − 1 − γ2ð ÞμΓγm1 − δ2γ2μΓγ < 0,
ð15Þ

L0 =m1m2 RH − 1½ � > 0wheneverRH > 1: ð16Þ
From equation (14) we computed for nonnegative infec-

tion rate given by the result

λ∗H = −L0
L1

= −m1m2 RH − 1½ �
− γ2Γm2 + 1 − γ2ð ÞΓm1 + δ2γ2Γ + 1 − γ2ð ÞμΓγm1 + δ2γ2μΓγ½ � ,

ð17Þ

that is,

λ∗H = −L0
L1

= m1m2 RH − 1½ �
γ2Γm2 + 1 − γ2ð ÞΓm1 + δ2γ2Γ + 1 − γ2ð ÞμΓγm1 + δ2γ2μΓγ½ � > 0,

ð18Þ

only if RH > 1.
Depending on the result λ∗H > 0 obtained above, we can

conclude that the submodel (9) has a positive unique
endemic equilibrium point only wheneverRH > 1.

Theorem 3. The dynamical system (9) has a positive unique
endemic equilibrium point only wheneverRH > 1.

3.1.3. Global Asymptotic Stability of DFE

Theorem 4 (Castillo-Chavez et al.’s stability condition
explained in [34]). If the dynamical system (9) can be
illustrated as

dU
dt

= I U , Vð Þ,

dV
dt

= J U , Vð Þ, J U0, 0
À Á

= 0,
ð19Þ

where U ∈ℝk be noninfected components and V ∈ℝm be the
infected components which includes the treated group and
E0
H = ðU0, 0Þ represents the DFE of the sum-model (9).
Let us assume the following:

(i) For ðdU/dtÞ = IðU0, 0Þ, Y0 has a global asymptotic
stability

(ii) JðU , VÞ =HU − JˇðU , VÞ, JˇðU , VÞ ≥ 0 for ðU , VÞ
∈Ω1, where H =DU JðU0, 0Þ is an M-matrix, i.e.,
the off diagonal elements of H are nonnegative and
Ω1 is the region in which the system makes epidemi-
ological sense. The DFE of the submodel (9) given by
E0
H = ðU0, 0Þ has a global asymptotic stability pro-

vided thatRH < 1

λ∗H = σ1 1 − γ2ð ÞΔm1λ
∗
H + σ1δ2γ2Γλ

∗
H

1 − γ2ð ÞΓm1m2 + δ2γ2Γm2 + γ2Γm2 μ + λ∗Hð Þ + 1 − γ2ð ÞΓm1λ
∗
H + δ2γ2Γλ

∗
H 1 + μγð Þ + 1 − γ2ð ÞμΓγm1λ

∗
H
, ð13Þ
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Theorem 5. The DFE E0
H = ðΓ/μððδ2 + μð1 − γ2ÞÞ/ðδ2 + μÞÞ,

Γγ2/ðδ2 + μÞ, 0, 0Þ of the HBV dynamical system (9) has a
global asymptotic stability provided that RH < 1 and the suf-
ficient conditions sated by Theorem 3 are satisfied.

Proof. Using Theorem 4 for the HBV dynamical system (9)
we have obtained the matrices represented by

dU
dt

= I U , Vð Þ =
1 − γ2ð ÞΓ + δ2HP − λH + μð ÞS

γ2Γ − δ2 + μð ÞHP

" #
,

dV
dt

= J U , Vð Þ =
λHS − μ + μ1 + γð ÞHI

γHI − μHT

" #
,

I Y0, 0
À Á

=
1 − γ2ð ÞΓ + δ2H

0
P − μS0

γ2Γ − δ2 + μð ÞH0
P

" #
,

ð20Þ

where U0 = ðS0,H0
PÞ = ððð1 − γ2ÞΓðδ2 + μÞ + δ2γ2ΓÞ/μðδ2 +

μÞ, γ2Γ/ðδ2 + μÞÞ has a global stability and satisfies criteria
(i) of Theorem 4 and

H =DU J U∗, 0ð Þ =
σ1 − μ + μ1 + γð Þ 0

γ −μ

" #
: ð21Þ

We computed the result given by

Jˇ U ,Vð Þ =
Jˇ1 U , Vð Þ
Jˇ2 U , Vð Þ

2
4

3
5

=
σ1HI −

σ1HI

N1
S

0

2
64

3
75

=
σ1HI 1 − S

N1

� �

0

2
64

3
75:

ð22Þ

Here, because S ≤N1, we can prove that S/N1 ≤ 1 and
Jˇ1ðU , VÞ ≥ 0 that satisfied criteria (ii) of Theorem 4, and
hence, the DFE of the dynamical system (9) given by E0

H =
ðΓ/μððδ2 + μð1 − γ2ÞÞ/ðδ2 + μÞÞ, Γγ2/ðδ2 + μÞ, 0, 0Þ has a
global asymptotic stability whenever RH < 1.

