Research Article

Stability Analysis of Impulsive Stochastic Reaction-Diffusion Cellular Neural Network with Distributed Delay via Fixed Point Theory

Ruofeng Rao¹ and Shouming Zhong²

¹Department of Mathematics, Chengdu Normal University, Chengdu 61130, China
²College of Mathematics, University of Electronic Science and Technology of China, Chengdu 611731, China

Correspondence should be addressed to Ruofeng Rao; ruofengrao@163.com

Received 14 July 2017; Accepted 22 August 2017; Published 25 September 2017

Academic Editor: Chenguang Yang

Copyright © 2017 Ruofeng Rao and Shouming Zhong. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper investigates the stochastically exponential stability of reaction-diffusion impulsive stochastic cellular neural networks (CNN). The reaction-diffusion pulse stochastic system model characterizes the complexity of practical engineering and brings about mathematical difficulties, too. However, the difficulties have been overcome by constructing a new contraction mapping and appropriate distance on a product space which is guaranteed to be a complete space. This is the first time to employ the fixed point theorem to derive the stability criterion of reaction-diffusion impulsive stochastic CNN with distributed time delays. Finally, an example is provided to illustrate the effectiveness of the proposed methods.

1. Introduction

In 1988, cellular neural networks (CNN) were originally introduced in [1, 2]. Since then, dynamic neural networks have received extensive attention due to their classification, associative memory, and parallel computing tasks and the ability to solve complex optimization problems. It is generally known that almost all neural networks have similar applications ([3–12]), but the key to the success of these applications lies in the stability of the system. In fact, there are a number of literatures involved in the stability analysis of CNN ([5, 7, 12–14]). In practical engineering, time delay and pulse are unavoidable. Since neural networks usually have spatial properties, due to the existence of parallel paths of various axonal sizes and lengths, it is necessary to introduce continuous distributed delays to simulate them over a given time horizon. Besides, many evolutionary processes, especially the biological neural network in biological systems and bursting rhythm models in pathology, frequency-modulated signal processing systems, are characterized by abrupt changes of states at certain time instants. In addition, electrons have diffusion behavior in inhomogeneous media. Noise disturbance is unavoidable in real nervous systems, which is a major source of instability and poor performance in neural networks. A neural network can be stabilized or destabilized by certain stochastic inputs. The synaptic transmission in real neural networks can be viewed as a noisy process introduced by random fluctuations from the release of neurotransmitters and other probabilistic causes. Hence, the above influential factors should be also taken into consideration in stability analysis of neural networks. So, in this paper, we consider a class of impulsive stochastic reaction-diffusion cellular neural networks with distributed delay. Lyapunov function method is one of the common techniques to solve the stability of neural networks in recent decades. However, every method has its limit. Different methods lead to different criteria for stability criteria which may imply innovations. Fixed point theory and method is one of the alternative methods ([15–22]). Unlike the known literature, we try to employ Banach fixed point theory in this paper to derive the stability of impulsive stochastic reaction-diffusion cellular neural networks with distributed delay. In the next sections, we shall give some model descriptions and preliminaries and employ Banach fixed point theorem,
Hölder inequality, Burkholder-Davis-Gundy inequality, and the continuous semigroup of Laplace operators to derive the stochastically exponential stability criterion of the complex system. Of course, to overcome the difficulty of the complex mathematical model, we need to formulate a new contraction mapping on a product space. Moreover, in order to guarantee the completeness of product space, we need to give a reasonable definition of distance. Finally, an example is provided to illustrate the effectiveness of the proposed result.

2. Model Description and Preliminaries

Consider the following reaction-diffusion impulsive stochastic cellular neural networks under Dirichlet boundary value:

\[
du_i(t, x) = -q_i \text{div} \nu u_i(t, x) dt - \sum_{j=1}^{n} b_{ij} f_j(u_j(t, x)) dt - \sum_{j=1}^{n} c_{ij} f_j(u_j(t - \tau(t), x)) dt + \sigma_i(u_i(t, x)) d\omega_i(t),
\]

\[
t \neq t_k, \quad x \in \Omega, \quad i \in N
\]

\[
u(t_k, x) = u(t_k, x) + g(u(t_k, x)),
\]

\[
\quad x \in \Omega, \quad k = 1, 2, \ldots
\]

\[
u_i(t, x) = \zeta_i(t, x), \quad \forall (s, x) \in [-\tau, 0] \times \Omega
\]

\[
u(t, x) = 0, \quad \forall (t, x) \in [0, +\infty) \times \partial \Omega,
\]

