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Dengue virus infection is one of those epidemic diseases that require much consideration in order to save the humankind from
its unsafe impacts. According to the World Health Organization (WHO), 3.6 billion individuals are at risk because of the dengue
virus sickness. Researchers are striving to comprehend the dengue threat. This study is a little commitment to those endeavors. To
observe the robustness of the dengue network, we uprooted the links between nodes randomly and targeted by utilizing different
centrality measures. The outcomes demonstrated that 5% targeted attack is equivalent to the result of 65% random assault, which
showed the topology of this complex network validated a scale-free network instead of random network. Four centrality measures
(Degree, Closeness, Betweenness, and Eigenvector) have been ascertained to look for focal hubs. It has been observed through
the results in this study that robustness of a node and links depends on topology of the network. The dengue epidemic network
presented robust behaviour under random attack, and this network turned out to be more vulnerable when the hubs of higher
degree have higher probability to fail. Moreover, representation of this network has been projected, and hub removal impact has
been shown on the real map of Gombak (Malaysia).

1. Introduction

Hub evacuation has been a vital and fascinating issue in dec-
imating a system. By this, complex network is disintegrated
into small clusters that can be treated with convenience. A
property of critical importance is its resilience to destruction.
Robustness is the ability of a network system to cope with
failures of node or focal hub; it is a critical attribute of
many complex networks. In network, it is also helpful to
gauge the resilience of substructure networks. Complex
systems have different examples like social network of people,
collaborative network of scientist, World Wide Web, electric
power grid, and protein-protein interaction networks [1–
6]. Network of diseases in the medicine and biological
fields such as AIDS/HIV, Smallpox, and Dengue virus can
also be represented as complex networks to analyze the
spreading phenomenon [7, 8]. Dengue virus is an arbovirus
caused by a mosquito named as Aedes aegypti and also

comprises a complex network [9]. Until now, there are no
authorized immunizations or particular therapeutics and
generous vector control endeavors that have not halted its
quick development and worldwide spread [10]. Researchers
are trying to comprehend this spectacle as a network. They
found various similar structural properties in many real-
world systems, when these systems were modelled and
analyzed as complex networks [11]. Since the last decade,
research trend in these complex systems is to model and
analyze the phenomenon by converting them into complex
networks in terms of nodes and links [12]. It helps to consider
both structural and dynamical features about these real-
world complex networks. The research of these linkages has
important role for inoculation in epidemic [13] and network
tolerance to attack [14].

Numerous actual networks are made up of two or more
networks that interact, and they are interdependent. Water
and food supply networks, communication networks, fuel
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Figure 1: (a) Two-mode network of dengue affected localities and weeks. (b) The projected one-mode network of the two-mode dengue
network shown in Figure 1(a).

networks, and financial transaction networks are different
examples of various infrastructures [15]. Buldyrev et al.
[16] added to a hypothetical structure for contemplating
the strength of two completely associated networks, subject
to random attack. The authors found that, because of the
reliance coupling between networks, they turn out to be a
great degree powerless against random failure and framework
breakdown in a sudden first request move. Huang et al. [17]
contemplated the vigor of the two interdependent networks
when high or low degree hubs are under targeted attack
in associated networks to the random assault issue. They
found that the interdependent scale-free networks are hard
to safeguard the utilizing systems, for example, securing the
high-degree hubs. Gallos et al. [18] proposed a likelihood
function for a targeted attack on a secluded single network,
𝑊𝛼(𝐾𝑖) = 𝐾𝛼𝑖 /∑𝑁𝑖=1𝐾𝛼𝑖 , which showed the probability
that a node with degree 𝐾𝑖 was removed. In case 𝛼 <
0, it is accepted that 𝐾𝑖 ̸= 0; this function was utilized
to contemplate the robustness of the scale-free network to
various methodologies.

In this research, dataset of dengue virus affected cases has
been utilized, which has been obtained from the Ministry
of Health (MOH), Malaysia [19]. We modelled the dataset
of Gombak (a district of Selangor, Malaysia), where weekly
number of dengue cases have been recorded in all affected
localities from the periods 20 October, 2013, to 18 October,
2014 [7]. Furthermore, there have been 560 affected localities
with the number of dengue affected cases being 36,878
[19]. Dataset has been formalized and modelled into two-
mode network (Figure 1(a)) and then projected in one-
mode network (Figure 1(b)) [7]. Here, the dengue affected
localities represent the primary nodes and weeks are the
secondary nodes, and the number of dengue cases is the
link between primary and secondary nodes. This formed
the two-mode network by the cooccurrence of number of

weekly dengue cases among different localities. The analysis
of this complex system is based on the behaviour of network
under randomand targeted link removal as dengue cases.The
overall analysis and results highlighted the vulnerability of
this system to minimize dengue epidemic.