Epidemiologically, it means that the HBV single infec-
tion will die out in the community provided that RH < 1
in this case the total number of population is going up.

3.2. The COVID-19 Subdynamical System. By making HP
=HI = C =HT = 0 for the dynamical system (3) the
COVID-19 subdynamical system is derived as

dS
dt

= 1 − γ1ð ÞΓ + δ1CP + ηCR − λC + μð ÞS,

dCP

dt
= γ1Γ − δ1 + μð ÞCP ,

dCI

dt
= λCS − κ + μ + μ2ð ÞCI ,

dCR

dt
= κCI − μ + ηð ÞCR,

ð23Þ

with force of infection for COVID-19 only infection
represented by

λC =
σ2
N2

CI tð Þ, ð24Þ

with initial data given by Sð0Þ > 0, CPð0Þ ≥ 0, CIð0Þ ≥ 0,
CRð0Þ ≥ 0 and total number of individuals given by
N2ðtÞ = SðtÞ + CPðtÞ + CIðtÞ + CRðtÞ.

In Ω2 = ðS, CP, CI , CRÞ ∈ℝ4
+,N2 ≤ Γ/μ

È É
, it is not

difficult to prove that the region Ω2 is both positive
invariant and global attractor of each nonnegative solu-
tion of the subdynamical system (23). Therefore, one
can consider that the region Ω2 is both biologically and
mathematically meaningful.

3.2.1. The Subdynamical System DFE Stability. The COVID-
19 subdynamical system (23) disease-free equilibrium (DFE)
is calculated by making the system (23) equal to zero in the
absence infection and recovery groups, i.e., C0

I = C0
R = 0, and

therefore, the COVID-19 subdynamical system (23) is given
as E0

C = ðS0, C0
P , C0

I C
0
RÞ = ðΓ/μððδ1 + μð1 − γ1ÞÞ/ðδ1 + μÞÞ,

Γγ1/ðδ1 + μÞ, 0, 0Þ.
The COVID-19 subdynamical system (23) effective repro-

duction is the average total number of new infection caused by
a single infectious person through the community. By apply-
ing the criteria stated in [54] and the COVID-19 subdynami-
cal system (23) effective reproduction number is calculated
as RC = ðσ2ðμð1 − γ1Þ + δ1ÞÞ/ððμ + μ2 + κÞðμ + δ1ÞÞ.

Based on the next generation matrix, the DFE point
of the COVID-19 subdynamical system given by E0

C =
ðS0, C0

P, C0
I C

0
RÞ = ðΓ/μððδ1 + μð1 − γ1ÞÞ/ðδ1 + μÞÞ, Γγ1/ðδ1 +

μÞ, 0, 0Þ has a local asymptotic stablty whenever RC < 1
and unstable whenever RC > 1:

3.2.2. Endemic Equilibrium Existence and Uniqueness. The
COVID-19 subdynamical system (23) endemic equilibrium
point(s) is/are computed by setting its right-hand side equal
to zero and determined as
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S∗ = 1 − γ1ð ÞΓn1n2n3 + δ1γ1Γn2n3
n1n2n3 λ∗C + μð Þ − n1ηκλ

∗
C

,

C∗
P =

γ1Γ

n1
,

C∗
I =

1 − γ1ð ÞΓn1n2n3λ∗C + δ1γ1Γn2n3λ
∗
C

n1n22n3 λ∗C + μð Þ − n1n2ηκλ
∗
C

,

C∗
R =

1 − γ1ð ÞΓn1n2n3κλ∗C + δ1γ1Γn2n3κλ
∗
C

n1n22n32 λ∗C + μð Þ − n1n2n3ηκλ
∗
C

,

ð25Þ

where n1 = δ1 + μ, n2 = κ + μ + μ2, and n3 = μ + η.
We can substitute C∗

I stated in (25) in (24) and calcu-
lated as N∗

2λ
∗
C = σ2C

∗
I and gives as

1 − γ1ð ÞΓn1n22n32 + δ1γ1Γn2
2n3

2 + γ1Γn2
2n3

2λ∗C
+ γ1Γn2

2n3
2μ + 1 − γ1ð ÞΓn1n2n32λ∗C − γ1Γn2n3ηκλ

∗
C

+ δ1γ1Γn2n3
2λ∗C + 1 − γ1ð ÞΓn1n2n3κλ∗C + δ1γ1Γn2n3κλ

∗
C

− σ2 1 − γ1ð ÞΓn1n2n32 − σ2δ1γ1Γn2n3
2 = 0:

ð26Þ

By arranging equation (26) we determined the linear
equation given by

B1λ
∗
C + B0 = 0, ð27Þ

where

B1 = γ1Γn2n3 n2n3 − ηκð Þ + 1 − γ1ð ÞΓn1n2n3 n3 + κð Þ
+ δ1γ1Γn2n3 n3 + κð Þ > 0,

ð28Þ

B0 = Γn2n3
2 1 − γ1ð Þn1n2 + δ1γ1n2ð Þ 1 −RC½ � < 0, ð29Þ

whenever RC > 1:
Using (27) we derived the positive infection rate

only whenever RC > 1:
Hence, subdynamical system (23) has a unique nonneg-

ative (in this case positive) endemic equilibrium point pro-
vided that RC > 1.