where \(\Omega \subset \mathbb{R}^m \) is a bounded domain with the smooth boundary \(\partial \Omega \). \(u_i(t, x) \) is the state variable of the \(i \)th neuron at time \(t \) and in space variable \(x \) for \(i \in N \) with \(N = \{1, 2, \ldots, n\} \). \(f_j \) denotes the active function of neuron, \(a_i \) is the rate with which the \(i \)th neuron will reset its potential to the resting state in isolation when disconnected from the networks and the external inputs. \(b_{ij}, c_{ij}, \) and \(h_{ij} \) are elements of feedback template. Let \(\{\omega_i(t), \ t \geq 0\} \) be a real-valued Brownian motion defined on the complete probability space \(\{\Omega, \mathcal{F}, \mathbb{P}\} \) which has natural filtration \(\{\mathcal{F}_t\}_{t \geq 0} \). Denote by \(\mathcal{L}^2(\Omega) \) the space of all real-valued square integrable functions with the inner product \(\langle \xi, \eta \rangle = \int_{\Omega} \xi(x) \eta(x) dx \), for \(\xi, \eta \in \mathcal{L}^2(\Omega) \) which derives the norm \(\|\xi\| = (\int_{\Omega} \xi^2(x) dx)^{1/2} \) for \(\xi \in \mathcal{L}^2(\Omega) \). \(\sigma_i(\cdot) \) is a Borel measurable function. Denote by \(\Delta = \sum_{i=1}^{n} (\partial^2/\partial x_i^2) \) the Laplace operator, with domain \(\mathcal{D}(\Delta) = W_0^{1,2}(\Omega) \cap W_0^{2,2}(\Omega) \), which generates a strongly continuous semigroup \(e^{-\Delta t} \), where \(W_0^{1,2}(\Omega) \) and \(W_0^{2,2}(\Omega) \) are the Sobolev spaces with compactly supported sets. \text{div} \nu u(t, x) denotes the divergence of \(\nu u(t, x) \) (see, e.g., [25, 26]). \(q_i \) is the diffusion coefficient, and time delays \(\tau(t), \rho(t) \in [0, \tau] \). Besides, initial value \(\zeta_i(t, x) \) is continuous for \((s, x) \in [-\tau, 0] \times \Omega \). The fixed impulsive moments \(t_k (k = 1, 2, \ldots) \) satisfy

\[0 < t_1 < t_2 < \cdots \text{ with } \lim_{k \to \infty} t_k = +\infty.\]

and \(u(t_k, x) \) stand for the right-hand and left-hand limit of \(u(t, x) \) at time \(t_k \), respectively. Further, suppose that \(u(t_k, x) = \lim_{\tau \to t_k^-} u(t, x) = u(t_k, x) \), \(k = 1, 2, \ldots \).

In this paper, we assume that

(H1) \(\|e^{-q_i \Delta t}\| \leq Me^{-\gamma t} \), where \(M > 0 \) and \(\gamma > 0 \) are constants;

(H2) \(f_i, g_i, \) and \(\sigma_i \) are Lipschitz continuous with Lipschitz constants \(L_i > 0, G_i, \) and \(T_i > 0 \) for \(i \in N \), respectively. In addition, \(f_i(0) = g_i(0) = 0 = \sigma_i(0), \forall i \in N \).

Definition 1. For any \(T > 0 \) and \(x \in \Omega \), a stochastic process \(u = \{u_i(t, x), u_i(t, x), \ldots, u_i(t, x)\}_{t \in \Omega} \) is called a mild solution of impulsive system (1) if, for any \(i \in N \), \(u_i(t, x) \in \mathcal{P}[0, T]; \mathcal{L}^2(\Omega) \) and, for any \(t \in [0, T] \), \(u_i(t, x) \) is adapted to \(\mathcal{F}_t \) with

\[
\mathbb{P}\{\omega : \int_0^T \int_{\Omega} |u_i(s)|^2 \, dx \, ds < \infty\} = 1,
\]

and the following stochastic integral equations hold for all \(i \in N \), a.s. for any \(t \in [0, T] \) and \(x \in \Omega \):

\[
u_i(t, x) = e^{-q_i \Delta t} \zeta_i(0, x) - \int_0^t e^{-q_i \Delta (t - s)}
\]

\[
- \sum_{j=1}^{n} b_{ij} f_j(u_j(\theta, x)) - \sum_{j=1}^{n} c_{ij} f_j(u_j(\theta - \tau(\theta), x))
\]

\[
+ e^{-q_i \Delta} \sigma_i(u_i(t, x)) d\omega_i(\theta)
\]

\[
+ \int_0^t e^{-q_i \Delta (t - s)} \sigma_i(u_i(t, x)) d\omega_i(\theta)
\]

\[
u_i(t, x) = \zeta_i(t, x), \quad \forall (s, x) \in [-\tau, 0] \times \Omega
\]

\[
u_i(t, x) = 0, \quad \forall (t, x) \in [0, +\infty) \times \partial \Omega.
\]

Remark 2. In Definition 1, the mild solution of impulsive system (1) is well defined due to [24, Lemma 3.1].