Figure 1(a) is the representation on real dataset. A grey
node represents the locations inGombak, Selangor, that is, L1:
Apartment Casmaria, L2: Apartment Desa Temenggong, L3:
Apartment Fiona, and L4: Apartment Palma BCH. A white
node represents the number of weeks, that is, W1: first week,
W2: second week,W3: third week,W4: fourth week, andW5:
fifth week.

The two-mode networks are usually converted into one-
mode network by projection. We utilized three methods for
this purpose, namely, Binary, Sum, andweightedNewman [6,
20]. In this research, result of weighted Newman method has
been utilized. So, its concise description is given below.

Newman has given an idea of projecting two-mode
network into one-mode network when he analyzed scien-
tific collaboration networks [21]. According to him, in the
network of scientific collaboration, if two authors write any
paper, they have stronger relation (get weight 1) but when
they write a paper collectively, the social bond weakens as the
number of author’s increases.

It is formalized as follows:

𝑤𝑖𝑗 = ∑
𝑝

1
𝑁𝑝 − 1 , (1)

where 𝑤𝑖𝑗 is the weight between nodes 𝑖 and 𝑗. 𝑁𝑝 is the
number of authors in paper p (in the context of scientific
collaboration network).

In Newman’s method, the actual weight of the links is
not considered properly as many real-world networks have
weighted information in their links. Opsahl et al. proposed
the generalization form of Newman’s method as weighted
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Figure 2: (a) A toy network. (b) Few nodes are removed from the network. (c) The remaining clusters in the network.

Newman method [21]. According to them, the weight can be
formalized as follows:

𝑤𝑖𝑗 = ∑
𝑝

𝑤𝑖𝑝
𝑁𝑝 − 1 , (2)

where 𝑤𝑖𝑗 is the weight between node 𝑖 and j and 𝑤𝑖𝑝 is the
weight of the link from node 𝑖 with the cooccurrence.

1.1. Background. In tropical and subtropical zone of the
world, dengue scourge is a noteworthy sickness. From a cou-
ple of decades, its flare-up has been spread exponentially [22].
TheWorldHealthOrganization (WHO) reported in 2012 that
there may be 50–100 million dengue infections worldwide
every year. It has been estimated that approximately 3.6
billion people live in the dengue affected parts of the world
[23].

Regarding Malaysia, on 21 November 2015, there were
107,079 dengue cases with 293 deaths reported. This was a
clear increase compared to the report, where MOHMalaysia
recorded over 43,000 cases with 92 deaths [24]. In year 2014,
during the 42nd week from October 12 to October 18, a total
of 2,160 cases of dengue feverwere reported. It was an increase
of 338 cases (19%) as compared with the previous week
(41st) that had 1,822 cases. An increase in dengue cases was
recorded in ten states over the previous week (41st), namely,
Selangor, Melaka, Kuala Lumpur & Putrajaya, Terengganu,
Pulau Pinang, Perak, Kelantan,Negeri Sembilan, Pahang, and
Johor. While the cumulative cases of dengue were reported
nationwide from January to October 18, 2014, to be 82,738, an
increase of 212% (56,211 cases) was reported compared to the
same period in 2013 [19].

The rest of the paper has been structured as follows: in
Section 2, the impact of node removal in the network has
been discussed along the concept of targeted versus random
attack. Section 3 covered the result analysis on the targeted
and random link removal in the dengue epidemic network.
In Section 4, the phenomenon of central node identification
has been discussed and node removal influence has been
presented on the real map of Gombak. Finally, conclusion of
the study has been drawn in the last section.

2. Node Removal

In the research, node removal has been an important and
interesting issue in destroying a complex network [25]. A
property of basic significance is the flexibility of demolition.
If, by any strategy, any single link is broken that uniquely con-
nects two otherwise disconnected components of a network,
that will have a good impact on breaking a network which
relies on the size of the largest cluster as compared to the loss
of one of the three links that make up a triangle (Figure 2). As
clusters are disconnected, this distance is calculated in terms
of the original network [26].

2.1. Random versus Targeted Attack. In this research, two
typical cases of link and node removal in complex networks
have been analyzed: random attack and targeted attack. In
the randomattack process, links/nodes are randomly selected
from the network (different percentages) and their removal
effects are observed on the network. On the other hand,
targeted attack on the network, in which links/nodes are
removed in descending order of their weight and degree,
that is, the highest connected links/nodes are removed first,
requires a much smaller percentage of removed links/nodes
to destroy the network, since all the hubs that glue the
network together are removed and the network disintegrates
into small pieces. Then, its robustness is observed.

