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The collective decision optimization algorithm (CDOA) is a new stochastic population-based evolutionary algorithm which
simulates the decision behavior of human. In this paper, amultiobjective collective decision optimization algorithm (MOCDOA) is
first proposed to solve the environmental/economic dispatch (EED) problem. MOCDOA uses three novel learning strategies, that
is, a leader-updating strategy based on the maximum distance of each solution in an external archive, a wise random perturbation
strategy based on the sparse mark around a leader, and a geometric center-updating strategy based on an extreme point. The
proposed three learning strategies benefit the improvement of the uniformity and the diversity of Pareto optimal solutions. Several
experiments have been carried out on the IEEE 30-bus 6-unit test system and 10-unit test system to investigate the performance
of MOCDOA. In terms of extreme solutions, compromise solution, and three metrics (SP, HV, and CM), MOCDOA is compared
with other existing multiobjective optimization algorithms. It is demonstrated that MOCDOA can generate the well-distributed
and the high-quality Pareto optimal solutions for the EED problem and has the potential to solve the multiobjective optimization
problems of other power systems.

1. Introduction

The classical economic dispatch (ED) of electric power
generation operating at the absolute minimum cost is one
of the mathematical optimization issues attracting many
researchers’ interests [1, 2]. However, coal, natural gas, and
petroleum remain the primary feedstock for power plants
around the world, although some countries are planning to
build several nuclear power plants and are sourcing more
of electricity from wind. The serious global environmental
problems are caused by burning fossil fuel to release several
contaminants, such as 𝑆𝑂2, 𝐶𝑂2, and 𝑁𝑂𝑥, into the atmo-
sphere. The ED problem therefore no longer is considered
alone. In this case, the environmental/economic dispatch
(EED), a short-term alternative to reduce the atmospheric
emissions, has received much attention.

The EED problem is a highly constrained conflicting
nonlinear multiobjective optimization problemwhich results
in not only greater economical benefits, but also less pollutant
emissions. Various approaches have been reported to solve

the multiobjective EED problem. Initially, some conven-
tional optimization methods such as a linear programming
method were used as the optimizing tool to optimize the
EED problem [3, 4]. However, they are not suitable for a
complex multiobjective optimization EED problem. Hence,
some heuristic search techniques especially evolutionary
algorithms (EAs) [5] and swarm intelligence algorithms (SIs)
[6] have gotten the attention of many researchers’ interests.
EAs and SIs have been successfully tried to solve the EED
problem, which can be mainly divided into two categories:

(i) The first category regards the multiobjective EED
problem as a single-objective optimization problem.
The EED problem was handled as a single-objective
problem by considering the emission as a constraint
in [7, 8]. Another technique, using the linear weighted
sum method, transforms a set of objective functions
into a single objective [9–14].This approach generally
uses the following formula to transform two objec-
tives into a single objective:
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min 𝑤𝐹 (𝑃𝐺) + (1 − 𝑤) 𝜎𝐸 (𝑃𝐺) (1)

where 𝜎 is the scaling factor which combines the total
fuel cost 𝐹(𝑃𝐺) with the total emission 𝐸(𝑃𝐺) and𝑤 is the weight factor in the range of [0, 1]. Each
objective is multiplied by a weight related to a given
value 𝑤, which usually embodies the importance of
the objective. The approach should be operated for
several times to get a set of Pareto optimal solutions
by setting different 𝑤 values. It cannot be applied to
obtain the Pareto optimal solutions for the problem
with a nonconvex Pareto optimal front.

(ii) The second category tackles the both objectives, i.e.,
fuel cost and emission simultaneously as two com-
peting objectives. Some multiobjective evolutionary
algorithms based on genetic algorithms have been
applied to generate the Pareto optimal solutions of the
EED problem, which include a niched Pareto genetic
algorithm (NPGA) [15], a nondominated sorting
genetic algorithm (NSGA) [16], a strength Pareto
evolutionary algorithm (SPEA) [17], an improved
genetic algorithm (IGA) [18], and a fast and elitist
MultiobjectiveGeneticAlgorithm (NSGA-II) [19, 20],
etc. Some other multiobjective evolutionary algo-
rithms based on particle swarm optimization, such
as an external memory based Multiobjective Particle
Swarm Optimization (MOPSO) [21], a comprehen-
sive learning particle swarm optimizer (MOCLPSO)
[22], a fuzzified multiobjective particle swarm opti-
mization (FMOPSO) [23], a multiobjective chaotic
particle swarm optimization (MOCPSO) [24], a
fuzzy clustering-based particle swarm optimization
(FCPSO) [25], a parameter-free bare-bones mul-
tiobjective particle swarm optimization algorithm
(BB-MOPSO) [26], and a cultural quantum-behaved
particle swarm optimization (CMOQPSO) algorithm
[27], have also been presented to solve the EED
problem. In addition, differential evolutions (DEs)
have also been used to solve the EED problem [28].
These algorithms have achieved good results for the
EED problem.

In this paper, a new heuristic evolutionary method called
a multiobjective collective decision optimization algorithm
(MOCDOA) is first proposed to solve the EED problem.The
paper mainly has the following four contributions:

(i) Proposing a MOCDOA: we adopt the collective
decision optimization algorithm (CDOA) [29] to
solve the multiobjective EED problem for the first
time.

(ii) Designing a leader-updating strategy: considering
the uniformity performance of approximate solu-
tions, a new technique based on the maximum
distance of each solution in the external archive is
proposed to update a global leader.

(iii) Designing a wise random perturbation strategy:
a wise random perturbation strategy based on the

sparse mark around a leader is used to enhance the
uniformity of the obtained Pareto optimal solutions.

(iv) Designing a geometric center-updating strategy:
a geometric center-updating strategy is presented
to expand the diversity performance of the Pareto
optimal set, which randomly selects an extreme point
on the Pareto optimal solutions to replace a geometric
center.

The rest of this paper is organized as follows. Section 2
formulates the environmental/economic dispatch problem.
Section 3 gives a brief review of CDOA. Section 4 presents
MOCDOA. Section 5 shows the application of MOCDOA to
solve the EED problem. Section 6 gives the corresponding
comparative results of several existing optimization methods,
and Section 7 concludes.

2. Mathematical Model of the EED Problem

Satisfying several equality and inequality constraints, the
EED problem requires minimizing simultaneously two com-
peting objective functions, the fuel cost and the emission.The
mathematicalmodel for the EEDproblem including its objec-
tive functions and constraints is described in Section 2.1 and
Section 2.2 in detail.TheEEDproblem can bemathematically
formulated as

min (𝐹 (𝑃𝐺) , 𝐸 (𝑃𝐺))
st.

ℎ (𝑃𝐺) = 0
𝑔 (𝑝𝐺) ≤ 0

(2)

where 𝐹 and 𝐸 denote total fuel cost and total emission,
respectively. ℎ and 𝑔 are the equality and inequality con-
straints, respectively.

2.1. Objective Functions

2.1.1. Fuel Cost Minimization. The total fuel cost 𝐹(𝑃𝐺) (dol-
lars per hour) is made up of 𝑛 generator costs expressed
by quadratic functions. The total fuel cost 𝐹(𝑃𝐺) can be
represented as

𝐹 (𝑃𝐺) = 𝑛∑
𝑖=1

(𝑎𝑖 + 𝑏𝑖𝑃𝐺𝑖 + 𝑐𝑖𝑃2𝐺𝑖) (3)

where the vector 𝑃𝐺 = (𝑃𝐺1, 𝑃𝐺2, ⋅ ⋅ ⋅ , 𝑃𝐺𝑛) is the real power
outputs of generators. 𝑃𝐺𝑖 is the real power output of the 𝑖th
generator. 𝑎𝑖, 𝑏𝑖, and 𝑐𝑖 are the cost function coefficients of the𝑖th generator.

2.1.2. Emission Minimization. The emission function can be
presented as the sum of all types of the emission considered,
but only the emission of nitrogen oxides𝑁𝑂𝑥 is considered in
the present study.The total emission𝐸(𝑃𝐺)(𝑡𝑜𝑛/ℎ) of nitrogen
oxides 𝑁𝑂𝑥 caused by the generators can be expressed as a
function of generator output in (4), that is, the sum of some
quadratic functions and exponential functions.
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Table 1: Generator cost and emission coefficients in the IEEE 30-bus 6-unit system.