Lemma 3 (Hölder inequality). Assume that \(1/p + 1/q = 1 \) with \(p > 1 \), and \(\varphi(x) \in \mathcal{L}^p(\Omega), \varphi \in \mathcal{L}^q(\Omega) \); then

\[
\int_{\Omega} \varphi(x) \varphi(x) \, dx \leq (\int_{\Omega} \varphi(x)^p \, dx)^{1/p} \left(\int_{\Omega} \varphi(x)^q \, dx \right)^{1/q}.
\]

Lemma 4 (Banach contraction mapping principle). Let \(\Theta \) be a contraction operator on a complete metric space \(\Gamma \); then there exists a unique point \(u \in \Gamma \) for which \(\Theta(u) = u \).
3. Main Result: Stochastically Exponential Stability

Theorem 5. Assume that (H1) and (H2) hold. Then, CNN (1) is stochastically exponentially mean square stable if the following condition holds:

\[0 < \kappa < 1, \]

where \(\mu = \inf_{k=1,2,\ldots}(t_{k+1} - t_k) > 0 \) and

\[\kappa \leq 6M^2 \left[\frac{1}{\gamma^2} \max_{i \in I, \gamma} \left(\frac{1}{\mu^2} \left(\sum_{j=1}^{n} \left(|b_{ij}|^2 + |c_{ij}|^2 \right) L_j^2 \right) + \frac{m^2}{\gamma^2} \right) + 2M^2 \left(1 + \frac{1}{\gamma^2 \mu^2} \right) \left(\max_{i \in I, \gamma} G_i^2 + \frac{2}{\gamma} \left(\max_{i \in I, \gamma} T_i^2 \right) \right) \right]. \]

Proof. Firstly, we need to formulate a contraction mapping on a product space.

Let \(\Gamma \) be the Banach space of all \(\mathcal{F}_t \)-adapted mean square continuous processes consisting of functions \(u(t, x) \) at \(t \geq 0 \) with \(t \neq t_k \) such that \(E(e^{\alpha t} \| u(t, x) \|^2) \to 0 \) as \(t \to +\infty \), where \(\alpha \in (0, 1) \) is a positive scalar. Now, we construct an operator \(\Theta \in (\Theta_1, \Theta_2, \ldots, \Theta_n) \) with \(\Theta_j : \Gamma_j \to \Gamma_j \) as follows:

\[\Theta_j (u_j)(t, x) = e^{-\gamma \Delta} \zeta_j (0, x) - \int_0^t e^{-\gamma \Delta(t\sigma_\theta)} \left[a_j u_j (\theta, x) - \sum_{i=1}^n b_{ij} f_j (u_j(\theta, x)) + \sum_{i=1}^n \int_0^\theta f_j (u_j(s, x)) ds \right] d\theta \]

\[+ \int_0^t e^{-\gamma \Delta(t\sigma_\theta)} g_j (u_j(t_k, x)) dw_j (\theta) \]

\[+ e^{-\gamma \Delta} \sum_{0 < t_k < t} e^{\gamma \Delta t_k} g_j (u_j(t_k, x)), \quad t \geq 0, \]

\[\Theta_j (u_j)(t, x) = \zeta_j(t, x), \quad (s, x) \in [-\tau, 0] \times Y \]

\[\Theta_j (u_j)(t, x) = 0, \quad \forall (t, x) \in [0, +\infty) \times \partial Y. \]

Equipped with the following distance:

\[\text{dist} (u, v) = \left(\mathbb{E} \max_{t \in I} \left\| u(t, x) - v(t, x) \right\|^2 \right)^{1/2}, \]

\(\forall u, v \in \Gamma_1 \times \Gamma_2 \times \cdots \times \Gamma_n \),

\(\Gamma_1 \times \Gamma_2 \times \cdots \times \Gamma_n \) becomes a complete metric space, where \(u = u(t, x) = (u_1(t, x), u_2(t, x), \ldots, u_n(t, x))^T, v = v(t, x) = (v_1(t, x), v_2(t, x), \ldots, v_n(t, x))^T. \)

Next, we are to apply contractive mapping theory to complete the proof via three steps.

Step 1. From (7), for \(t \in [0, +\infty) \setminus \{t_k \}_{k=1}^\infty \), we claim that \(\Theta_j (u_j)(t, x) \) is mean square continuous. Indeed, let \(\delta \) be a small enough scalar:

\[E \left\| \Theta_j (u_j)(t + \delta, x) - \Theta_j (u_j)(t, x) \right\|^2 \]

\[\leq 4E \left\| e^{-\gamma \Delta(t + \delta)} \zeta_j (0, x) - e^{-\gamma \Delta(t + \delta)} \zeta_j (0, x) \right\|^2

\[+ 4E \left\| \int_0^{t + \delta} e^{-\gamma \Delta(t + \delta - \theta)} \left[a_j u_j (\theta, x) - \sum_{i=1}^n b_{ij} f_j (u_j(\theta, x)) + \sum_{i=1}^n \int_{\theta - \rho (\theta)}^\theta f_j (u_j(s, x)) ds \right] d\theta \right\|^2

\[+ \int_0^t e^{-\gamma \Delta(t\sigma_\theta)} g_j (u_j(t_k, x)) d\theta \right\|^2

\[+ \int_0^t e^{-\gamma \Delta(t\sigma_\theta)} g_j (u_j(t_k, x)) d\theta \right\|^2

\[+ \int_0^t e^{-\gamma \Delta(t\sigma_\theta)} g_j (u_j(t_k, x)) d\theta \right\|^2

\[- e^{-\gamma \Delta} \sum_{0 < t_k < t} e^{\gamma \Delta t_k} g_j (u_j(t_k, x)) \right\|^2. \]