2.2. Robustness of Network under Links Removal. The dengue
epidemic complex network has been analyzed under the ran-
dom link removal and targeted removal, on different places
of Selangor to see the behaviour of its robustness. As there
are many links with varying weight and less number of nodes
in the projected network, this leads naturally to random links
removal as the appropriate method of observing behaviour
under random attack. Removing link means minimizing the
number of cases (dengue affected patients). The number of
cases in particular locality (node) in a particular week shows
the strength of Aedes aegypti (dengue vector). More dengue
cases mean more strength of Aedes aegypti, and less number
of dengue patients showweak strength ofAedes aegypti. Links
also represent the importance of locality.
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We randomly removed 10 and 15 percent of links, respec-
tively, from this network and observed the robustness for
Betweenness and Closeness measures (global) by using (3)
and (4), respectively, proposed byOpsahl et al. [21].When the
value of tuning parameter alpha (𝛼) is 0, it only considers the
number of links attachedwith a node. If the value of𝛼 is equal
to 1, then it includes the weight of links only. On the other
hand, when the value of 𝛼 is 0.5, both the number of links
and the weight of links are included. Moreover, the centrality
metrics have been used to identify important nodes and links
in overall network from different point of views (local as well
as global). Hence, sustainability of centrality score has been
checked from the concept of robustness. Below is the brief
description of Betweenness andCloseness centrality that have
been used to watch the impact of link evacuation.

2.3. Betweenness Centrality. Opsahl et al.’s generalizations of
Betweenness centrality depend on their generalization of the
shortest routes [21].The Betweenness centrality is formalized
as follows:

𝐶𝑊𝛼𝐵 (𝑖) =
𝑁

∑
𝑗

𝑁

∑
𝑘

𝑔𝑊𝛼𝑗𝑘 (𝑖)
𝑔𝑊𝛼
𝑗𝑘

, 𝑗 ̸= 𝑘, (3)

where 𝐶𝑊𝛼𝐵 (𝑖) is weighted Betweenness centrality of node i,
where 𝑔𝑊𝑗𝑘 is the total number of weighted shortest paths
between two nodes and 𝑔𝑊𝑗𝑘(𝑖) is the number of those paths
that pass through node 𝑘, where 𝛼 is tuning parameter, and
when its value is 0, it calculates the binary shortest distance,
whereas in case of 1 it uses Dijkstra’s algorithm [27]. When
the value of 𝛼 is greater than 1, the shortest paths are based
on the strongest links rather than the fewest shortest links in
between the nodes of the network.

2.4. Closeness Centrality. In [21], generalizations of Closeness
centrality rely on the generalization of the shortest path.
Closeness centrality is formalized as follows:

𝐶𝑊𝛼𝐶 (𝑖) = [
[
𝑁

∑
𝑗

𝑑𝑤𝛼 (𝑖, 𝑗)]
]

−1

. (4)

Here, 𝐶𝑊𝛼𝐶 (𝑖) is weighted Closeness centrality of node i,
where 𝑑𝑤 is weighted distance between nodes and where 𝛼
is tuning parameter and when its value is 0 it calculates the
binary shortest distance, whereas in case of 1 it uses Dijkstra’s
algorithm [27]. When the value of 𝛼 is greater than 1, the
shortest paths are based on the strongest links rather than the
fewest shortest links in between the nodes of the network.

Further, Spearman’s rank correlation has been used to see
the effects on the ranks of nodes after the removal of links
from the network.

3. Result Analysis on Targeted versus
Random Link Removal

In this section, the results and their interpretations are
presented. Here, the results of weighted Newman method

have been utilized to calculate the Betweenness andCloseness
centrality measures. In this network, this method is more
suitable compared to other projection methods (Binary and
Sum). It represented dengue problem more adequately in
terms of localities and number of dengue cases per week
after the projection from two-mode to one-mode. And
consequently it represented better results when we have
analyzed its robustness. The experiment of link removal has
been repeated forty times and finally average values of tuning
parameter have been calculated to measure the robustness
under Betweenness and Closeness centrality measures, using
the following:

Robustness under Betweenness centrality

= ∑ (𝐵1 + 𝐵2 + 𝐵3 + ⋅ ⋅ ⋅ + 𝐵𝑛)
number of times experiment is performed

, (5)

where 𝐵1 is first experiment, likewise 𝐵𝑛 is 𝑛th experiment.

Robustness under Closeness centrality

= ∑ (𝐶1 + 𝐶2 + 𝐶3 + ⋅ ⋅ ⋅ + 𝐶𝑛)
number of times experiment is performed

, (6)

where 𝐶1 is the first experiment; likewise, 𝐶𝑛 is the 𝑛th
experiment.

If value of robustness will be closer to “1,” that means
network is more robust under attack, whereas nearer to “0”
means more vulnerable.

Moreover, R-project tool (version 3.2.1 (2015-06-18)) with
a special program code has been utilized for the link removal
and rank correlation purpose which has been given in the
appendix.