Theorem 6. The COVID-19 subdynamical system (23) has
a positive and unique positive endemic equilibrium
wheneverRC > 1.

3.2.3. DFE Global Asymptotic Stability

Theorem 7. The DFE point of the COVID-19 subdynamical
system (23) given by E0

C = ððð1 − γ1ÞΓðδ1 + μÞ + δ1γ1ΓÞ/ðμ
ðδ1 + μÞÞ, γ1Γ/ðδ1 + μÞ, 0, 0Þ has a global asymptotic stability
whenever RC < 1, and the two sufficient criteria stated in
Theorem 4 are qualified.

Proof. Now using the criteria in Theorem 4 for the COVID-
19 subdynamical system (23) and letting U ∈ℝ2 to be the
noninfected components, V ∈ℝ2 to be the infected compo-
nents including the COVID-19 recovery group. Now we
derived the matrices given by

dU
dt

= I U ,Vð Þ =
1 − γ1ð ÞΓ + δ1CP + ηCR − λC + μð ÞS

γ1Γ − δ1 + μð ÞCP

" #
,

dV
dt

= J U ,Vð Þ =
λCS − κ + μ + μ2ð ÞHI

κHI − μ + ηð ÞCR

" #
,

I U , 0ð Þ =
1 − γ1ð ÞΓ + δ1CP − μS

γ1Γ − δ1 + μð ÞCP

" #
,

H =DWJ U∗, 0ð Þ =
σ2S

0

S0 + C0
P

− κ + μ + μ2ð Þ 0

κ − μ + ηð Þ

2
664

3
775:

ð31Þ

After a number of some steps of computations, we
derived the following:

Jˇ U , Vð Þ =
Jˇ1 U , Vð Þ
Jˇ2 U , Vð Þ

2
4

3
5

= −
σ2S

0HI

S0 + C0
P

+ β2HIS
N2

0

2
64

3
75 =

σ2HI −
S0

S0 + C0
P

+ S
N2

� �

0

2
64

3
75:
ð32Þ

λ∗C = −
B0
B1

= Γn2n3
2 γ2n1n2 + δ1γ1n2ð Þ RC − 1½ �

γ1Γn2n3 n2n3 − ηκð Þ + γ2Γn1n2n3 n3 + κð Þ + δ1γ1Γn2n3 n3 + κð Þ > 0, ð30Þ
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Because S ≤ S0 and CP < C0
P , we can show that ðS0

/ðS0 + C0
PÞS0 + C0

PÞ ≥ ðS/N2Þ and Jˇ1ðU , VÞ ≥ 0 ; thus, the
DFE point E0

C = ððð1 − γ1ÞΓðδ1 + μÞ + δ1γ1ΓÞ/ðμðδ1 + μÞÞ,
γ1Γ/ðδ1 + μÞ, 0, 0Þ of the COVID-19 subdynamical system
(23) has a global asymptotic stability whenever RC < 1.

Epidemiologically, it means that the COVID-19 single
infection dies out whenever RC < 1, and the total human
population is going up [33].

3.3. Mathematical Analysis of HBV and COVID-19
Coinfection System. After analyzing the spreading dynamics

of the HBV and COVID-19 single infection given in equa-
tion (9) and equation (23), respectively, the complete
dynamical system given in (3) can be analyzed in the region
Ω stated in (6).

3.3.1. DFE Stability. The DFE of the coinfection dynamical
system (3) represented by E0

HC is calculated by setting each
equation of the system as zero at HI = CI = CR = C =HT =
0, and we have determined as

In a similar manner of the single infection models
analyzed above applying the criteria explained in [54], the

effective reproduction of the complete model (3) denoted
as RHC can be computed as

The effective reproduction number of the COVID-19
and HBV coinfected dynamical system (3) is the maxi-
mum eigenvalue in magnitude of the product matrix F:V−1,
and it is given by R0

HC =max fðσ1ðμð1 − γ2Þ + δ2ÞÞ/ððγ + μ
+ μ1Þðμ + δ2ÞÞ, ðσ2ðμð1 − γ1Þ + δ1ÞÞ/ððμ + μ2 + κÞðμ + δ1ÞÞg,
where R0

HC =max fRH ,RCg, RH to be the HBV submodel
(9) effective reproduction number and RC and R0

HC to be

the effective reproduction numbers of the COVID-19 single
infection dynamical system (23) and the complete dynamical
system (3), respectively.