Unit 𝑝𝑚𝑖𝑛 𝑝𝑚𝑎𝑥 𝑎𝑖 𝑏𝑖 𝑐𝑖 𝛼𝑖 𝛽𝑖 𝛾𝑖 𝜁𝑖 𝜆𝑖𝐺1 0.05 0.5 10 200 100 4.091 −5.554 6.490 2.0𝐸 − 4 2.857𝐺2 0.05 0.6 10 150 120 2.543 −6.047 5.638 5.0𝐸 − 4 3.333𝐺3 0.05 1 20 180 40 4.258 −5.094 4.586 1.0𝐸 − 6 8.000𝐺4 0.05 1.2 10 100 60 5.326 −3.550 3.380 2.0𝐸 − 3 2.000𝐺5 0.05 1 20 180 40 4.258 −5.094 4.586 1.0𝐸 − 6 8.000𝐺6 0.05 0.6 10 150 100 6.131 −5.555 5.151 1.0𝐸 − 5 6.667

𝐸 (𝑃𝐺) = 𝑛∑
𝑖=1

(10−2 (𝛼𝑖 + 𝛽𝑖𝑃𝐺𝑖 + 𝛾𝑖𝑃2𝐺𝑖) + 𝜁𝑖𝑒𝜆𝑖𝑃𝐺𝑖) (4)

where 𝛼𝑖, 𝛽𝑖, 𝛾𝑖, 𝜁𝑖, and 𝜆𝑖 are the emission function coeffi-
cients of the 𝑖th generator. The parameters 𝛼𝑖, 𝛽𝑖, 𝛾𝑖, 𝜁𝑖, and 𝜆𝑖
are shown in Tables 1 and 3.

2.2. Constraints. The power dispatch constraints include
one equality constraint on the power balance and several
inequality constraints on generation capacity.

2.2.1. Power Balance Constraint. The total power generation
must cover the power demand 𝑃𝐷 and the transmission
network loss 𝑃𝐿, namely,

𝑛∑
𝑖=1

𝑃𝐺𝑖 = 𝑃𝐷 + 𝑃𝐿 (5)

Here, in general, 𝑃𝐿 is determined by Krons loss formula
[30] as

𝑃𝐿 = 𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝑃𝐺𝑖𝐵𝑖𝑗𝑃𝐺𝑗 + 𝑛∑
𝑖=1

𝐵0𝑖𝑃𝐺𝑖 + 𝐵00 (6)

where 𝐵𝑖𝑗, 𝐵0𝑖, and 𝐵00 are the transmission network power
loss coefficients.

2.2.2. Generation Capacity Constraints. The power output of
each generator is limited by its corresponding lower and
upper bounds as shown in

𝑃min
𝐺𝑖 ≤ 𝑃𝐺𝑖 ≤ 𝑃max

𝐺𝑖 , 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛. (7)

where𝑃min
𝐺𝑖 ,𝑃max
𝐺𝑖 are theminimumandmaximumgeneration

limits of the 𝑖th generator, respectively.

3. Collective Decision Optimization Algorithm

Collective decision optimization algorithm (CDOA) [29] is
a new evolutionary method proposed by Qingyang Zhang
in 2016 [29], inspired from the decision-making behavior of
human such as holding a meeting. Each member of a group
will express and exchange their own thoughts or plans in
meeting. The best one among the resultant plans is selected
as a global optimal solution. In CDOA, an individual 𝑋𝑖
generates several candidate solutions on amultistep position-
selected scheme guided by different individuals, such as

a local leader, an others’ individual, a geometric center,
and a leader. The seven major steps of CDOA, described
briefly next, are group generation, experience-based phase,
others-based phase, group thinking-based phase, leader-
based phase, innovation-based phase, and selection.

Step 1 (group generation). CDOA uses 𝑁 individuals as
the group or population in each generation. The group
and each individual at the 𝑡th iteration are denoted by𝑝𝑜𝑝(𝑡) = {𝑋1(𝑡), . . . , 𝑋𝑖(𝑡), . . . , 𝑋𝑁(𝑡)} and 𝑋𝑖(𝑡) = {𝑥1𝑖 (𝑡),𝑥2𝑖 (𝑡), ⋅ ⋅ ⋅ , 𝑥𝐷𝑖 (𝑡)}, respectively, where 𝐷 denotes the dimen-
sion of each generation. The group is initialized as shown
in (8), so the 𝑁 individuals are uniformly distributed in the
feasible solution space.

𝑥𝑖𝑘 ∼ 𝑈 (𝑙𝑥𝑘, 𝑢𝑥𝑘) (8)

where 𝑈 is the uniform distribution and 𝑙𝑥𝑘 and 𝑢𝑥𝑘 are the
lower and upper limits of the 𝑘th dimension, respectively.

Step 2 (experience-based phase). In CDOA, personal experi-
ence represents the local leader, i.e., the personal best position(𝑋𝑏) obtained by each individual itself so far. The new
position of the individual 𝑋𝑖(𝑡) will be expressed as follows:

𝑛𝑒𝑤𝑋𝑖0 = 𝑋𝑖 (𝑡) + 󳨀→𝜇0 ⋅ 𝑠𝑡𝑒𝑝 (𝑡) ⋅ 𝑑0, 𝑑0 = 𝑋𝑏 − 𝑋𝑖 (𝑡) (9)

where 󳨀→𝜇0 is a random vector with each number uniformly
distributed in the interval (0, 1) and 𝑠𝑡𝑒𝑝(𝑡) denotes the step
size of the 𝑡th iteration.

𝑠𝑡𝑒𝑝 (𝑡) = 2 − 1.7 ( 𝑡 − 1𝑇max − 1) (10)

where 𝑇max is the maximum number of iteration.

Step 3 (others’-based phase). In the meeting, all individuals
will interact randomly. The individual 𝑋𝑗(𝑡) who is better
than the current member 𝑋𝑖(𝑡) is randomly selected from
the group. The calculation formula of updating the 𝑛𝑒𝑤𝑋𝑖0
is defined as follows:

𝑛𝑒𝑤𝑋𝑖1 = 𝑛𝑒𝑤𝑋𝑖0 + 󳨀→𝜇1 ⋅ 𝑠𝑡𝑒𝑝 (𝑡) ⋅ 𝑑1,
𝑑1 = 𝛼1 ⋅ 𝑑0 + 𝛽1 ⋅ (𝑋𝑗 (𝑡) − 𝑋𝑖 (𝑡)) (11)

where 𝑗 denotes a random integer in [1,N], 󳨀→𝜇1 is a random
vector with each number uniformly distributed in (0, 1), and𝛼1 and 𝛽1 are the random numbers in (-1, 1) and (0, 2),
respectively.
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Step 4 (group thinking-based phase). In the meeting, group
thinking will influence the decision of each individual. In
CDOA, the position of group thinking is represented by the
geometric center (𝑋𝐺) of all individuals. 𝑋𝐺 can be described
as follows:

𝑋𝐺 = 1𝑁 (𝑋1 (𝑡) , 𝑋2 (𝑡) , ⋅ ⋅ ⋅ , 𝑋𝑁 (𝑡))
= ( 1𝑁

𝑁∑
𝑖=1

𝑥1𝑖 (𝑡) , 1𝑁
𝑁∑
𝑖=1

𝑥2𝑖 (𝑡) , ⋅ ⋅ ⋅ , 1𝑁
𝑁∑
𝑖=1

𝑥𝑁𝑖 (𝑡))
(12)

Here, updating the 𝑛𝑒𝑤𝑋𝑖1 is calculated in the following
formula:𝑛𝑒𝑤𝑋𝑖2 = 𝑛𝑒𝑤𝑋𝑖1 + 󳨀→𝜇2 ⋅ 𝑠𝑡𝑒𝑝 (𝑡) ⋅ 𝑑2,

𝑑2 = 𝛼2 ⋅ 𝑑1 + 𝛽2 ⋅ (𝑋𝐺 (𝑡) − 𝑋𝑖 (𝑡)) (13)

where 󳨀→𝜇2 is a random vector with each number uniformly
distributed in (0, 1) and 𝛼2 and 𝛽2 are the random numbers
in (-1, 1) and (0, 2), respectively.