In Table 2, 10% links have been removed randomly and
similarly in Table 3; 15% links have been removed randomly.
In Table 4, 5% targeted links have been removed, while in
Table 5, comparison of 5% targeted and 65% random links
removal has been given. To illustrate the effect of various
levels of alpha (𝛼), two measures on the dataset are applied,
in which 𝛼 is a positive tuning parameter that can be set
according to the research setting and nature of data. If tuning
parameter is between 0 and 1, then having a high degree is
favorable, whereas if it is above 1, a low degree is favorable.

In Tables 1, 2, 3, 4, and 5, tuning parameter 𝛼 = 0
means that it considers the number of links (degree) attached
with nodes. 𝛼 = 1.0 means it considers only weight of links
(strength) and 𝛼 = 0.5 means that the number of links and
weight of links are included.

Before discussing the results of “after links removal,” the
results of actual network have been observed which are given
in Table 1.

In Table 2, the Betweenness and Closeness centrality
measures have been calculated after randomly removing 10%
links from the network of the given dataset.When𝛼 is 0.0, 0.5,
and 1.0, the average values of robustness under Betweenness
centrality are 0.95, 0.88, and 0.93, respectively. This is slightly
different from the results in actual network (Table 1) that,
under 𝛼 = 0.0, 0.5, and 1.0, values are 0.96, 0.91, and 0.95,
respectively, which are very close to the results after 10%
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Table 1: Centrality scores of actual network.

Actual network (before removal of links)

Centrality measure Alpha (𝛼)
0.0 0.5 1.0

Betweenness 0.96 0.91 0.95
Closeness 0.16 0.50 0.75

Table 2: Centrality scores of 10% random removal of links.

10% removal of links (randomly)

Centrality measure Alpha (𝛼)
0.0 0.5 1.0

Betweenness 0.95 0.88 0.93
Closeness 0.14 0.43 0.72

Table 3: Fifteen percent random removal effect of links.

15% removal of links (randomly)

Centrality measure Alpha (𝛼)
0.0 0.5 1.0

Betweenness 0.92 0.86 0.90
Closeness 0.12 0.33 0.68

Table 4: Targeted link removal.

5% removal of links (targeted)

Centrality measure Alpha (𝛼)
0.0 0.5 1.0

Betweenness 0.70 0.60 0.64
Closeness 0.11 0.09 0.35

random removal of links, meaning that 10% random removal
did not affect the network too much.

The average values of robustness under Closeness mea-
sure are 0.14, 0.43, and 0.72 under 𝛼 = 0.0, 0.5, and 1.0,
respectively. In a comparison of these results with actual
network results (Table 1) that are 0.16, 0.50, and 0.75, it has
been observed that the experiment’s result in Table 2 indicates
that the random link removal from dengue cases network has
very less effect when 10% links are removed randomly.

The robustness under Betweenness centrality measure of
this network under 10% link’s removal is high, and, hence, it
does not have any clear effect on this network. In the same
way, the result of robustness under Closeness centrality has
been analyzed; it also showed that the network is not affected
too much because correlation values are very less, when 𝛼 is
0.0 and 0.5.

In Table 3, robustness under Betweenness and Close-
ness centrality measures has been calculated after randomly
removing 15% links. The experiment has been repeated forty
times and the average values of tuning parameter have
been calculated. When 𝛼 is 0.0, 0.5, and 1.0, the average
values of Betweenness centrality measure are 0.92, 0.86, and
0.90, respectively. When we compare Table 3 with Table 2

Robustness of network under targeted versus random attack

5% targeted
10% random
15% random

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

𝛼 = 0 𝛼 = 0.5 𝛼 = 1.0

Betweenness centrality measure

Figure 3: Targeted versus random removal of links (Betweenness
centrality measures).

concerning the Betweenness, when 𝛼 = 1, in 10% random
removal, the value is 0.93, and after 15% random removal
the value is 0.90 which means the network is more robust
under 10% removal of links. And when 𝛼 = 0.0, the value of
10% random removal is 0.95 while the value of 15% random
removal is 0.92. This showed that network has become more
vulnerable as more links are removed, whereas under 15%
random removal the average values of Closeness centrality
measure are 0.12, 0.33, and 0.68, when 𝛼 is 0.0, 0.5, and 1.0,
respectively. While the value of 𝛼 = 1, Closeness under 10%
and 15% removal is 0.72 and 0.68. As a comparison of 10%
and 15% randomly removal of links in regard to Closeness
measure, it has been observed that 15% is more vulnerable
and 10% is robust. Furthermore, 15% links removal has a small
effect on the network in comparison with the actual network
(Table 1).

In Table 4, the robustness under Betweenness and Close-
ness centrality measures has been calculated after removing
5% links using targeted attack. That means 5% links have
been removedwhich had the highest weights. It hasmeasured
the centrality scores when different values of 𝛼 are used.
Under the value of 𝛼 = 1.0, the average values of Betweenness
and Closeness centrality are 0.64 and 0.35, respectively. And
when 𝛼 = 0.0, the value of Closeness is very low, that is,
0.09, and Betweenness showed low value too. It has been
analyzed that it has weakened the strength of the network
under targeted attack. In addition to this, 5% targeted removal
has a clear impact on the network compared to the actual
network (Table 1); this link removal affected the network too
much.