Based on the definition of next generation matrix opera-
tor criteria in [54] the DFE point of the complete dynamical
system (3) given by

E0
HC = S0, C0

P,H0
P,H0

I , C0
I ; ;C0, C0

R,H0
T

À Á
= 1 − γ1 − γ2ð ÞΓ δ1 + μð Þ δ2 + μð Þ + δ1γ1Γ + δ2γ2Γ δ1 + μð Þ

μ δ1 + μð Þ δ2 + μð Þ , γ1Γ

δ1 + μ
, γ2Γ

δ2 + μ
, 0, 0, 0, 0, 0

�
:

ð33Þ

FV−1 =

σ1 μ 1 − γ2ð Þ + δ2ð Þ
γ + μ + μ1ð Þ μ + δ2ð Þ 0 0 0 0

0 σ2 μ 1 − γ1ð Þ + δ1ð Þ
μ + μ2 + κð Þ μ + δ1ð Þ 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

2
6666666666664

3
7777777777775
: ð34Þ

E0
HC = S0, C0

P,H0
P,H0

I , C0
I ; ;C0, C0

R,H0
T

À Á
= 1 − γ1 − γ2ð ÞΓ δ1 + μð Þ δ2 + μð Þ + δ1γ1Γ + δ2γ2Γ δ1 + μð Þ

μ δ1 + μð Þ δ2 + μð Þ , γ1Γ

δ1 + μ
, γ2Γ

δ2 + μ
, 0, 0, 0, 0, 0

� ð35Þ
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has a local asymptotic stability whenever RHC < 1 and
unstable whenever RHC > 1.

3.3.2. The Complete Dynamical System (3) Endemic
Equilibrium. The possible endemic equilibrium point of the
dynamical system (3) is calculated by setting every equation
equal to zero and is derived as

S∗ = 1 − γ1 − γ2ð ÞΓ + δ1C
∗
P + δ2C

∗
P + ηC∗

R

λ∗H + λ∗C + μð Þ ,

C∗
P =

γ1Γ

δλ∗H + δ1 + μð Þ ,

H∗
P =

γ2Γ

δδ2 + μ + σλ∗Cð Þ ,

H∗
I =

λ∗HS
∗ + δλ∗HC

∗
P

μ + μ1 + γ + ϕλ∗Cð Þ ,

C∗
I =

λ∗CS
∗ + δλ∗CH

∗
P

κ + μ + μ2 + φλ∗Hð Þ ,

C∗ = φλ∗HC
∗
I + ϕλ∗CH

∗
I + ρλ∗CH

∗
T

μ + μ3 + θð Þ ,

C∗
R =

κC∗
I

μ + ηð Þ ,

H∗
T = γH∗

I + θC∗

ρλ∗C + μð Þ :

ð36Þ

The dynamical system (3) is highly nonlinear, and hence,
it is difficult to compute the endemic equilibrium point(s)
explicitly in terms of model parameters; however, depending
on the single infection model analyses, the complete dynam-
ical system (3) endemic equilibrium E∗

HC = ðS∗, C∗
P ,H∗

P ,H∗
I ,

C∗
I , C∗, C∗

R,H∗
TÞ exists if RH > 1 and RC > 1, i.e., R0

HC > 1.
We have discussed the complete model endemic equilibrium
in the numerical analysis section.

3.3.3. Analysis for the Possibility of Backward Bifurcation of
the System (3). Assume S = z1, CP = z2, HP = z3, HI = z4,
CI = z5, C = z6, CR = z7, and HI = z8 such that N = z1 + z2
+ z3 + z4 + z5 + z6 + z7 + z8.

Moreover, the vector representation Z =
ðz1, z2, z3, z4, z5, z6, z7, z8ÞT , the dynamical system (3) is writ-
ten as dZ/dt = FðZÞ with F = ð f1, f2, f3, f4, f5, f6, f7, f8ÞT , as

dz1
dt

= f1 = 1 − γ1 − γ2ð ÞΓ + δ1z2 + δ2z3

+ ηz7 − λH + λC + μð Þz1,
dz2
dt

= f2 = γ1Γ − δλH + δ1 + μð Þz2,

dz3
dt

= f3 = γ2Γ − δ2 + μ + σλCð Þδ3,

dz4
dt

= f = λHz1 + δλHz2 − μ + μ1 + γ + ϕλCð Þz4,

dz5
dt

= f5 = λCz1 + σλCz3 − κ + μ + μ2 + φλHð Þz5,

dz6
dt

= f6 = φλHz5 + ϕλCz4 + ρλC − μ + μ3 + θð Þz6,

dz7
dt

= f7 = κz5 − μ + ηð Þz7,

dz8
dt

= f8 = γz4 + θz6 − ρλC − μz8,

ð37Þ

with λH = σ1/N½z4 + ρ1z6� , 1 ≤ ρ1 <∞, λC = σ2/N½z5 + ωz6�,
and 1 ≤ ω <∞: Then, the Jacobian matrix of the complete
dynamical system (26) at E0