Step 5 (leader-based phase). In CDOA, the position of the
best individual in the group is represented by a leader, i.e.,
a global best position (𝑋𝐿). The next new position of 𝑖th
individual will be designed as follows:

𝑛𝑒𝑤𝑋𝑖3 = 𝑛𝑒𝑤𝑋𝑖2 + 󳨀→𝜇3 ⋅ 𝑠𝑡𝑒𝑝 (𝑡) ⋅ 𝑑3,
𝑑3 = 𝛼3 ⋅ 𝑑2 + 𝛽3 ⋅ (𝑋𝐿 (𝑡) − 𝑋𝑖 (𝑡)) (14)

where 󳨀→𝜇3 is a random vector with each number uniformly
distributed in (0, 1) and 𝛼3 and 𝛽3 are the random numbers
in (-1, 1) and (0, 2), respectively.

The leader’s mind can only be changed randomly by
himself. The leader slightly changes its position by a random
walk strategy in a local search space. In this phase, five
neighbors are generated randomly around 𝑋𝐿, as shown in

𝑛𝑒𝑤𝑋𝑞 = 𝑋𝐿 + 󳨀󳨀→𝑊𝑞, 𝑞 = 1, 2, 3, 4, 5 (15)

where 󳨀󳨀→𝑊𝑞 is a random vector with each number in (0, 1). The
next leader 𝑛𝑒𝑤𝑋𝐿 is produced in𝑛𝑒𝑤𝑋𝐿 = 𝑛𝑒𝑤𝑋𝑘,

𝑘 = 𝑚𝑖𝑛 𝑂𝑏𝑗𝐹𝑢𝑛 (𝑛𝑒𝑤𝑋𝑞) , 𝑞 = 1, 2, 3, 4, 5 (16)

where 𝑚𝑖𝑛 𝑂𝑏𝑗𝐹𝑢𝑛 is the index of a minimum objective
function value.

Step 6 (innovation-based phase). To prevent a premature
convergence, an innovation operator, which makes a small
change among one of the dimension of each individual, is
designed in CDOA. The innovation operator is similar to a
mutation operator in evolutionary algorithms to improve the
population diversity.The operator can be designed as follows:

𝑛𝑒𝑤𝑋𝑖4
= {{{

𝑛𝑒𝑤𝑋𝑖3, 𝑋𝑝𝑖4 ∼ 𝑈 (𝑙𝑥𝑝, 𝑢𝑥𝑝) , 𝑟0 < 𝑀𝑅
𝑛𝑒𝑤𝑋𝑖3, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (𝑡)

(17)

where 𝑟0 represents a random number in (0, 1), 𝑝 is a random
integer in [1,D], and𝑀𝑅 is an innovation (mutation) factor.
The𝑀𝑅 is set to 0.8 in the following algorithm.

Step 7 (selection). In the selection phase, the fitness values
in𝑋𝑖 and 𝑋𝑖4 are compared to update the population 𝑝𝑜𝑝 by
using a greedy selection.

The procedure of CDOA again and again repeats from
Step 2 to Step 7 until the terminating condition is satisfied.

4. Multiobjective Collective Decision
Optimization Algorithm

CDOA is initially designed for single-objective optimization
problems. In this paper, we extend CDOA to make it
suitable for handling multiobjective optimization problems.
Our main development of CDOA will be concerned in three
novel learning strategies, which include a leader-updating
strategy based on the maximum distance of each solution
in nondominant solution set, a wise random perturbation
strategy based on the sparse mark around the leader, and
a geometric center-updating strategy based on an extreme
point. The proposed three learning strategies are created for
improving the uniformity and diversity of the Pareto optimal
solutions. In addition, several existing techniques such as
a local leader-updating strategy, a nondominated approach,
an external elitist archive, and a circular crowded sorting
are introduced into MOCDOA. Algorithm 1 presents the
pseudocode of MOCDOA.

Similar to other evolutionary algorithms, MOCDOA can
be divided into three processes, initialization, mutation, and
selection. In the mutation phase of Algorithm 1, the main
development of the three novel learning strategies is shown
in the lines 11, 12, and 14, respectively, which are underlined
and shown in bold. Whenever the archive goes beyond its
capacity, the redundant crowded solutions will be removed
from the archive in the lines 26-27 of Algorithm 1.The details
of MOCDOA are described in this section.

4.1. Leader-Updating Strategy. In a multiobjective optimiza-
tion problem, the conflicting multiple objectives make
CDOA difficult to choose a global best position. To resolve
this problem, MOCDOA maintains an external archive to
store and update the nondominated solutions in each itera-
tion. The leader 𝑋𝐿 of each individual is selected from the
external archive to improve the uniformity and diversity of
the nondominated solutions. InMOCDOA, a newmaximum
distance (𝑚𝑑) is designed tomeasure the sparsity of solutions.
In Figure 1, the solid dots denote the solutions of the external
archive. The maximum distance of the 𝑖th solution (𝑚𝑑𝑖) is
the maximum of two side-length sums of its two adjacent
cuboids. The maximum distance of the 𝑖th solution (𝑚𝑑𝑖) is
calculated as follows:𝑚𝑑𝑖 = max (𝑢𝑑𝑖, 𝑙𝑑𝑖) 𝑖 = 1, . . . , 𝑁𝑎 (18)
where 𝑁𝑎 is the maximum capacity of the archive. The
distances of the 𝑖th solution to the upper point and the lower
point are 𝑢𝑑𝑖 and 𝑙𝑑𝑖 shown in (19) and (20), respectively.



Complexity 5

Input: input parameters𝑂𝑏𝑗𝐹𝑢𝑛,𝑁,𝐷,𝑁𝑎, 𝑇𝑚𝑎𝑥
Output: 𝑂𝑝
1:𝑁: size of the population, 𝐷: dimension of the population,𝑁𝑎: maximum capacity of the archive, 𝑇𝑚𝑎𝑥: maximum
number of iterations, 𝑝𝑜𝑝(𝑡): population in 𝑡th iteration,𝑋𝑖(𝑡): 𝑖th individual of population 𝑝𝑜𝑝(𝑡) in 𝑡th iteration,
Ar(t): external archive to store all the updated non-dominated solutions in 𝑡th iteration
2: Initialization
3: Generate an initial population 𝑝𝑜𝑝(0) = {𝑋1(0), ⋅ ⋅ ⋅ , 𝑋𝑁(0)}, 𝑤ℎ𝑒𝑟𝑒 𝑋𝑖(0) = {𝑥1𝑖 (0), ⋅ ⋅ ⋅ , 𝑥𝐷𝑖 (0)}
4:𝑋b ←󳨀 𝑝𝑜𝑝(0) % Initialize the local leader𝑋𝑏
5: 𝐹(𝑝𝑜𝑝(0)) ←󳨀 𝑂𝑏𝑗𝐹𝑢𝑛(𝑝𝑜𝑝(0)) % Evaluate the fitness of each individual
6: 𝐴𝑟(0) ←󳨀 𝑁𝑜𝑛 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑(𝑝𝑜𝑝(0)) % Return the non-dominated solutions from 𝑝𝑜𝑝0
7: while 𝑡 ≤ 𝑇𝑚𝑎𝑥 do
8: Mutation
9: 𝐴𝑟(𝑡) ←󳨀 𝑠𝑜𝑟𝑡(𝐴𝑟(𝑡)) % Sort Ar by objective functions value
10: for 𝑖 = 1 𝑡𝑜 𝑁 do
11: 𝑋𝐿𝑖(𝑡) ←󳨀 Leader updating(𝐴𝑟(𝑡)) % Find the global best of each individual 𝑋𝐿𝑖(𝑡)
12: 𝑋𝐺𝑖(𝑡) ←󳨀 Geometric center updating(𝐴𝑟(𝑡)) % Find the geometric center𝑋𝐺𝑖(𝑡)
13: if 𝑟𝑎𝑛𝑑 < 0.5 then
14: 𝑛𝑒𝑤𝑝𝑜𝑝𝑖(𝑡) ←󳨀 Leader guiding(𝑋𝐿𝑖(𝑡)) %Directed search𝑋𝐿𝑖(𝑡) neighbor
15: else
16: 𝑛𝑒𝑤𝑝𝑜𝑝𝑖(𝑡) ←󳨀 𝐼𝑛𝑑𝑖V𝑖𝑑𝑢𝑎𝑙 𝑢𝑝𝑑𝑎𝑡𝑖𝑛𝑔[𝑛𝑒𝑤𝑋𝑖0(𝑡), 𝑛𝑒𝑤𝑋𝑖1(𝑡), 𝑛𝑒𝑤𝑋𝑖2(𝑡), 𝑛𝑒𝑤𝑋𝑖3(𝑡), 𝑛𝑒𝑤𝑋𝑖4(𝑡)] % Update