In case of the Betweenness measure (Figure 3) under the
value of 𝛼 = 0.0 and 𝛼 = 1.0, when 10% links have been
removed randomly, the Betweenness measure produced the
average values 0.95 and 0.93. On the other hand, when links
up to 15% have been removed, the difference can be seen
as by removing more links, the Betweenness has a minor
effect due to the removal of more weighted links; under
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Table 5: Actual network versus 5% targeted and random removal of links up to 65%.

Alpha (𝛼) Actual network 5% targeted removal 65% random removal 5% targeted removal 65% random removal
Betweenness Closeness Betweenness Betweenness Closeness Closeness

0.0 0.96 0.16 0.70 0.70 0.11 0.13
0.5 0.91 0.50 0.60 0.40 0.09 0.14
1.0 0.95 0.75 0.64 0.63 0.35 0.32

the value of 𝛼 = 0.0 and 𝛼 = 1.0, it gave result of 0.92 and
0.90. Though there is an effect of random links removal
on network, the correlation is high which represented the
similarity between original (True) network and (Observed)
networks after random link removal. The rank correlation
coefficient showed the similarity between the corresponding
node centrality ranking of the real and each of the two
observed networks for different values of 𝛼. The results in
case of 5% targeted link removal from the network, under the
value of 𝛼 = 0.0 and 𝛼 = 1.0, are 0.70 and 0.64, respectively,
which showed the network is more vulnerable as compared
to 10% and 15% randomly removal of links.

In the case of Closeness measure (Figure 4) under the
value of 𝛼 = 0.5 and 𝛼 = 1.0, when 10% links have been
removed randomly, it produced the average values 0.43 and
0.72. Secondly, when up to 15% links are removed, the
difference can be observed that, by uprooting more links,
the Betweenness has a minor impact due to the removal
of more weighted links; under the value of 𝛼 = 0.5 and 𝛼
= 1.0, it gave the result 0.33 and 0.68. Though there is an
effect of random link removal on network, the correlation
is high which represented the similarity between original
(True) network and networks (Observed) after the random
link removal. The rank correlation coefficient showed the
similarity between the corresponding node centrality ranking
of the real and each of the two observed networks for different
values of 𝛼.The results in the case of 5% targeted link removal
from network under the value of 𝛼 = 0.5 and 𝛼 = 1.0 are
0.09 and 0.35, respectively, which showed the network is
more vulnerable as compared to 10% and 15% random links
removal. It is noticeable that 5% targeted removal produced
much better results than 10% and 15% random removal under
both centrality measures (Betweenness and Closeness).

In Figures 3 and 4, comparison of 5% targeted link
removal and random removal of links (10% and 15%) in terms
of robustness of network has been shown by utilizing the
Betweenness and Closeness centralitymeasures.The findings
of the targeted removal and random removal clearly showed
that targeted removal is much better than random removal in
this dengue virus network. If someone desires to treat/destroy
the dengue network, the targeted attack is more favorable
than random attack in this case.

For the comprehensive comparison between targeted
links removal and random removal of links, we removed the
links randomly (10%, 15%, 30%, 40%, 50%, 60%, 65%, and
70%) and compared the results with targeted 5% removal
of links. The analysis of the result showed that 5% targeted
removal has given better results up to 60% of the randomly
removed links. And almost 65% randomly removed links
produced approximately equal results to 5% targeted removal

Robustness of network under targeted versus random attack

5% targeted
10% random
15% random

0

0.1
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Figure 4: Targeted versus random removal of links (by Closeness
centrality measures).

2

1

3

54

Figure 5: A network with five nodes and four links.

(shown in Table 5). That means the dengue virus network
can be controlled by two ways; either by clearing/treating
65% dengue affected areas randomly or by focusing on 5%
targeted areas.Of course the treatment of 5%network is easier
than 65%. So, this study emphasizes the point of finding and
treating the 5% nodes instead of 65% nodes to isolate the
clusters in the network.

4. Central Node Identification and
Its Removal Impact

The identification of the central nodes/links has been a key
point in the analysis of a complex network [21, 28] So, it is very
important to know about the features of the central node. In
1978, Freeman [29] claimed that central nodes were those “in
the thick of things” or central focusses. To elaborate his idea,
he took a network that has five nodes (Figure 5). Further, he
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Table 6: Score of four centrality measures.

Top three nodes that have highest centrality measures
Number Node Degree Node Closeness Node Betweenness Node Eigenvector
1 272 271 272 0.02019397 272 58145 272 1
2 270 253 270 0.01921553 270 7341 270 0.989174401
3 276 239 276 0.01656255 276 6795 276 0.95729894

explained that the central node has three advantages over the
other nodes. For example, it reaches the other nodes rapidly;
being in the middle, it controls the flow of the other nodes,
and it has more links as compared to others.