Firstly, we estimate

\[E \left\| e^{-\gamma \Delta(t + \delta)} \zeta_j (0, x) - e^{-\gamma \Delta(t + \delta)} \zeta_j (0, x) \right\|^2 \]

\[\leq E \left\| e^{-\gamma \Delta(t + \delta) - 1} e^{-\gamma \Delta(t + \delta)} \zeta_j (0, x) \right\|^2 \to 0, \]

if \(\delta \to 0. \)

Next, we evaluate

\[E \left\| \int_0^{t + \delta} e^{-\gamma \Delta(t + \delta - \theta)} \left[a_j u_j (\theta, x) - \sum_{i=1}^n b_{ij} f_j (u_j(\theta, x)) + \sum_{i=1}^n \int_{\theta - \rho (\theta)}^\theta f_j (u_j(s, x)) ds \right] d\theta \right\|^2

\[- \sum_{i=1}^n c_{ij} f_j (u_j(\theta - \tau (\theta), x)) \right\|^2. \]
Due to $t \neq t_k$, it is obvious that

\[
\mathbb{E} \left[e^{-\eta_1(t+\delta)\Delta} \sum_{0 \leq t \leq t_k + \delta} e^{\theta \Delta} g_i(u(t_k, x)) \right] \\
- e^{-\eta_1\Delta} \sum_{0 \leq t \leq t_k} e^{\theta \Delta} g_i(u(t_k, x)) \rightarrow 0,
\]

if $\delta \rightarrow 0$.

So, we have proved from (10)–(14) that $\Theta_i(u(t))$ is mean square continuous at $t \geq 0$ with $t \neq t_k$.

Next, we claim that

\[
\lim_{\delta \rightarrow 0^+} \Theta_i(u(t_k + \delta)) = \Theta_i(u(t_k)) + g_i(u(t_k)),
\]

\[
\lim_{\delta \rightarrow 0^-} \Theta_i(u(t_k + \delta)) = \Theta_i(u(t_k)).
\]

Indeed, obviously, (11)–(13) hold for all $t = t_k$, too. In addition, let $\delta > 0$ be small enough:

\[
e^{-\eta_1(t+\delta)\Delta} \sum_{0 \leq t \leq t_k + \delta} e^{\theta \Delta} g_i(u(t_j, x)) \\
- e^{-\eta_1\Delta} \sum_{0 \leq t \leq t_k} e^{\theta \Delta} g_i(u(t_j, x))
\]

\[
= g_i(u(t_k, x)), \quad \delta \rightarrow 0^+.
\]

On the other hand, let $\delta < 0$ be small enough:

\[
e^{-\eta_1(t+\delta)\Delta} \sum_{0 \leq t \leq t_k + \delta} e^{\theta \Delta} g_i(u(t_j, x)) \\
- e^{-\eta_1\Delta} \sum_{0 \leq t \leq t_k} e^{\theta \Delta} g_i(u(t_j, x)) = 0,
\]

\[
\delta \rightarrow 0^-.
\]

This together with (16) implies that (15) holds.

Step 2. We claim that

\[
\mathbb{E} \left(e^{\alpha \left[\Theta_i(u(t, x)) \right]} \right) \rightarrow 0, \quad \text{if } t \rightarrow +\infty.
\]

Indeed, we have the following inequality similar to (10):

\[
\mathbb{E} \left(e^{\alpha \left[\Theta_i(u(t), x) \right]} \right) \leq 4 \mathbb{E} \left(e^{\alpha \left[e^{-\eta_1\Delta} \zeta(0, x) \right]} \right)
\]

\[
+ 4 \mathbb{E} \left(e^{\alpha \left[e^{-\eta_1\Delta} \left(\sum_{0 \leq t \leq t_k} e^{\theta \Delta} g_i(u(t_j, x)) \right) \right]} \right)
\]

\[
\rightarrow 0.
\]
Complexity

\[- \sum_{j=1}^{n} b_{ij} f_j (u_j (\theta, x)) - \sum_{j=1}^{n} c_{ij} f_j (u_j (\theta - \tau (\theta), x)) \]

\[- \sum_{j=1}^{n} b_{ij} \int_{\theta - \rho(\theta)}^{\theta} f_j (u_j (s, x)) \, ds \, d\theta \]

\[+ 4E \left(e^{\alpha t} \left\| \sum_{i=1}^{n} e^{\gamma (\theta - \tau) t} a_i (u_i (\theta, x)) \right\|^2 \right) \]

\[+ 4E \left(e^{\alpha t} \left\| \sum_{0 \leq i \leq t} e^{\gamma (\theta - \tau) t} g_i (u_i (t, x)) \right\|^2 \right), \quad t \geq 0. \tag{19} \]

Condition (H1) yields

\[E \left(e^{\alpha t} \left\| e^{\gamma (\theta - \tau) t} \xi (0, x) \right\|^2 \right) \leq E \left(M^2 e^{(2\gamma - \alpha) t} \left\| \xi (0, x) \right\|^2 \right) \]

\[\rightarrow 0, \quad \text{if } t \rightarrow +\infty. \tag{20} \]

For any given \(\varepsilon > 0 \), the assumption \(E(e^{\alpha t} \left\| u_j (t, x) \right\|^2) \rightarrow 0 \) tells us that there exists \(t_* > 0 \) such that

\[E \left(e^{\alpha t} \left\| u_j (t, x) \right\|^2 \right) < \varepsilon, \quad \forall t \geq t_* \tag{21} \]