the 𝑖th individual
17: Selection
18: 𝐹(𝑛𝑒𝑤𝑝𝑜𝑝(𝑡)) = 𝑂𝑏𝑗𝐹𝑢𝑛(𝑛𝑒𝑤𝑝𝑜𝑝(𝑡)) % Return the fitness value of each new population
19: for 𝑖 = 1 to𝑁 do
20: if 𝑛𝑒𝑤𝑝𝑜𝑝𝑖(𝑡) ≺ 𝑋𝑖(𝑡) then
21: 𝑋𝑖(𝑡 + 1) = 𝑛𝑒𝑤𝑝𝑜𝑝𝑖(𝑡)
22: 𝐹(𝑋𝑖(𝑡 + 1)) = 𝐹(𝑛𝑒𝑤𝑝𝑜𝑝𝑖(𝑡))
23: else if 𝑛𝑒𝑤𝑝𝑜𝑝𝑖(𝑡) ⊀ 𝑋𝑖(𝑡) 𝑎𝑛𝑑 𝑋𝑖(𝑡) ⊀ 𝑛𝑒𝑤𝑝𝑜𝑝𝑖(𝑡) then
24: Random access to the next generation
25: 𝐴𝑟(𝑡 + 1) ←󳨀 𝑁𝑜𝑛 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑(𝑝𝑜𝑝(𝑡) ∪ 𝐴𝑟(𝑡)) % Update the archive
26: if |𝐴𝑟(𝑡 + 1)| > 𝑁𝑎 then
27: 𝐶𝑖𝑟𝑐𝑢𝑙𝑎𝑟 𝑐𝑟𝑜𝑤𝑑𝑒𝑑 𝑠𝑜𝑟𝑡𝑖𝑛𝑔(𝐴𝑟(𝑡 + 1)) %Maintain the archive, where |𝐴𝑟(𝑡 + 1)| is the element number

of 𝐴𝑟(𝑡 + 1)
28: for 𝑖 = 1 to𝑁 do
29: 𝑋𝑏𝑖(𝑡 + 1) = 𝐿𝑜𝑐𝑎𝑙 𝑙𝑒𝑎𝑑𝑒𝑟 𝑢𝑝𝑑𝑎𝑡𝑖𝑛𝑔(𝑋𝑏𝑖(𝑡), 𝑋𝑖) % Update local leader
30: 𝑡 = 𝑡 + 1
31: 𝑂𝑝 ←󳨀 𝐴𝑟𝑡 and stop the algorithm %Output the obtained Pareto optimal solutions

Algorithm 1: Multiobjective collective decision optimization algorithm.

𝑢𝑑𝑖 = 𝑀∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑓𝑗 (𝑋𝑖) − 𝑓𝑗 (𝑋𝑖−1)𝑓max
𝑗 − 𝑓min

𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 (19)

𝑙𝑑𝑖 = 𝑀∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑓𝑗 (𝑋𝑖) − 𝑓𝑗 (𝑋𝑖+1)𝑓max
𝑗 − 𝑓min

𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 (20)

where𝑀 is the number of objective functions. 𝑓min
𝑗 and 𝑓max

𝑗

are the maximum and minimum values of the 𝑗th objective
function, respectively. 𝑓𝑗(𝑋𝑖) is the 𝑗th objective function
value of the 𝑖th solution.

Since there is only one neighbor point for each extreme
point in the archive, the maximum distance (𝑚𝑑) of each
extreme point is assigned with the distance between it
and its neighbor point. In MOCDOA, the leader-updating
strategy applies a roulette wheel selection method during
each individual-mutating. The probability of each solution
in the external archive to be selected as the leader is
proportional to its maximum distance. We use Function

Leader updating to select 𝑋𝐿, which is shown in the line 11
of Algorithm 1. The leader-updating strategy is illustrated as
Algorithm 2.

Here, we design a concept of sparse direction (𝑙) for the
wise random perturbation strategy in the next Section 4.3.
The 𝑢𝑑𝑖 and 𝑙𝑑𝑖 of the 𝑖th solution of the archive are compared
to record the sparse direction of the 𝑖th solution 𝑙𝑖, which
will be used as a sparse mark of the solution to guide the
perturbation in following strategy. If 𝑙𝑑𝑖 is greater than 𝑢𝑑𝑖;
that is, the gap of the 𝑖th solution for its upper neighbor
solution is larger than that for its lower neighbor solution; we
record 𝑙𝑖 = 1. Otherwise, 𝑙𝑖 = −1. For example, in Figure 1,𝑙𝑑𝐴 is greater than 𝑢𝑑𝐴 for the 𝐴th solution, so 𝑙𝐴 = 1. For
the 𝐵th solution, 𝑢𝑑𝐵 is greater than 𝑙𝑑𝐵, such that 𝑙𝐵 = −1.
The calculation formula of 𝑙𝑖 is designed as

𝑙𝑖 = {{{
1, 𝑙𝑑𝑖 > 𝑢𝑑𝑖−1, 𝑙𝑑𝑖 ≤ 𝑢𝑑𝑖 (21)
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Input: 𝐴𝑟(𝑡)
Output: 𝑋𝐿
1:𝑁𝑡 = |𝐴𝑟(𝑡)| % 𝑁𝑡 is the element number of 𝐴𝑟(𝑡)
2: for 𝑖 = 1 𝑡𝑜 𝑁𝑡 do
3: calculate𝑚𝑑𝑖 and 𝑙𝑖
4: for 𝑖 = 1 𝑡𝑜 𝑁 do % 𝑁 is size of the population
5: % 𝑋𝐿𝑖(𝑡) is selected according to the probability based on the percentage of the𝑚𝑑𝑖 as a whole
6: 𝑖𝑛𝑑𝑒𝑥𝑖 = 𝑅𝑜𝑢𝑙𝑒𝑡𝑡𝑒 𝑤ℎ𝑒𝑒𝑙 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑚𝑑)
7: 𝑋𝐿𝑖(𝑡) = 𝐴𝑟𝑖𝑛𝑑𝑒𝑥𝑖(𝑡)

Algorithm 2: Leader-updating.
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Figure 1: Calculation of maximum distance and sparse direction.

4.2.Wise RandomPerturbation Strategy. To improve the uni-
formity performance of the external archive in MOCDOA,
an individual that has the half probability to be selected is
updated by using awise randomperturbation strategy around𝑋𝐿. The perturbation method is shown in

𝑛𝑒𝑤𝑝𝑜𝑝𝑖 (𝑡) = 𝑋𝐿𝑖 (𝑡) + 𝑟1 ⋅ (𝐴𝑟𝑖𝑛𝑑𝑒𝑥𝑖+𝑙𝑖 (𝑡) − 𝑋𝐿𝑖 (𝑡)) (22)

where 𝑟1 is a randomnumber in (0, 1).The strategymakes𝑋𝐿𝑖
move to the direction of its sparse neighbor, thus generating a
new individual 𝑛𝑒𝑤𝑝𝑜𝑝𝑖, which can reduce the sparsity of the
external archive. We use Function Leader guiding, shown in
the line 14 of Algorithm 1, to update𝑋𝑖.
4.3. Geometric Center-Updating Strategy. For improving the
diversity performance of the external archive in MOCDOA,
we use Function Geometric center updating to randomly
select 𝑋𝐺 in the extreme points of the archive. Function
Geometric center updating is shown in the line 12 of Algo-
rithm 1. The calculation formula of𝑋𝐺 is designed as

𝑋𝐺 (𝑡) = {{{
𝐴𝑟1 (𝑡) , 𝑟2 < 0.5
𝐴𝑟𝑒𝑛𝑑 (𝑡) , 𝑟2 ≥ 0.5 (23)

where 𝑟2 is a random number in (0, 1).