In Figure 5, node 1 is in the middle which has four
links that can reach other nodes quickly and can control the
flow of other nodes. On the basis of these three features,
Freeman [29] formalized three node centrality measures:
Degree, Closeness, and Betweenness. The number of the
links corresponds to the degree of node; it is measured
locally. It has limitations: the measure does not take into
consideration the global structure of the network. Secondly,
all connections have equal importance. To capture the issue
of global consideration, Closeness centrality was introduced
which is defined as the inverse sum of the shortest distances
to all other nodes from a focal node. The main limitation
of Closeness is the lack of applicability to networks with
disconnected components; that is, two nodes that belong to
different components do not have a finite distance between
them. Thus, Closeness is generally restricted to nodes within
the largest component of a network. Hence, Betweenness is
the measure that assesses the degree to which a node lies
on the shortest path between two other nodes and is able
to funnel the flow in the network. In doing so, a node can
assert control over the flow. Although this measure takes
the global network structure into consideration and can be
applied to networks with disconnected components, it is
not without limitations. For instance, a great proportion of
nodes in a network generally do not lie on the shortest
path between any two other nodes and, therefore, receive
the same score of 0. To overcome the other limitation of
degree centrality measure that it considers all connections
with equal importance, Eigenvector centrality measure was
introduced that states that connection to a more important
node is more important. This means all connections have no
equal importance [30]. Score of the four centrality measures
on the given dataset of dengue epidemic network is shown in
Table 6.

We calculated the four centrality measures (i.e., Degree,
Closeness, Betweenness, and Eigenvector). To be more
focused on the networking characteristics of the given
dataset, only the top three results of all these centrality
measures have been given in Table 6. These four centrality
measures have different characteristics and capture distinct
features. In spite of this, they produced interesting results
that the top three nodes are the same in these four centrality
measures. This is another important point of this study that
it highlights the most central nodes that are working as focal
hubs in the network. So, these results show that nodes 272,
270, and 276 are very important for this dengue epidemic
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Figure 6: Dengue network projection of clusters in Gombak.

network. Dengue infections can be better controlled through
targeted attack on highly affected hubs rather than random
treatment.

Here, in dengue network, the flow process (number of
cases) is in between localities which have been obtained from
two-mode to one-mode projection. The network projection
produced two directed links between localities where both
these asymmetric links show the number of dengue cases as
flow of diseases (dengue) in this case. So, numbers of cases are
used as transfer of dengue infection as comparison between
two localities.

4.1. Network Projection from Localities Perspective. In Fig-
ure 6, network projection of the Gombak nodes has been
presented. This representation showed that nodes 1, 5, 15,
18, 39, and 40 are very important and to be focused for
immunization.The proper treatment and cure of these nodes
can break the clusters. Visualization of this network shows
that all localities in Gombak are not completely connected
with each other by the cooccurrence of weeks. Hence, all
localities are not affected in all weeks. Furthermore, as the
nodes in Table 6, some localities have also been working as
themain hubs.Moreover, the actualmap ofGombak has been
shown in Figure 6, which highlighted the real geographical
representation of the dengue affected localities in Gombak,
Malaysia.We can see that there are different clusters, like Batu
Caves, where people suffer badly from dengue disease.

4.2. Representation of Dengue Affected Nodes on Real Map
(Figure 7). After the formalization of the given data into
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Figure 7: Real map of Gombak with 58 dengue affected nodes, where 8% most affected nodes are in grey dotted coloured [image adopted
from google maps and modified].

two-mode and then projection into one-mode network and
on the basis of the results of different centrality measures,
fifty-eight affected nodes have been found in Gombak. These
areas have been displayed on the real map of Gombak
captured from the google maps. In Figure 7, the boundary
of Gombak has been highlighted by red colour (Accent 2,
Lighter 40%) and Gombak dengue affected localities have
been represented with white circle as GL1 (Gombak Locality
1) and likewise up to GL58. On this map representation,
dengue affected nodes can be seen in different clusters, such
as GL18, GL19, GL20, GL22, GL29, GL06, GL15, GL16, and
GL17, where GL15 and GL18 are the focal hubs in this cluster
in terms of number of dengue cases. Second cluster can be
observed containing the nodes like GL23, GL39, GL40, GL45,
GL01, GL38, GL53, and GL52, where GL01 and GL39 are the
focal hubs. Some other clusters can be seen such as GL49,
GL50, GL07, GL05, GL10, and GL54, where GL05 is the focal
hub in this cluster.