Moreover, Hölder inequality gives

\[E \left(e^{\alpha t} \left\| \int_{0}^{t} e^{-\gamma (\theta - \tau) t} a_{ij} (u_i (\theta, x)) \, d\theta \right\|^2 \right) \leq \frac{M^2 a_{ij}^2}{\gamma} \]

\[\cdot E \left(e^{\alpha t} \left\| u_i (\theta, x) \right\|^2 \right) \leq \frac{M^2 a_{ij}^2}{\gamma} \tag{22} \]

\[\cdot E \left(e^{-\gamma (\theta - \tau) t} e^{\alpha t} \max_{\theta \in [\alpha t, \tau]} \left(\left\| u_i (\theta, x) \right\|^2 \right) + e^{\frac{1}{\gamma - \alpha}} \right), \]

which together with the arbitrariness of \(\varepsilon \) derives

\[E \left(e^{\alpha t} \left\| \int_{0}^{t} e^{-\gamma (\theta - \tau) t} a_{ij} (u_i (\theta, x)) \, d\theta \right\|^2 \right) \rightarrow 0, \quad \text{if } t \rightarrow +\infty. \tag{23} \]

Besides,

\[E \left(e^{\alpha t} \left\| \int_{0}^{t} e^{-\gamma (\theta - \tau) t} \sum_{j=1}^{n} b_{ij} f_j (u_j (\theta, x)) \, d\theta \right\|^2 \right) \]

\[\leq E \left(M \sum_{j=1}^{n} |b_{ij}| L_j e^{-\gamma t} \left\| u_j (\theta, x) \right\| \, d\theta \right)^2. \tag{24} \]

Using similar methods of (21) and (22), we can deduce from (24) that

\[E \left(e^{\alpha t} \left\| \int_{0}^{t} e^{-\gamma (\theta - \tau) t} \sum_{j=1}^{n} b_{ij} f_j (u_j (\theta, x)) \, d\theta \right\|^2 \right) \rightarrow 0, \quad \text{if } t \rightarrow +\infty. \tag{25} \]

Similar to that of (24) and (22), we can also obtain

\[E \left(e^{\alpha t} \left\| \int_{0}^{t} e^{-\gamma (\theta - \tau) t} \sum_{j=1}^{n} c_{ij} f_j (u_j (\theta - \tau (\theta), x)) \, d\theta \right\|^2 \right) \]

\[\leq E \left[M \sum_{j=1}^{n} |c_{ij}| L_j \frac{1}{y} \left(e^{-(\gamma - \alpha) t} e^{\alpha t} (t_* + \tau) \right) \right. \]

\[
\times \left. \max_{\theta \in [\alpha t, \tau]} \left(e^{\alpha t} \left\| u_j (s, x) \right\|^2 \right) + e^{\alpha t} \left(\frac{1}{\gamma - \alpha} \right) \right]. \tag{26} \]

Now, similar to that of (22), we know from (26) that

\[E \left(e^{\alpha t} \left\| \int_{0}^{t} e^{-\gamma (\theta - \tau) t} \sum_{j=1}^{n} c_{ij} f_j (u_j (\theta - \tau (\theta), x)) \, d\theta \right\|^2 \right) \]

\[\rightarrow 0, \quad \text{if } t \rightarrow +\infty. \tag{27} \]

Similarly, Hölder inequality yields

\[E \left(e^{\alpha t} \left\| \int_{0}^{t} e^{-\gamma (\theta - \tau) t} \sum_{j=1}^{n} h_{ij} \int_{\theta - \rho(\theta)}^{\theta} f_j (u_j (s, x)) \, ds \, d\theta \right\|^2 \right) \]

\[\leq M^2 E \left[\sum_{j=1}^{n} |h_{ij}| L_j \frac{\tau}{\gamma} \left(e^{-\gamma t} \max_{\theta \in [\alpha t, \tau]} \left(\left\| u_j (s, x) \right\|^2 \right) + \frac{1}{\gamma - \alpha} \right) \right]. \tag{28} \]

Similar to (22), we can conclude from (28) that

\[E \left(e^{\alpha t} \left\| \int_{0}^{t} e^{-\gamma (\theta - \tau) t} \sum_{j=1}^{n} h_{ij} \int_{\theta - \rho(\theta)}^{\theta} f_j (u_j (s, x)) \, ds \, d\theta \right\|^2 \right) \]

\[\rightarrow 0, \quad \text{if } t \rightarrow +\infty. \tag{29} \]