4.4. Local Leader-Updating Strategy. The new personal best
position, i.e., the new local leader, is updated according to the
non dominated relationship between the current individual𝑋𝑖 and the old local leader𝑋𝑏𝑖 inMOCDOA. If𝑋𝑏 dominates𝑋𝑖, we keep 𝑋𝑏 in memory. If 𝑋𝑏 is dominated by 𝑋𝑖, 𝑋𝑖
is selected as a new local leader to replace the old one.
Otherwise, we randomly choice one of 𝑋𝑖 and 𝑋𝑏 as the
new local leader. The local leader-updating shown in (24) is
performed by Function Local leader updating in the line 29
of Algorithm 1.
𝑋𝑏𝑖 (𝑡 + 1)
= {{{{{{{{{

𝑋𝑏𝑖 (𝑡) , 𝑋𝑏𝑖 (𝑡) ≺ 𝑋𝑖 (𝑡)𝑋𝑖 (𝑡) , 𝑋𝑖 (𝑡) ≺ 𝑋𝑏𝑖 (𝑡)𝑋𝑏𝑖 (𝑡) 𝑜𝑟 𝑋𝑖 (𝑡) , 𝑋𝑏𝑖 (𝑡) ⊀ 𝑋𝑖 (𝑡) ∧ 𝑋𝑖 (𝑡) ⊀ 𝑋𝑏𝑖 (𝑡)
(24)

4.5. External Archive-Retaining Strategy. It is important to
retain the nondominated solutions during the entire search
process to obtain a good optimal solution set at the end of
MOCDOA. Many scholars have used the external archive
with a given maximal capacity to store and update the
nondominated solutions in each iteration. At present, the
maintenance strategy of an external archive ismostly adopted
amore efficient nondominated sorting method called the fast
nondominated sort in NSGA-II [31]. Furthermore, Deb et al.
proposed an approach based on a crowding distance, which
is usually the average distance of two neighbor points around
each solution.Once the elitist archive has reached itsmaximal
capacity, the crowding distance is adopted to remove the
extra members and thereby keep the archive in its maximum
capacity. Hence, the calculation method of the crowding dis-
tance greatly affects the distribution of the external archive.
However, the crowding distance is only calculated once in
each iteration of NSGA-II. Several adjacent solutions with
small crowding distances will be removed, which may cause
that the remaining solutions are too sparse. To overcome
the above drawback, a cyclic crowded sorting algorithm
[32], Function Circular crowded sorting in Algorithm 3, is
adopted to improve the uniformity and the diversity of the
Pareto optimal solutions.

5. Implementation of MOCDOA

In this section, the proposedMOCDOA is applied for solving
the EED problem with one equality constraint on the power
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Input: 𝐴𝑟(𝑡), 𝑁𝑎
Output: 𝐴𝑟(𝑡 + 1)
1:𝑁𝑡 = |𝐴𝑟(𝑡)| % 𝑁𝑡 is the element number of 𝐴𝑟(𝑡)
2: while 𝑁𝑡 > 𝑁𝑎 do % 𝑁𝑎 is maximum capacity of the archive
3: for 𝑖 = 1 𝑡𝑜 𝑁𝑡 do
4: 𝐴𝑟𝑖(𝑡).𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 0 % Initialize the crowding distance of 𝐴𝑟(𝑡)
5: for 𝑚 = 1 𝑡𝑜 𝑀 do % 𝑀 is the number of objective functions
6: 𝐴𝑟(𝑡) = s𝑜𝑟𝑡(𝐴𝑟(𝑡), 𝑚) % Sort 𝐴𝑟 by𝑚th objective functions value
7: 𝐴𝑟1(𝑡).𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝐼𝑛𝑓 % Set the crowding distance of extreme solutions equal to infinite
8: 𝐴𝑟𝑁𝑡(𝑡).𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝐼𝑛𝑓
9: for i=2 to Nt-1 do

10: 𝐴𝑟𝑖(𝑡).𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝐴𝑟𝑖(𝑡).𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 + 𝐴𝑟𝑖+1(𝑡).𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 − 𝐴𝑟𝑖−1(𝑡).𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐴𝑟𝑁𝑡(𝑡).𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 − 𝐴𝑟1(𝑡).𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
11: 𝑘 = 𝑚𝑖𝑛 𝐴𝑟(𝑡).𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 % Find the solution 𝑘 with the smallest crowding distance
12: 𝐴𝑟𝑘(𝑡) = [ ] %Delete the solution 𝑘 from A
13: 𝑁𝑡 = 𝑁𝑡 − 1 % Prepare for the next cycle
14: 𝐴𝑟(𝑡 + 1) ←󳨀 𝐴𝑟(𝑡)

Algorithm 3: Cycled crowding sorting.

Input: 𝑋𝑖, 𝑃𝑚𝑎𝑥, 𝑃𝑚𝑖𝑛
Output: 𝑋󸀠󸀠𝑖
1:𝑋𝑖:𝑖th individual,𝑃𝑚𝑎𝑥: the upper limits of generation capacity, 𝑃𝑚𝑖𝑛: the lower limits of generation capacity
2: 𝑒 = 𝑃𝐿 + 𝑃𝐷 − 𝑠𝑢𝑚(𝑋𝑖) % Calculate and return the error between 𝑃𝐿 + 𝑃𝐷 and the element sum of 𝑋𝑖
3: while |𝑒| > 𝜎 do % Check the feasibility of𝑋𝑖
4: 𝑘 = rand(1,𝑁) % Pick a random integer between 1 to N
5: 𝑋󸀠𝑖𝑘 = 𝑋𝑖𝑘(𝑃𝐷 + 𝑃𝐿)/𝑠𝑢𝑚(𝑋𝑖𝑘) % Adjust 𝑋𝑖 to make it satisfy the constraint
6: if 𝑋󸀠𝑖𝑘 > 𝑃𝑚𝑎𝑥𝑘 𝑜𝑟 𝑋󸀠𝑖𝑘 < 𝑃𝑚𝑖𝑛𝑘 then
7: 𝑋󸀠𝑖𝑘 = 𝑃𝑚𝑖𝑛𝑘 + rand ∗ (𝑃𝑚𝑎𝑥𝑘 − 𝑃𝑚𝑖𝑛𝑘 )
8: 𝑋𝑖𝑘 = 𝑋󸀠𝑖𝑘
9: 𝑒 = 𝑃𝐿 + 𝑃𝐷 − 𝑠𝑢𝑚(𝑋𝑖) % Calculate and return the error again

Algorithm 4: Constraint-handling.

balance. MOCDOA uses a constraint-handling mechanism
to adjust an unfeasible solution in feasible search space and
a fuzzy set theory to select a best compromise solution.
Experiment design and parameter setting are introduced in
final subsection.

5.1. Constraint-Handling. Since a resulting individual is not
always guaranteed to satisfy the equality constraint, a con-
straint-handling strategy needs to be adopted to deal with the
constrained EED problem. In order to guarantee the feasi-
bility in all solutions, a straightforward constraint treatment
method, the rejecting strategy, has been applied to handle the
constraints of the EED problem in [23, 24, 33]. However, this
approach produces the Pareto optimal solutions satisfying the
equality constraints at the slowest pace.

In MOCDOA, Function Constrint Handling is designed
to handle the equality constraint of the EED problem.
By applying Function Constrint Handling, an unfeasible
solution produced by MOCDOA can be modified into a
feasible one. The Function Constrint Handling is described
in Algorithm 4. In this model, we set 𝜎 = 1𝑒 − 12.