In Figure 7, we have highlighted the five focal hubs in grey
dotted colour circle. These five nodes are 8% nodes of the
whole dengue network in Gombak. These nodes are GL01,
GL05, GL15, GL18, and GL39. By considering the number

of dengue cases, it has been analyzed that these are the
focal hubs that should be treated properly to suppress the
dengue virus. The presence of increased number of dengue
cases means more dengue vectors (Aedes aegypti) are present
in the cluster. Further, these hubs are very important to
break down the clusters, which consequently break the whole
network.

By controlling the dengue virus in these 8% focal nodes,
34% dengue network can be destroyed. This is an example of
targeted attack and how efficiently it works.

Similarly, some other focal hubs from the remaining 66%
network can also be traced for the treatment. By doing the
same, network can be minimized or avoided by the dengue
virus. Further, by the results (Table 5), it has been analyzed
that 5% targeted attack produced equivalent results as 65%
of random attack on the network. So, this network should be
treated as targeted attack instead of randomness.

5. Conclusion

The results of the study showed that the dengue epidemic
network is vulnerable when targeted attack is performed
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degree function <- function(network, alpha1=0.0, alpha2=1.0, step size=0.5, header="deg ") {
library(tnet)
num iter <- (alpha2 − alpha1)/step size
a vals <- C(alpha1)
for (𝑖 in 1:num iter) {

a vals[𝑖 + 1] <- a vals[i] + step size
}
result <- degree 𝑤(network, measure=C("alpha"), alpha=a vals[1])
for (𝑖 in 2:length(a vals)) {

result <- merge(result, degree 𝑤(network, measure=C("alpha"), alpha=a vals[i]), by="node")
names(result)[1 + 𝑖] <- C(paste(header, a vals[i], sep=""))
}
names(result)[C(2)] <- C(paste(header, a vals[1], sep=""))
return(result)
}
closeness function <- function(network, alpha1=0.0, alpha2=1.0, step size=0.5, header="clo ") {
library(tnet)
num iter <- (alpha2 − alpha1)/step size
a vals <- C(alpha1)
for (i in 1:num iter) {

a vals [𝑖 + 1] <- a vals[i] + step size
}
result <- closeness 𝑤(network, alpha=a vals[1])
for (i in 2:length(a vals)) {

result <- merge(result, closeness 𝑤(network, alpha=a vals[i]), by="node")
names(result)[𝐶(𝑖 ∗ 2, 𝑖 ∗ 2 + 1)] <- C(paste(header, a vals[i], sep=""), paste("n.", header, a vals[i], sep=""))
}
names(result)[𝑐(2, 3)] <- C(paste(header, a vals[1], sep=""), paste("n.", header, a vals[1], sep=""))
return(result)
}
closeness function2 <- function(network, alpha1=0.0, alpha2=1.0, step size=0.5, header="clo ") {
library(tnet)
num iter <- (alpha2 − alpha1)/step size
a vals <- C(alpha1)
for (i in 1:num iter) {
a vals[𝑖 + 1] <- a vals[i] + step size
}
result <- closeness 𝑤(network, alpha=a vals[1])
result <- result[,1:ncol(result)-1]
for (i in 2:length(a vals)) {

result <- merge(result, closeness 𝑤(network, alpha=a vals[i]), by="node")
result <- result[,1:ncol(result)-1]
names(result)[𝑖 + 1] <- C(paste(header, a vals[i], sep=""))
#names(result)[𝑐(𝑖 ∗ 2, 𝑖 ∗ 2 + 1)] <- C(paste(header, a vals[i], sep=""), paste("n.", header, a vals[i], sep=""))
}
names(result)[C(2)] <- C(paste(header, a vals[1], sep=""))
retur (result)
}
betweenness function <- function(network, alpha1=0.0, alpha2=1.0, step size=0.5, header="bet ") {
library(tnet)
num iter <- (alpha2 − alpha1)/step size
a vals <- C(alpha1)

for (i in 1:num iter) {
a vals[𝑖 + 1] <- a vals[i] + step size
}

result <- betweenness 𝑤(network, alpha=a vals[i])
for (i in 2:length (a vals)) {
result <- merge(result, betweenness 𝑤(network, alpha=a vals[i]), by="node")
names(result)[𝑐(𝑖 + 1)] <-C(paste(header, a vals[i], sep=""))

Algorithm 1: Continued.
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}
names(result)[C(2)]<- C(paste(header, a vals[1], sep=""))
return(result)