HC, represented by JðE0
HCÞ, is

derived as

J E0
HC

À Á
=

−μ δ1 δ2 F1 F2 F3 η 0
0 − δ1 + μð Þ 0 F4 0 F5 0 0
0 0 − δ2 + μð Þ 0 F6 F7 0 0
0 0 0 F8 0 F9 0 0
0 0 0 0 F10 F11 0 0
0 0 0 0 0 − μ + μ3 + θð Þ 0 0
0 0 0 0 κ 0 − μ + ηð Þ 0
0 0 0 γ 0 θ 0 −μ

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

,

ð38Þ
where F1 = −ðσ1/N0Þz01, F2 = −σ2z

0
1, F3 = −ðσ1/N0Þρ1z01 −

σ2ωz
0
1, F4 = −ðσ1/N0Þz02, F5 = −ðσ1/N0Þρ1z02, F6 = −σ2z

0
3, F7

= −σ2ωz03, F8 = ðσ1/N0Þz01 + ðσ1/N0Þz02 − ðμ + μ1 + γÞ, F9 =
ðσ1/N0Þρ1z01 + ðσ1/N0Þρ1z02, F10 = σ2z

0
1 + σ2z

0
3 − ðκ + μ + μ2Þ,

and F11 = σ2ωz
0
1 + σ2ωz

0
3.

Let us consider the case atRC >RH andR0
HC = 1, so that

RC = 1. Moreover, assume σ2 = σ∗ and taken as a bifurcation
parameter. Calculating the expression for σ2 using RC = 1,
i.e., RC = ðσ2ðμð1 − γ1Þ + δ1ÞÞ/ððμ + μ2 + κÞðμ + δ1ÞÞ = 1, we
computed the value σ∗ = σ2 = ððμ + μ2 + κÞðμ + δ1ÞÞ/ððμð1
− γ1Þ + δ1ÞÞ.

The eigenvalues of the matrix JðE0
HCÞ of the dynamical

system (26) at the DFE, with σ2 = σ∗, are calculated as

ζ1 = −μ < 0 or ζ2 = − δ1 + μð Þ < 0 or ζ3

= − δ2 + μð Þ < 0 or ζ4 = F8 =
σ1
N0 z

0
1 +

δ1
N0 z

0
2 − μ + μ1 + γð Þ

= μ + μ1 + γð Þ RH − 1½ � < 0wheneverRH < 1 or ζ5
= 0 or ζ6 = − μ + μ3 + θð Þ < 0 or ζ7 = − μ + ηð Þ < 0 or ζ8
= −μ < 0:

ð39Þ
Therefore, every eigenvalue is negative if R0

HC < 1 and
also the matrix JðE0

HCÞ of the system (26) at DFE, and σ2
= σ∗, represented by Jβ∗ , has a single zero eigenvalue (where
every other eigenvalue has negative real part). Applying the
Castillo-Chavez and Song criteria stated in [33] can be used
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to prove that the dynamical system (3) exhibits the phenom-
enon of forward bifurcation at RC = 1. In the right and left
eigenvectors of Jβ∗ , at the case whenever RC = 1, the right
eigenvector of the Jacobian of the dynamical system (37) at

σ2 = σ∗ (represented by Jβ∗) corresponding to a simple zero

eigenvalue is represented by u = ðy1, y2, y3, y4, y5, y6, y7, y8ÞT

Left eigenvectors corresponding to the simple zero
eigenvalue at σ2 = σ∗2 qualifying the product y:w = 1, given
as w = ðw1,w2,w3,w4,w5,w6,w7,w8Þ, are w1 =w2 =w3 =
w4 =w6 =w7 =w8 = 0 and w5 =w5 > 0.

Using many steps of calculations, we have derived the
bifurcation coefficients a and b given by

Then,

y1 =
δ2F6 μ + ηð Þy5 + δ2 + μð Þ μ + ηð ÞF2y5 + δ2 + μð Þηκy5

μ δ2 + μð Þ μ + ηð Þ ,

y2 = 0,

y3 =
F6

δ2 + μ
y5,

y4 = 0,

y5 = y5 > 0,

y6 = 0,

y7 =
κ

μ + η
y5,

y8 = 0:

ð40Þ

a = 2w5y1y5
∂2 f5 0, 0ð Þ
∂z1∂z5

+ 2w5y3y5
∂2 f5 0, 0ð Þ
∂z2∂z5

= 2σ∗2w5y5 y1 + y3½ �,

= 2σ∗2w5y
2
5
−δ2σ2y

0
3 μ + ηð Þ − δ2 + μð Þ μ + ηð Þσ2z01 − δ2 + μð Þηκ − μ μ + ηð Þσ2z03

μ δ2 + μð Þ μ + ηð Þ
� �

:

ð41Þ

a = −2σ∗2w5y
2
5
δ2σ2z

0
3 μ + ηð Þ + δ2 + μð Þ μ + ηð Þσ2z01 + δ2 + μð Þηκ + μ μ + ηð Þσ2z

0
3

μ α2 + μð Þ μ + ηð Þ
� �

< 0,

b =w5y5
∂2 f5 0, 0ð Þ
∂z5∂σ2

=w5y5 z03 + z01
À Á

> 0:
ð42Þ
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Therefore, applying the Castillo-Chavez and Song cri-
teria stated in [33] we have proved that the complete dynam-
ical system (3) did not exhibit the phenomenon of backward

bifurcation when R0
HC =RC = 1: Hence, only the disease-

free equilibrium point given by

for the dynamical system (3) exists that means there is only
DFE but not positive endemic equilibrium point in the
region provided R0

HC < 1.
Note: in the subsections represented by 3.1.1 and 3.2.1, we

proved that DFE of the HBV and COVID-19 single infection
models has global asymptotic stability when the associated
effective reproduction number is less than one. Therefore,
depending on the result and equation (42) the COVID-19
and HBV coinfection dynamical system (3) has a global
asymptotic stability whenever R0

HC =max fRH ,RCg < 1:

4. Numerical Simulation and
Sensitivity Analysis

To verify the mathematical analysis results shown in the pre-
vious sections and subsections, we have carried out various
sensitivity and numerical analyses. For the sensitivity and
numerical analysis computations, we used parameter values
adopting from different scholar studies and given the collec-
tion in Table 3.

4.1. Sensitivity Analysis Results. Definition: the variable y
normalized forward sensitivity index which depends on a
differentiable parameter ξ is defined by SIðϑÞ = ð∂y/∂ϑÞ ∗
ðϑ/yÞ [35, 36, 41, 55].

The sensitivity analysis is used to examine the most
influential parameters in the spreading of the coinfection
of HBV and COVID-19. From results of sensitivity analysis
among others, the one which has a larger sensitivity index in
magnitude is known as the most sensitive parameter. For
this study, the sensitivity indices can be computed using
the model effective reproduction numbers given by RH
and RC since R0

HC =max fRH ,RCg.
Applying Table 3 (baseline values) of the model param-

eters, we have prepared the sensitivity index tables as
Tables 4 and 5, respectively.

Using Table 3 (baseline values) of the model parameters,
we have calculated the value of HBV effective reproduction
numberRH = 1:82 which implies that HBV infection spreads
throughout the population. Also, Table 4 (sensitivity indices)
shows that the HBV spreading rate σ1 has major effect on
the HBV effective reproduction number denoted by RH .

In a similar manner, applying values of the model
parameters stated in Table 3 we calculated the numerical
value of COVID-19 effective reproduction number given
by RC = 3:23 which implies that the COVID-19 single

infection is persistent throughout the population. Also, the
sensitivity analysis given in Table 5 (sensitivity indices)
shows that COVID-19 transmission rate σ2 is the most sen-
sitive model parameter which has great impact on the
COVID-19 transmission. Comparing sensitivity indices
given in Tables 4 and 5, one can conclude that the HBV
transmission rate σ1 and COVID-19 spreading rate σ2 are
the most influential model parameters in the disease trans-
mission, and stakeholders shall concentrate to control the
values of these parameters by considering the suitable inter-
vention strategies.

Simulation represented in Figure 2 shows the model
parameter sensitivity indices graphically. From Figure 2 we
can see that the model parameters σ1 and σ2 are highly sen-
sitive with respect to the HBV infection and COVID-19
infection submodel effective reproduction numbers, respec-
tively. Also, one can conclude that portions of protections
γ1 and γ2 and COVID-19 treatment rate κ are more sensi-
tive parameters and important to control the disease trans-
mission in the community.

4.2. Numerical Simulations. In this subsection, we carried
out numerical analysis of the dynamical system (3). For sim-
ulations of the coinfection model (3) with nonnegative ini-
tial, we have used MATLAB ode45 with the embedded
Runge-Kutta forward and backward numerical methods. In
this part, we have investigated the model (3) endemic equi-
librium point stability and the impacts of some basic model
parameters on the model effective reproduction numbers
and examined the effects of the proposed intervention strat-
egies in the model construction. In this subsection for the
case of numerical simulations to be performed, we have
assumed the positive initial data given

S 0ð Þ, CP 0ð Þ,HP 0ð Þ,HI 0ð Þ, CI 0ð Þ, C 0ð Þ, CR 0ð Þ,HT 0ð Þð Þ
= 1000, 300, 200, 100, 170, 80,75,75ð Þ,

ð44Þ

and used parameter baseline values given in Table 3.