5.2. Compromise Solution. After obtaining the Pareto optimal
solutions, a fuzzy membership function [34] is proposed to
simulate a decision-maker’s preference and to extract a Pareto
optimal solution as the best compromise solution. Usually, a
membership function for each of the objective functions is
defined by the experiences and intuitive knowledge of the
decision-maker. In this work, a simple linear membership
function is considered for each of the objective functions.The
linear membership function is herein defined as

𝜇𝑖𝑗 =
{{{{{{{{{{{

1, 𝑓𝑗 (𝑋𝑖) ≤ 𝑓min
𝑗𝑓max

𝑗 − 𝑓𝑗 (𝑋𝑖)𝑓max
𝑗 − 𝑓min

𝑗

, 𝑓min
𝑗 ≤ 𝑓𝑗 (𝑋𝑖) ≤ 𝑓max

𝑗

0, 𝑓𝑗 (𝑋𝑖) ≥ 𝑓max
𝑗

(25)

The membership function value represents the degree of
achievement of an objective function as a value between 0 and
1. 𝜇𝑖𝑗 = 1 is expressed as completely satisfactory, and 𝜇𝑖𝑗 = 0 is
expressed as unsatisfactory. Figure 2 illustrates a fuzzy-based
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Figure 2: The fuzzy-based membership function.

membership function.The normalized membership function𝜇𝑘 is calculated at the 𝑘th solution as follows:

𝜇𝑘 = ∑𝑀𝑗=1 𝜇𝑘𝑗∑𝑁𝑡𝑖=1∑𝑀𝑗=1 𝜇𝑖𝑗 (26)

where𝑀 denotes the number of the objective functions and𝑁𝑡 is the number of the solutions in the final nondominated
front. The best compromise solution is the one getting the
highest value of 𝜇𝑘.
5.3. ExperimentDesign andParameter Setting. In this section,
the standard IEEE 30-bus 6-unit system and 10-unit system
are considered to validate the performance of the proposed
MOCDOA for solving the EED problem. To evaluate the
optimization performance of MOCDOA, two different cases
(Case1 and Case2) of the EED problem are considered for
the two test systems. In Case1, we do not consider the trans-
mission loss of power balance constraint. On the contrary, we
consider the transmission losses of power balance constraint
for Case2. The data of the IEEE 30-bus 6-unit system are
referenced in [26] and listed in Tables 1 and 2. The power
demand of the IEEE 30-bus 6-unit system is set to 2.834MW.
The data of the IEEE 30-bus 10-unit system are referenced in
[35] and listed in Tables 3 and 4. The power demand of the
IEEE 30-bus 10-unit system is set to 2000MW.WeuseMatlab
software to run MOCDOA program on a personal computer
with Pentium 2.60 GHz processor and 4.00GB RAM.

By using the orthogonal experimental method, the pa-
rameters𝑁 and𝑁𝑎 are tuned and adjusted until the optimal
settings are determined. In these two cases, the population
size (𝑁) and the maximum capacity of the archive (𝑁𝑎) are
set as 100 and 50, respectively. The maximum iterations are
restricted to 100 and 200 for Case1 and Case2, respectively.
MOCDOA is set to conduct 30 runs to collect the statistical
results for all the two test systems. For comparison, MOPSO
[21], NSGA-II [19], and PESA-II [36] are applied to solve
the EED problem and use the above same parameters.
In case of MOPSO, the inertia weight, personal learning
coefficient, global learning coefficient, and number of grids
per dimension are selected as 0.7, 1.4, 1.4, and 7 for all the two

test systems. In case of NSGA-II and PESA-II, the crossover
percentage and mutation percentage are set to 0.7.

6. Experimental Results and Analysis

The first experimental results are to verify the effectiveness
of the three learning strategies proposed in this paper. The
second experimental results are obtained on the IEEE 30
bus 6-unit system. Further, the last experimental results are
gained on the IEEE 30-bus 10-unit system.

6.1. Experimental Analysis of 	ree Learning Strategies. In
order to verify that the uniformity and the diversity of the
obtained Pareto optimal solutions are improved with three
learning strategies, one type of multiobjective unconstrained
test function is used. The function is as follows:

min 𝑓1 = 4𝑥21 + 4𝑥22
min 𝑓2 = (𝑥1 − 5)2 + 4 (𝑥2 − 5)2
st. 0 < 𝑥1 < 5,

0 < 𝑥2 < 3
(27)

The parameters including 𝑁 = 40, 𝐷 = 2, 𝑁𝑎 = 35, and𝑇𝑚𝑎𝑥 = 30 are provided. The following four algorithms are
compared for this test:

(1) The first one is a multiobjective CDOA (origin MOC-
DOA for short) obtained by transforming single-objective
CDOA directly.

(2) The second one is an origin MOCDOA + strategy1,
which is to add the leader-updating strategy into the origin
MOCDOA.

(3) The third one is an origin MOCDOA + strategy1
+ strategy2, which is to add the leader-updating strategy
and the wise random perturbation strategy into the origin
MOCDOA.

(4) The fourth one is an origin MOCDOA + strategy1
+ strategy2 + strategy3, which is the algorithm proposed
in this paper. It is to add the leader-updating strategy, the
wise randomperturbation strategy, and the geometric center-
updating strategy into the origin MOCDOA.

The Pareto optimal solutions obtained by the four algo-
rithms are depicted on Figure 3. According to the picture, we
can get two results:

(1) As can be seen from Figure 3, a set of nondominant
solutions can be found in all four methods. The Pareto front
of the origin MOCDOA + strategy1 is more uniform than
that of the origin MOCDOA, and the Pareto front of the
origin MOCDOA + strategy1 + strategy2 is more uniform
than that of the origin MOCDOA + strategy1. Furthermore,
the originMOCDOA + strategy1 and the originMOCDOA+
strategy1 + strategy2 have nomultiple nondominant solutions
converging in a small region. This shows that the strategy1
(the leader-updating strategy) and the strategy2 (the wise
random perturbation strategy) can improve the uniformity
of Pareto optimal solutions.

(2) As indicated by the first graph, the third graph, and
the fourth graph in Figure 3, the coverage of the extreme
solutions of the Pareto front for the origin MOCDOA +
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Table 2: Transmission loss coefficients in the IEEE 30-bus 6-unit system.

0.1382 −0.0299 0.0044 −0.0022 −0.0010 −0.0008−0.0299 0.0487 −0.0025 0.0004 0.0016 0.0041
B= 0.0044 −0.0025 0.0182 −0.0070 −0.0066 −0.0066 𝐵00=0.00098573−0.0022 0.0004 −0.0070 0.0137 0.0050 0.0033−0.0010 0.0016 −0.0066 0.0050 0.0109 0.0005−0.0008 0.0041 −0.0066 0.0033 0.0005 0.0244𝐵0 = 0.0107 0.0060 −0.0017 0.0009 0.0002 0.0030

Table 3: Generator cost and emission coefficients in the IEEE 30-bus 10-unit system.

Unit 𝑝𝑚𝑖𝑛 𝑝𝑚𝑎𝑥 𝑎𝑖 𝑏𝑖 𝑐𝑖 𝑑𝑖 𝑒𝑖 𝛼𝑖 𝛽𝑖 𝛾𝑖 𝜁𝑖 𝜆𝑖𝐺1 10 55 1000.403 40.5407 0.12951 33 0.0174 360.0012 −3.9864 0.04702 0.25475 0.01234𝐺2 20 80 950.606 39.5804 0.10908 25 0.0178 350.0056 −3.9524 0.04652 0.25475 0.01234𝐺3 47 120 900.705 36.5104 0.12511 32 0.0162 330.0056 −3.9023 0.04652 0.25163 0.01215𝐺4 20 130 800.705 39.5104 0.12111 30 0.0168 330.0056 −3.9023 0.04652 0.25163 0.01215𝐺5 50 160 756.799 38.5390 0.15247 30 0.0148 13.8593 0.3277 0.00420 0.24970 0.01200𝐺6 70 240 451.325 46.1592 0.10587 20 0.0163 13.8593 0.3277 0.00420 0.24970 0.01200𝐺7 60 300 1243.531 38.3055 0.03546 20 0.0152 40.2669 −0.5455 0.00680 0.24800 0.01290𝐺8 70 340 1049.998 40.3965 0.02803 30 0.0128 40.2669 −0.5455 0.00680 0.24990 0.01203𝐺9 135 470 1658.569 36.3278 0.02111 60 0.0136 42.8955 −0.5112 0.00460 0.25470 0.01234𝐺10 150 470 1356.659 38.2704 0.01799 40 0.0141 42.8955 −0.5112 0.00460 0.25470 0.01234
Table 4: Generator cost and emission coefficients in the IEEE 30-bus 10-unit system.