Hence,

\[E \left\{ e^{\alpha t} \left\| \int_{0}^{t} e^{-\gamma (\theta - \tau) t} \left[a_{ij} (u_i (\theta, x)) - \sum_{j=1}^{n} b_{ij} f_j (u_j (\theta, x)) \right. \right. \]

\[- \sum_{j=1}^{n} c_{ij} f_j (u_j (\theta - \tau (\theta), x)) \right. \]

\[- \sum_{j=1}^{n} h_{ij} \int_{\theta - \rho(\theta)}^{\theta} f_j (u_j (s, x)) \, ds \right\} \right\|^2 \].
\begin{align*}
&\leq 4E\left\| e^{\alpha t} \int_0^t e^{-q(t-\theta)\Delta} a_i (u_j (\theta, x)) d\theta \right\|^2 \\
&+ 4E\left\| e^{\alpha t} \int_0^t e^{-q(t-\theta)\Delta} \sum_{j=1}^n b_j f_j (u_j (\theta, x)) d\theta \right\|^2 \\
&+ 4E\left\| e^{\alpha t} \int_0^t e^{-q(t-\theta)\Delta} \sum_{j=1}^n c_j f_j (u_j (\theta, x)) d\theta \right\|^2 \\
&\quad - \tau (\theta, x) d\theta \right\|^2 + 4E\left\| e^{\alpha t} \int_0^t e^{-q(t-\theta)\Delta} \sum_{j=1}^n h_j d\theta \right\|^2 \rightarrow 0, \quad \text{if } t \rightarrow +\infty. \tag{30}
\end{align*}

Burkholder-Davis-Gundy inequality and Hölder inequality derive

\begin{align*}
E \left(e^{\alpha t} \left\| \int_0^t e^{-q(t-\theta)\Delta} \sigma_i (u_i (\theta, x)) d\omega_i (\theta) \right\|^2 \right) \\
\leq 8E \left(M^2 T_i^2 e^{-2(\gamma-\alpha)\sup_{\theta \in [0, T_i]} e^{\gamma \theta} \left\| u_i (\theta, x) \right\|^2} \right) \\
+ 8E \left(M^2 T_i^2 \left\| \frac{1}{4y(y-\alpha)} \right\|^2 \right), \tag{31}
\end{align*}

which together with the arbitrariness of \(\epsilon \) implies

\begin{align*}
E \left(e^{\alpha t} \left\| \int_0^t e^{-q(t-\theta)\Delta} \sigma_i (u_i (\theta, x)) d\omega_i (\theta) \right\|^2 \right) \rightarrow 0, \quad \text{if } t \rightarrow +\infty. \tag{32}
\end{align*}

Next, we may assume that \(t_{i-1} < t_i \leq T_i \) and \(t_{j-1} < t_j \leq T_j \).

In addition, one can deduce from (H1)

\begin{align*}
E \left\{ e^{\alpha t} \left\| \sum_{0 < c \leq j} e^{\beta \Delta \theta} g_i (u_i (t_k, x)) \right\|^2 \right\} \\
\leq E \left[M e^{\alpha/2} e^{-\gamma t} \left(\sum_{0 < c \leq j} M e^{\beta \Delta \theta} \left\| u_i (t_k, x) \right\| \right) \right]^2 \rightarrow 0, \quad \text{if } t \rightarrow +\infty. \tag{33}
\end{align*}

Besides, we can estimate by means of definite integral

\begin{align*}
E \left\{ e^{\alpha t} \left\| \sum_{t, \alpha_k < t} e^{\beta \Delta \theta} g_i (u_i (t_k, x)) \right\|^2 \right\} \\
\leq \epsilon G_j^2 M^4 E \left(e^{-\gamma t/2 \gamma - \alpha} \left\| \sum_{t, \alpha_k < t} \right\|^2 \right) \tag{34}
\end{align*}

Moreover, the arbitrariness of \(\epsilon \) implies

\begin{align*}
E \left\{ e^{\alpha t} \left\| \sum_{t, \alpha_k < t} e^{\beta \Delta \theta} g_i (u_i (t_k, x)) \right\|^2 \right\} \rightarrow 0, \quad \text{if } t \rightarrow +\infty. \tag{35}
\end{align*}

Hence, if \(t \rightarrow +\infty \),

\begin{align*}
E \left\{ e^{\alpha t} \left\| \sum_{t, \alpha_k < t} e^{\beta \Delta \theta} g_i (u_i (t_k, x)) \right\|^2 \right\} \\
\leq 2E \left\{ e^{\alpha t} \left\| \sum_{0 < c \leq j} e^{\beta \Delta \theta} g_i (u_i (t_k, x)) \right\|^2 \right\} \\
+ 2E \left\{ e^{\alpha t} \left\| \sum_{t, \alpha_k < t} e^{\beta \Delta \theta} g_i (u_i (t_k, x)) \right\|^2 \right\} \rightarrow 0. \tag{36}
\end{align*}

Combining (19), (20), (23), (30), (32), and (36) results in (18).

Step 3. Finally, we claim that \(\Theta \) is a contractive mapping on \(\Gamma_1 \times \Gamma_2 \times \cdots \times \Gamma_n \).

Indeed, from the above two steps, we know \(\Theta | \Gamma_i \Gamma_j \subset \Gamma_i \times \Gamma_j \times \cdots \times \Gamma_{i+1} \times \Gamma_j \times \cdots \times \Gamma_n \).