}
# sorts dataset by nth column
order by nth col <- function(dataframe=NULL, 𝑛 = 1, top rows=10, ascending=TRUE) {
if (ascending) {

return(dataframe[with(dataframe, order(dataframe[[n]])),][1:top rows,])
}
else {

return(dataframe[with(dataframe, order(-dataframe[[n]])),][1:top rows,])
}
}
degree comparison <- function(tnet1, tnet2, alpha1=0.0, alpha2=1.0, step size=0.5, 𝑟 = 10) {
res1 <- degree function(tnet1, alpha1, alpha2, step size)
res2 <- degree function(tnet2, alpha1, alpha2, step size)
num comparisons <- (alpha2 − alpha1)/step size + 1
result <- C()
for (i in 1:num comparisons) {

tmp1 <- order by nth col(res1, 𝑛 = 𝑖 + 1, top rows=r, F)
tmp2 <- order by nth col(res2, 𝑛 = 𝑖 + 1, top rows=r, F)
#print(tmp1[1])
#print(tmp2[1])
result[𝑖 ∗ 2 − 1] <- alpha1 + (𝑖 − 1)∗ step size
#result[𝑖 ∗ 2] <- r − length(intersect(tmp1[,1 : 1], tmp2[,1 : 1])) # non-matching records
result[𝑖 ∗ 2] <- sum(tmp1[,1 : 1]!=tmp2[,1 : 1])
#result[i] <- r − length(intersect(tmp1[,1 : 1], tmp2[,1 : 1])) # non-matching records
}
r <- matrix(result, nrow=2, dimnames=list(C("alpha", "Hamming distance"), C()))
return(r)
}
betweenness comparison <- function(tnet1, tnet2, alpha1=0.0, alpha2=1.0, step size=0.5, 𝑟 = 10) {
res1<- betweenness function(tnet1, alpha1, alpha2, step size)
res2<- betweenness function(tnet2, alpha1, alpha2, step size)
num comparisons <- (alpha2 − alpha1)/step size + 1
result <- C()
for (i in 1:num comparisons) {
tmp1 <- order by nth col(res1, 𝑛 = 𝑖 + 1, top rows=r, F)
tmp2 <- order by nth col(res2, 𝑛 = 𝑖 + 1, top rows=r, F)
result [𝑖 ∗ 2 − 1] <- alpha1 + (𝑖 − 1) ∗ step size
result [𝑖 ∗ 2] <- sum(tmp1[,1 : 1] != tmp2[,1 : 1])
}
res <- matrix(result, nrow=2, dimnames=list(C("alpha", "Hamming distance"), C()))
return(res)
}
sort all <- function(dataframe=NULL) {
rows <- nrow(dataframe)
cols <- ncol(dataframe)
result <- data.frame(𝑛 = 1:62)

for (i in 1:cols) {
result <- cbind(result[,1:i], order by nth col(dataframe, i, rows, F)[,1])
}
#result <- result[,3:cols+1]
return(result[,3 : 9])
}
spearman corr <- function(df1, df2) {
library(Hmisc)
x <- sort all(df1)
y <- sort all(df2)
cols <- ncol(x)
for (i in 1:cols)
print(names(df1)[𝑖 + 1])

Algorithm 1: Continued.
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print("\𝑛")
print(rcorr(x[,i], y[,i]))
print("–\𝑛")
}
return()
}
# Returns a random sample extracted from the specified network in the tnet format.
get edge sample <- function(network, 𝑛, weighted=TRUE, weight threshold=0) {

result <- network[sample(nrow(network), size=n),]
return(result)
}

Algorithm 1

compared to random attack. The highlighted targeted attack
has been identified with BA scale-free network (Albert-
Barabasi model). On the other side, the random removal
takes after Erdos-Renyi model. We examined that the net-
work becomes significantly more vulnerable when the nodes
of higher degree have higher likelihood to fizzle, and the
probability that a node will fail is proportional to its degree.
We finalized the outcomes of the study in three parts. Firstly,
this research concluded that, under the targeted attack, the
dengue epidemic network is more vulnerable and, under
random attack, it showed the more robust behaviour. From
the results, it has been proved that 5% targeted attack and 65%
random attack are equal. So, it is obvious that treatment of
5% nodes is easier than 65% nodes. Secondly, to determine
and cure the most persuasive hub in the affected complex
network has been a focal issue in the field of network science.
The outcomes of this study have highlighted a few central
nodes that could be focused on for immunization and other
treatments, such as the result of the four centrality measures
(Degree, Closeness, Betweenness, and Eigenvector), and the
three most focal hubs (272, 270, and 276) have been found
from the entire Selangor dataset. Furthermore, Gombak
network projection and real map presentation showed a
couple of central hubs such as GL01, GL05, GL15, GL18,
and GL39. Thirdly, representation of real map (Figure 7) has
shown the destruction of 34% dengue network as we control
the dengue virus in 8% focal nodes in the area of Gombak.
By all strategies it is determined that if critical fraction
of nodes is removed, it will disintegrate the major part of
the network. Thus, the dengue epidemic proliferation can
be successfully controlled by inoculation. It is believed that
this research work contributes to a better consideration of
treatment techniques on dengue complex network and to an
enhanced evaluation of the robustness of the given network.
Furthermore, we have intention to extend the study of dengue
epidemic to model as a dynamic network and comparative
study among different epidemic spreading models in a future
publication.

Appendix

See Algorithm 1.
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