0.000049 0.000014 0.000015 0.000015 0.000016 0.000017 0.000017 0.000018 0.000019 0.0000200.000014 0.000045 0.000016 0.000016 0.000017 0.000015 0.000015 0.000016 0.000018 0.000018
B= 0.000015 0.000016 0.000039 0.000010 0.000012 0.000012 0.000014 0.000014 0.000016 0.0000160.000015 0.000016 0.000010 0.000040 0.000014 0.000010 0.000011 0.000012 0.000014 0.0000150.000016 0.000017 0.000012 0.000014 0.000035 0.000011 0.000013 0.000013 0.000015 0.0000160.000017 0.000015 0.000012 0.000010 0.000011 0.000036 0.000012 0.000012 0.000014 0.0000150.000017 0.000015 0.000014 0.000011 0.000013 0.000012 0.000038 0.000016 0.000016 0.0000180.000018 0.000016 0.000014 0.000012 0.000013 0.000012 0.000016 0.000040 0.000015 0.0000160.000019 0.000018 0.000016 0.000014 0.000015 0.000014 0.000016 0.000015 0.000042 0.0000190.000020 0.000018 0.000016 0.000015 0.000016 0.000015 0.000018 0.000016 0.000019 0.000044𝐵0 = 0 𝐵00 = 0

strategy1 + strategy2 marked by two green diamonds is more
widespread than that of the origin MOCDOAmarked by two
blue squares. The coverage of the extreme solutions of the
Pareto front for the origin MOCDOA + strategy1 + strategy2
+ strategy3marked by two red circles ismorewidespread than
that of the origin MOCDOA + strategy1 + strategy2. Based
on the above, one can draw a conclusion that the strategy3
(the geometric center-updating strategy) can increase the
diversity of the Pareto optimal solutions, and combining the
strategy3 with the other two strategies does not destroy the
diversity.

6.2. IEEE 30-Bus 6-Unit System. All the experiments in this
section are carried out for IEEE 30-bus 6-unit system. The
first experiment is performed to evaluate theMOCDOA’s per-
formance by comparing the results of the extreme solutions
and the compromise solutions in all cases for MOCDOA and
other algorithms. The second experiment is carried out to

evaluate the solution quality by comparing three metrics, i.e.,
SP, HV, and CM for four algorithms. The third experiment
is implemented to analyze the robustness of MOCDOA by
comparing the statistical results for the solutions of the
minimal fuel cost, the minimal emission, and the ASD of
compromise solution.

6.2.1. Comparison of Extreme Solutions and Compromise Solu-
tions. Initially, the basic CDOA is implemented to optimize
the fuel cost and the emission individually in order to
explore the extreme points of the trade-off surface in all
cases. The obtained best results are given in Table 5. The
convergence of the fuel cost and the emission objectives for
Case1 and Case2 are shown in Figure 4. CDOA with the
cost as only objective function obtains the optimal values
600.111408 $/h and 605.998370 $/h for Case1 and Case2,
respectively. The optimal values of CDOA with the emission
as only objective function are 0.194203 ton/h and 0.194179
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Figure 3: Comparisons of original MOCDOA and adding strategies MOCDOA for test1.

Table 5: IEEE 30-bus 6-unit system best solutions for cost and emission optimized individually.

Case1 Case2
Best cost Best emission Best cost Best emission𝐺1 0.109712 0.406081 0.120952 0.410946𝐺2 0.299772 0.459067 0.286307 0.463662𝐺3 0.524300 0.537945 0.583597 0.544409𝐺4 1.016191 0.382950 0.992842 0.390386𝐺5 0.524308 0.537930 0.523967 0.544445𝐺6 0.359717 0.510024 0.351894 0.515483

Fuel cost ($/h) 600.111408 638.273933 605.998370 646.207369
Emission (ton/h) 0.222145 0.194203 0.220730 0.194179



Complexity 11

20 40 60 80 100
600

602

604
C

os
t (

$/
h)

Iterations
0

0.194

0.196

0.198

Em
iss

io
n 

(to
n/

h)

0 50 100 150
605

610

C
os

t (
$/

h)

Iterations
200

0.194

0.196

Em
iss

io
n 

(to
n/

h)

Cost
Emission

Cost
Emission

Figure 4: IEEE 30-bus 6-unit system convergence of cost and emission objective functions on Case1 and Case2.
Table 6: IEEE 30-bus 6-unit system best solutions for cost with nine algorithms on Case1.

MOCDOA LP MOSST NSGA NPGA SPEA NSGA-II FCPSO BB-MOPSO𝐺1 0.110009 0.1500 0.1125 0.1567 0.1080 0.1062 0.1059 0.1070 0.1090𝐺2 0.299387 0.3000 0.3020 0.2870 0.3284 0.2897 0.3177 0.2897 0.3005𝐺3 0.521287 0.5500 0.5311 0.4671 0.5386 0.5289 0.5216 0.525 0.5234𝐺4 1.019763 1.0500 1.0208 1.0467 1.0067 1.0025 1.0146 1.015 1.0170𝐺5 0.523732 0.4600 0.5311 0.5037 0.4949 0.5402 0.5159 0.5300 0.5238𝐺6 0.359821 0.3500 0.3625 0.3729 0.3574 0.3664 0.3583 0.3673 0.3603
Emission 0.222376 0.22330 0.22220 0.22282 0.22116 0.2215 0.22188 0.2223 0.22220
Fuel cost 600.112351 606.314 605.889 600.572 600.259 600.15 600.155 600.1315 600.112󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑁∑
𝑖=1

𝑃𝐺𝑖 − 𝑃𝐷󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 0 0.026 0.2026 1𝑒 − 04 0 1𝑒 − 04 0 0 0

FEs 10,000 - - 100,000 100,000 100,000 10,000 20,000 10,000

ton/h for Case1 and Case2, respectively. Next, the results of
the multiobjective extreme solutions and the compromise
solutions are discussed. The best results in all the tables are
highlighted in bold for each case.

For Case 1, an experiment is performed to search for the
extreme solutions and the compromise solution on the Pareto
optimal set. The distribution of the nondominated solutions
in Pareto front is displayed in Figure 5, which indicates clearly
that these found solutions are almost well distributed on the
entire Pareto front of Case1. The best results for the fuel cost
and the emission (the extreme points on the Pareto front)
obtained byMOCDOA are compared with those obtained by
linear programming(LP)[4], multiobjective stochastic search
technique(MOSST) [37], NSGA [16], NPGA [16], SPEA [38],
NSGA-II [20], FCPSO [25], and BB-MOPSO [26] in Tables
6 and 7. The average satisfactory degree (ASD) [26] of the
decision-maker for the compromise solution of MOCDOA
is then calculated. The results of the compromise solu-
tions and ASDs of MOCDOA, BB-MOPSO, NSGA, NPGA,
SPEA, and FCPSO are shown in Table 8. Indeed, we use
ASDs to compare the compromise solutions of the different
algorithms.
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Figure 5: IEEE 30-bus 6-unit system Pareto front using MOCDOA
on Case1.
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Table 7: IEEE 30-bus 6-unit system best solutions for emission with nine algorithms on Case1.
MOCDOA LP MOSST NSGA NPGA SPEA NSGA-II FCPSO BB-MOPSO𝐺1 0.404380 0.4000 0.4095 0.4394 0.4002 0.4116 0.4074 0.4097 0.4071𝐺2 0.461118 0.5500 0.4626 0.4511 0.4474 0.4532 0.4577 0.4550 0.4591𝐺3 0.537554 0.4500 0.5426 0.5105 0.5166 0.5329 0.5389 0.5363 0.5374𝐺4 0.382199 0.4000 0.3884 0.3871 0.3688 0.3832 0.3837 0.3842 0.3838𝐺5 0.538118 0.5500 0.5427 0.5553 0.5751 0.5383 0.5352 0.5348 0.5369𝐺6 0.510631 0.5000 0.5152 0.4905 0.5259 0.5148 0.5110 0.5140 0.5098

Fuel cost 638.327501 639.600 644.112 639.231 639.182 638.51 638.269 638.3577 638.262
Emission 0.194203 0.19424 0.19418 0.19436 0.19433 0.1942 0.19420 0.1942 0.194203󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑁∑
𝑖=1

𝑃𝐺𝑖 − 𝑃𝐷󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 0 0.016 0.027 1𝑒 − 04 0 0 1𝑒 − 04 0 0