4.2.1. The Complete Model Simulation at R0
HC < 1. In this

subsection, we performed the complete coinfection model
numerical simulation by considering the value of the model
effective reproduction number as R0

HC max fRH ,RCg =
max f0:14, 0:26 g = 0:26 < 1, and the simulation result is
illustrated in Figure 3. From Figure 3 we can observe that

E0
HC = S0, C0

P,H0
P,H0

I , C0
I ; ;C0, C0

R,H0
T

À Á
= 1 − γ1 − γ2ð ÞΓ δ1 + μð Þ δ2 + μð Þ + δ1γ1Γ + δ2γ2Γ δ1 + μð Þ

μ δ1 + μð Þ δ2 + μð Þ , γ1Γ

δ1 + μ
, γ2Γ

δ2 + μ
, 0, 0, 0, 0, 0

� ð43Þ
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the simulation result justifies the analytical result, and after
20 days, the complete coinfection model (3) solutions will
be converging to the disease-free equilibrium (DFE) point
of the model.

4.2.2. The Complete Model Simulation at R0
HC > 1. In this

subsection, we performed numerical simulation of the full

dynamical system (3) using model parameter values given
in Table 3 and we calculated for the value of the model effec-
tive reproduction number as R0

HC = 3:23. The simulation
result illustrated in Figure 4 shows that the model solutions
are converging to the endemic equilibrium point of the
model providing thatR0

HC = 3:23 > 1.

4.2.3. Effect of HBV Transmission on COVID-19 Infection.
Simulation illustrated in Figure 5 investigated to show the
impact of HBV spreading rate σ1 on the number of HBV
and COVID-19 coepidemic individuals C: From Figure 5
we observed that whenever the value of HBV spreading rate
is going up, then the number of HBV and COVID-19 coin-
fectious individuals is going up throughout the population.
Thus, increasing HBV spreading rate σ1 from 0.00001 to
0.8 leads to a highly increase of HBV and COVID-19 coepi-
demic number of individuals C.

4.2.4. Impact of COVID-19 Spreads on HBV Infection.
Numerical simulation given in Figure 6 investigated the
impact of COVID-19 spreading rate σ2 on the number of
HBV and COVID-19 coepidemic people C: From Figure 6

Table 3: Values for parameters.

Parameter Value Source

μ1 0.0200/day [3]

μ2 0.0214/day [3]

μ3 0.0500/day [3]

δ1 0.0015/day Assumed

δ2 0.0004/day Estimated [43]

σ1 5:0 × 10−8/day [3]

σ2 6:29 × 10−8/day [3]

γ 0.5/day [3]

d 1 no. unit Assumed

η 0.002/day Assumed

θ 0.15/day [3]

κ 0.005/day [28]

μ (1/64.5∗365)/day [14]

γ1 0.012/day Assumed

γ2 0.5813/day Assumed

ρ 1 no. unit Assumed

σ 1 no. unit Assumed

φ 1 no. unit Assumed

Φ 1.2 no. unit [14]

Δ 1000 humans/day [28]

Table 4: Sensitivity indices ofR0
HC =RH :

Sensitivity index Values

SI σ1ð Þ +1

SI δ2ð Þ 0.04

SI γ2ð Þ -0.68

SI μ1ð Þ 0.390

SI γð Þ -0. 69

Table 5: Sensitivity indices ofR0
HC =RC:

Sensitivity index Value

SI σ2ð Þ +1

SI μ2ð Þ 0.02

SI κð Þ -0.68

SI δ1ð Þ 0.34

SI γ1ð Þ -0.67

𝜎2
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𝜇2
𝜇1
𝛿2
𝛿1
𝛾2
𝛾1
𝛾

𝜅
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Figure 2: Simulation of sensitivity indices of the model parameters
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we observed that whenever the value of COVID-19 spreading
rate σ2 increases, then the number of HBV and COVID-19
coinfectious individuals C is going up. Thus, increasing
COVID-19 spreading rate σ2 from 0.00001 to 0.8 makes the
HBV and COVID-19 coinfection C highly increases.

4.2.5. Simulation to Investigate Effect of Treatment on HBV
Infection. Numerical simulation shown in Figure 7 investi-
gated the impact of HBV treatment on the HBV infectious
individuals HI throughout the community. From the result,
we can conclude that when the value of treatment rate γ is
going up, then the number of HBV infectious individuals
HI is going down. For the stakeholders, we recommend that
they take their maximum effort to increase the value of HBV
treatment rate to minimize the HBV transmission rate.