On the other hand, for any \(i \in N \) and \(u, v \in \Gamma_1 \times \Gamma_2 \times \cdots \times \Gamma_n \),

\begin{align*}
E \max_{t \in [0, T]} \left\| \Theta_i (u_i (t, x)) - \Theta_i (v_j (t, x)) \right\|^2 \\
\leq 6E \max_{t \in [0, T]} \left\| \int_0^t e^{-q(t-\theta)\Delta} a_i (u_i (\theta, x)) \right\|^2 \\
+ 6E \max_{t \in [0, T]} \left\| \int_0^t e^{-q(t-\theta)\Delta} \left(\sum_{j=1}^n b_j (f_j (u_j (\theta, x)) - f_j (v_j (\theta, x))) \right) d\theta \right\|^2
\end{align*}
+ 6E \max_{i \in \mathcal{I}, \tau} \sup_{t \in \mathcal{T}_{i \tau-}} \left\| \int_0^t e^{-\eta(\theta - \theta)} \sum_{j=1}^n \sigma_j \left(u_j (\theta, x) \right) \right. \\
\left. - f_j \left(v_j (\theta, x) \right) d\theta \right\|^2 \\
+ 6E \max_{i \in \mathcal{I}, \tau} \sup_{t \in \mathcal{T}_{i \tau-}} \left\| \int_0^t e^{-\eta(\theta - \theta)} \sum_{j=1}^n h_{ij} \right. \\
\left. \cdot \left(\int_{\theta-p(\theta)}^{\theta} \left[f_j \left(u_j (s, x) \right) - f_j \left(v_j (s, x) \right) \right] ds \right) d\theta \right\|^2 \\
+ 6E \max_{i \in \mathcal{I}, \tau} \sup_{t \in \mathcal{T}_{i \tau-}} \left\| \int_0^t e^{-\eta(\theta - \theta)} \sum_{0 \leq i \leq 2} e^{\eta t} \left[g_i \left(u_i (t, x) \right) \right. \\
\left. - g_i \left(v_i (t, x) \right) \right] \right. \\
\left. du_i (\theta) \right\|^2 \\
\geq 1 \right\| \theta \right) + 2 \right\|^2.

Besides, it follows by the Hölder inequality that
\[\mathbb{E} \max_{i \in \mathcal{I}, \tau} \sup_{t \in \mathcal{T}_{i \tau-}} \left\| \int_0^t e^{-\eta(\theta - \theta)} a_i \left(u_i (\theta, x) - v_i (\theta, x) \right) \right. \\
\left. d\theta \right\|^2 \leq M^2 \\
\cdot \frac{1}{\mathcal{F}} \left(\max_{i \in \mathcal{I}, \tau} a_i^2 \right) \mathbb{E} \max_{i \in \mathcal{I}, \tau} \left\| u_i (\theta, x) - v_i (\theta, x) \right\|^2,
\]
\[\mathbb{E} \max_{i \in \mathcal{I}, \tau} \sup_{t \in \mathcal{T}_{i \tau-}} \left\| \int_0^t e^{-\eta(\theta - \theta)} \sum_{j=1}^n b_{ij} \right. \\
\left. \cdot \left(f_j \left(u_j (\theta, x) \right) - f_j \left(v_j (\theta, x) \right) \right) \right. \\
\left. d\theta \right\|^2 \leq nM^2 \frac{1}{\mathcal{F}} \\
\cdot \max_{i \in \mathcal{I}, \tau} \left(\sum_{j=1}^n b_{ij}^2 L_j \right) \mathbb{E} \max_{i \in \mathcal{I}, \tau} \left\| u_i (t, x) - v_i (t, x) \right\|^2,
\]
\[\mathbb{E} \max_{i \in \mathcal{I}, \tau} \sup_{t \in \mathcal{T}_{i \tau-}} \left\| \int_0^t e^{-\eta(\theta - \theta)} \sum_{j=1}^n c_{ij} \right. \\
\left. \cdot \left(f_j \left(u_j (\theta - \tau (\theta), x) \right) - f_j \left(v_j (\theta - \tau (\theta), x) \right) \right) \right. \\
\left. d\theta \right\|^2 \leq nM^2 \frac{1}{\mathcal{F}} \max_{i \in \mathcal{I}, \tau} \left(\sum_{j=1}^n c_{ij}^2 L_j \right) \mathbb{E} \max_{i \in \mathcal{I}, \tau} \left\| u_i (t, x) \right. \\
\left. - v_i (t, x) \right\|^2,
\]
where we assume that \(t_{j-1} < t \leq t_j \).

In addition, it follows from Burkholder-Davis-Gundy inequality that
\[\mathbb{E} \max_{i \in \mathcal{I}, \tau} \sup_{t \in \mathcal{T}_{i \tau-}} \left\| \int_0^t e^{-\eta(\theta - \theta)} \right. \\
\left. \cdot \left[g_i \left(u_i (t, x) \right) - g_i \left(v_i (t, x) \right) \right] \right. \\
\left. du_i (\theta) \right\|^2 \leq \frac{2}{\mathcal{F}} \\
\cdot M^2 \left(\max_{i \in \mathcal{I}, \tau} \right) \mathbb{E} \max_{i \in \mathcal{I}, \tau} \left\| u_i (\theta, x) - v_i (\theta, x) \right\|^2.
\]