4.2.6. Simulation to Investigate Effect of Treatment on
Coinfection. In this subsection, numerical simulation repre-
sented in Figure 8 investigated the impact of COVID-19
treatment on the HBV and COVID-19 coinfectious individ-
uals C. From the result, we can conclude that whenever we
increase the value of treatment rate θ, the number of coinfec-
tious population is going down. Thus, whenever we increase
the value of θ from 0.2 to 0.8, then the number of HBV and
COVID-19 coinfectious individuals decreases through time.

4.2.7. Simulation to Investigate the Effect of σ1 on RH .
Figure 9 depicts the HBV spreading rate σ1 highest direct
impact on the HBV single infection model effective repro-
duction number RH . From the numerical result, we
observed that increasing the HBV spreading rate σ1 has a
direct impact on its effective reproduction number RH :
Thus, introducing protective and controlling strategies
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against HBV spreading is fundamental to minimized σ1
value less than 0.801.

4.2.8. Simulation to Investigate the Effect of γ2 on RH . Sim-
ulation illustrated in Figure 10 depicts that the recruitment
rate portion γ2 has the highest indirect impact on the HBV
submodel effective reproduction number RH . The simula-
tion result from Figure 10 shows whenever the value of γ2
increases then the HBV spreading rate decreases. Thus,
applying the portion γ2 of the human recruitment rate Γ
to be more than 0.597 makes the value of RH less than one.

4.2.9. Simulation to Investigate the Effect of γ on RH .
Figure 11 shows that the HBV treatment rate γ has influen-
tial indirect impact on RH . We observed the result when-
ever we increase the treatment rate; then, the HBV
transmission decreases in the community. Thus, applying
the treatment rate γ to more than 0.898 made the value of

the HBV infection effective reproduction number RH less
than one.

4.2.10. Simulation to Investigate the Effect of σ2 on RC . Sim-
ulation illustrated in Figure 12 examined the effect of
COVID-19 spreading rate σ2 on the COVID-19 subdynami-
cal system (23) effective reproduction numberRC. From the
figure, we observed that when the COVID-19 spreading rate
value σ2 is going up implies the COVID-19 effective repro-
duction number increases, and whenever σ2 < 0:152 leads
to RC < 1: Hence, we recommend for health stakeholders
to give attention for minimizing the COVID-19 spreading
rate σ2 to control and prevent COVID-19 transmission in
the population. Epidemiologically, whenever the COVID-
19 spreading rate increases, then the COVID-19 single infec-
tion is going up and the infection dies out from the commu-
nity if σ2 < 0:152:

4.2.11. Simulation to Investigate Impact of γ1 on RC . Simu-
lation given in Figure 13 depicts that a portion of COVID-
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19 protection γ1 has the highest indirect impact on the
COVID-19 effective reproduction numberRC . We observed
that whenever the value of γ1 increases, then the number of

COVID-19 infectious population is going down throughout
the community. Therefore, introducing a greater portion γ1
value than the value 0.898 made the value of the COVID-19
effective reproduction number RC below one.

4.2.12. Simulation to Investigate Effect of κ on RC . Numeri-
cal simulation represented in Figure 14 shows the indirect
influence of the COVID-19 treatment rate ðκÞ on the
COVID-19 effective reproduction number given by RC .
The result proved that whenever the COVID-19 treatment
rate ðκÞ increases, then the value of RC is going down. As
a result, giving the value of κmore than 0.758, then the value
ofRC is below one, and we recommend for the stakeholders
to maximize the value of κ:

5. Conclusions

In this paper, we have constructed and investigated a contin-
uous time dynamical model for the transmission of HBV
and COVID-19 coinfection with protection and treatment
strategies. The model incorporates three noninfectious
groups, the susceptible group (S), the HBV protection group
(HP), and the COVID-19 protection group (CP), and this
made the model highly nonlinear and challenging for the
qualitative analysis of the coinfection model. The model
has been mathematically analyzed both for the submodels
associating the cases that each disease type is isolated and
in the case when there is HBV and COVID-19 coinfection.
The proposed model includes the intervention strategies,
protective as well as treatment, and numerical simulation
of the deterministic model is presented. In the analysis, it
has been indicated that the effect of protection as well as
treating the infected ones with the available treatment mech-
anisms affects significantly the infection control strategy and
its outcome. From the simulation results, it can be concluded
that applying both protective and treatment control mecha-
nisms simultaneously at the population level yields the most
effective outcomes both economically and epidemiologically.
Therefore, we strongly recommended to the stakeholders
regarding economic as well as health issues to give more
attention and the overall effort to implement both the pro-
tective and treatment control strategies simultaneously to
minimize the HBV and COVID-19 single infections as well
as the HBV and COVID-19 coinfection disease transmission
in the community.

Any interested scholar can modify this study by consid-
ering the limitations of this study such as formulate a model
which incorporate either of stochastic method, fractional
order method, optimal control theory, age structure, or
environmental effects, collect real data, and validate the
formulated model.
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