Now, combining (37)–(39) gives
\[\text{dist} (\Theta (u), \Theta (v)) \leq \sqrt{\kappa} \text{dist} (u, v), \]
where \(\kappa \) is defined as (6), satisfying \(0 < \kappa < 1 \). This implies that \(\Theta : \Gamma_1 \times \Gamma_2 \times \cdots \times \Gamma_n \rightarrow \Gamma_1 \times \Gamma_2 \times \cdots \times \Gamma_n \) is a contraction mapping such that there exists the fixed point \(u \equiv (u_1(t, x), u_2(t, x), \ldots, u_n(t, x)) \) of \(\Theta \) in \(\Gamma_1 \times \Gamma_2 \times \cdots \times \Gamma_n \), which implies that \(u \) is a solution of CNN (1), satisfying \(\mathbb{E} \left(e^{\eta t} \left\| \Theta (u(t, x)) \right\|^2 \right) \rightarrow 0, t \rightarrow +\infty \) so that \(\text{Emax}_{i \in \mathcal{I}, \tau} \sup_{t \in \mathcal{T}_{i \tau-}} \left(e^{\eta t} \left\| \Theta (u(t, x)) \right\|^2 \right) \rightarrow 0, t \rightarrow +\infty \). Therefore, CNN (1) is stochastically exponentially mean square stable. \qed
4. Numerical Example

Consider the following impulsive stochastic reaction-diffusion CNN with distributed delay:

\[
\begin{align*}
du_i(t, x) &= -q_i \text{div} V u_i(t, x) dt - a_i u_i(t, x) \\
&\quad - \sum_{j=1}^{n} h_{ij} \sin \left(\frac{j}{10} u_j(t, x) \right) \\
&\quad - \sum_{j=1}^{n} c_{ij} \sin \left(\frac{j}{10} (u_j(t - \tau(t), x)) \right) \\
&\quad - \sum_{j=1}^{n} \int_{t-\rho(t)}^{t} \sin \left(\frac{j}{10} u_j(s, x) \right) ds dt \\
&\quad + \sin(0.05i u_i(t, x)) du_i(t),
\end{align*}
\]

\[t \neq t_k, \quad x \in Y, \quad i \in N\]

\[u(t_k^+, x) = u(t_k^-, x) + 0.1 \sin(u(t_k, x)), \quad x \in Y, \quad k = 1, 2, \ldots\]

\[u_i(t, x) = \zeta_i(t, x), \quad (s, x) \in [-\tau, 0] \times Y\]

\[u(t, x) = 0, \quad u \in [0, +\infty) \times \partial Y,\]

where we suppose \(Y = (0, \pi), n = 2, \tau = 3, \mu = 1.5, a_i = 0.5i, \)
\(b_j = 0.01(i + j) = c_{ij} = h_{ij}, \) and \(q_i = -1.\) Then, via computing
the eigenfunctions of \(-\Delta,\) we can obtain that \(\|e^{\Delta t}\| \leq e^{-n^2 t}, t \geq 0,\) so that we can take \(\gamma = \pi^2, M = 1.\) In addition, differential
mean value theorem yields

\[
\left| \sin \left(\frac{j}{10} u_j(t, x) \right) - \sin \left(\frac{j}{10} v_j(t, x) \right) \right| \leq \frac{j}{10} |u_j(t, x) - v_j(t, x)|,
\]

and then we get \(L_j = j/10, \) \(j = 1, 2.\) Similarly, we can compute that \(G_i = 0.1i, T_i = 0.05i, \) and \(i = 1, 2.\) Finally, we can compute (6) on a computer running Matlab software,

obtaining \(k = 0.8716 \in (0, 1).\) Therefore, Theorem 5 tells us that CNN (41) is stochastically exponentially mean square stable.

Table 1 is presented to compare the complexity of neural networks investigated in various literatures via fixed point theorems and techniques.

Remark 6. Impulsive reaction-diffusion Itô-type stochastic model gives a lot of mathematical difficulties in deriving the stability criterion. Motivated by some methods and techniques of the above-mentioned literature ([3–31]), this is the first time for us to analyze such a complex model by way of fixed point theorem. Our model is closer to real engineering so that it is more complex than those of the previous literature, and we utilize Banach fixed point theorem, Hölder inequality, Burkholder-Davis-Gundy inequality, and the continuous semigroup of Laplace operators to overcome the difficulties. Besides, the distance defined in this paper satisfies the triangle inequality, which is another point different from those of previous related literatures.

5. Conclusions

Since our CNN model involves pulse and Laplacian operators, our model is different from the previous model ([15–22]), which also implies some difficulties in mathematical techniques. Motivated by the previous literature related to fixed point theory ([15–22, 25–31]), the authors employed Banach fixed point theorem, Hölder inequality, Burkholder-Davis-Gundy inequality, and the continuous semigroup of Laplace operators to derive the stochastically exponential stability criterion of impulsive stochastic reaction-diffusion cellular neural networks with distributed delay.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the National Basic Research Program of China (2010CB732501), Scientific Research Fund of Science Technology Department of Sichuan Province (2010Y0057, 2012Y010), Sichuan Educational Committee Science Foundation (08ZB002, 12ZB349, 14ZA0274), and the Initial Founding of Scientific Research for Chengdu Normal University Introduction of Talents.
References