FEs 10,000 - - 100,000 100,000 100,000 10,000 20,000 10,000

Table 8: IEEE 30-bus 6-unit system best compromise solutions with six algorithms on Case1.
𝐺1 𝐺2 𝐺3 𝐺4 𝐺5 𝐺6 Fuel cost Emission ASD

MOCDOA 0.269923 0.372134 0.529157 0.699728 0.546824 0.416234 609.656267 0.200942 0.759457
BB-MOPSO 0.2595 0.3698 0.5351 0.6919 0.5500 0.4277 609.747 0.20083 0.7555
NSGA 0.2571 0.3774 0.5381 0.6872 0.5404 0.4337 610.067 0.20060 0.7551
NPGA 0.2696 0.3673 0.5594 0.6496 0.5396 0.4486 612.127 0.19941 0.7491
SPEA 0.2785 0.3764 0.5300 0.6931 0.5406 0.4153 610.254 0.20055 0.7527
FCPSO 0.3193 0.3934 0.5359 0.5921 0.5457 0.447 619.998 0.19715 0.7267

Table 9: IEEE 30-bus 6-unit system best solutions for cost with six algorithms on Case2.
𝐺1 𝐺2 𝐺3 𝐺4 𝐺5 𝐺6 Fuel cost Emission FEs

MOCDOA 0.120436 0.287096 0.580268 0.992202 0.525923 0.353730 605.999549 0.220643 20,000
NSGA 0.1168 0.3165 0.5441 0.9447 0.5498 0.3964 608.245 0.21664 100,000
NPGA 0.1245 0.2792 0.6284 1.0264 0.4693 0.3993 608.147 0.22364 100,000
SPEA 0.1086 0.3056 0.5818 0.9846 0.5288 0.3584 607.807 0.22015 100,000
NSGA-II 0.1182 0.3148 0.5910 0.9710 0.5172 0.3548 607.801 0.21891 10,000
FCPSO 0.1130 0.3145 0.5826 0.9860 0.5264 0.3450 607.7862 0.2201 20,000

From Table 6, it is quite evident that the proposed
MOCDOA performs better than LP, MOSST, NSGA, NPGA,
SPEA, NSGA-II, and FCPSO and almost as the same as
BB-MOPSO in terms of the minimum fuel cost. Moreover,
MOCDOA outperforms NSGA, NPGA, SPEA, and FCPSO
and as the same as NSGA-II and BB-MOPSO in terms of
the lowest fitness function evaluations (FEs). MOCDOA
performs better than LP, MOSST, NSGA, and SPEA and
almost as the same as NPGA, NSGA-II, FCPSO, and BB-
MOPSO in terms of the error of equality constraint to obtain
a Pareto front equal to 0. In Table 7, the minimum emission
and the error of equality constraint in MOCDOA are equal
to 0.194203 ton/h and 0, respectively, by using 10,000 FEs.
MOCDOA has the lowest error of equality constraint and
the minimal FEs for all the compared algorithms. Although
MOSST has the minimum emission equal to 0.19418 ton/h,
its error of equality constraint is the largest one equal to 0.027.
MOCDOA’s emission is close to theminimum emission equal
to 0.1942 ton/h while the condition of zero error of equality
constraint is satisfied. In addition, MOCDOA provides a
higher ASD of compromise solution than those of the other
five algorithms as shown in Table 8. As seen from the above

discussions, MOCDOA is more efficient than almost all the
other compared algorithms.

For Case2, this problem has been solved by using NSGA
and NPGA in [16], SPEA in [38], NSGA-II in [20], and
FCPSO in [25]. The minimum fuel cost and the minimum
emission for MOCDOA and these five algorithms are pre-
sented in Tables 9 and 10.

From Tables 9 and 10, MOCDOA obtains the minimum
fuel cost and the minimum emission equal to 605.999549
$/h and 0.194179 ton/h, respectively, by using 20,000 FEs,
which is lower than those of other five algorithms. Except
NSGA-II with the lowest FEs 10,000,MOCDOA outperforms
the other 4 algorithms in terms of FEs. Thus, the above
results illustrate the stronger competitiveness of MOCDOA
than other algorithms for the best solutions and the less
computational time.

6.2.2. Comparison of Solution Quality. Unlike single-objec-
tive optimization problems, the evaluation of solution quality
of a multiobjective optimization problem is substantially
more complex.The following criteria are generally considered
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Table 10: IEEE 30-bus 6-unit system best solutions for emission with six algorithms on Case2.
𝐺1 𝐺2 𝐺3 𝐺4 𝐺5 𝐺6 Fuel cost Emission FEs

MOCDOA 0.410372 0.466870 0.543728 0.390095 0.542564 0.515742 646.334746 0.194179 20,000
NSGA 0.4113 0.4591 0.5117 0.3724 0.5810 0.5304 647.251 0.19432 100,000
NPGA 0.3923 0.4700 0.5565 0.3695 0.5599 0.5163 645.984 0.19424 100,000
SPEA 0.4043 0.4525 0.5525 0.4079 0.5468 0.5005 642.603 0.19422 100,000
NSGA-II 0.4141 0.4602 0.5429 0.4011 0.5422 0.5045 644.133 0.19419 10,000
FCPSO 0.4063 0.4286 0.5510 0.4084 0.5432 0.4974 642.8964 0.1942 20,000

Table 11: IEEE 30-bus 6-unit system statistical results of the SP on Case2.
Best Worst Median Average Std

MOCDOA 0.003844 0.007615 0.005605 0.005636 0.000850
MOPSO 0.012307 0.023796 0.018037 0.018255 0.002701
NSGA-II 0.015961 0.023478 0.020096 0.020139 0.002054
PESA-II 0.014728 0.056674 0.023672 0.026567 0.008761

to evaluate the solution quality for multiobjective optimiza-
tion problems [39].

(i) Uniformity.Maintaining uniform distribution.
(ii) Diversity. Maximum the distribution extent of the

obtained nondominated set.
(iii) Convergence.Minimum the distance of the obtained

Pareto optimal set and the true Pareto optimal front.

To evaluate MOCDOA’s performance on the solution
quality, three well-known algorithms including MOPSO [21],
NSGA-II [19], and PESA-II [36] are selected and compared
with MOCDOA. Here, we set all algorithms to have the
same population size, archive size and maximum iteration.
The constraint-handling strategy proposed in Section 5.2 is
adopted into the four algorithms. The results of different
algorithms are compared in terms of the above three criteria.

For comparing the uniformity of Pareto optimal solu-
tions, the spacing metric (SP) [40] is adopted to measure
the uniformity of the obtained nondominated solutions. The
calculation of the SP is as follows:

𝑆𝑃 = √ 1|𝐴𝑟| − 1
|𝐴𝑟|∑
𝑖=1

(𝑑 − 𝑑𝑖)2,
𝑑𝑖 = min
𝑞𝑗∈𝐴𝑟∧𝑞𝑗 ̸=𝑞𝑖

𝑚∑
𝑘=1

󵄨󵄨󵄨󵄨󵄨𝑓𝑘 (𝑞𝑖) − 𝑓𝑘 (𝑞𝑗)󵄨󵄨󵄨󵄨󵄨
(28)

where 𝑑𝑖 refers to the Euclidean distance of two consecutive
solutions in the external archive and 𝑑 is the mean of all 𝑑𝑖.
The smaller the SP value is, themore uniform the distribution
of solutions on the obtained Pareto front is. SP=0 represents
that all solutions of the obtained Pareto front are equidistantly
spaced. Table 11 illustrates the comparison results of SP for
different algorithms. It can be seen from this table that
the average performance of MOCDOA is far better than
those of the other algorithms and the standard deviation of
MOCDOA is smallest. In order to compare intuitively the
uniformity of the solutions obtained by MOCDOA and the

other algorithms, the Pareto fronts of MOCDOA, MOPSO,
NSGA-II, and PESA-II are depicted together, as shown in
Figure 6. It can be deduced fromFigure 6 that the distribution
of MOCDOA shows an advantage over the other three
algorithms. The above discussions confirm that MOCDOA
has a better uniformity performance than the other three
algorithms.

A performance metric of the convergence and the diver-
sity of the Pareto optimal solutions, hypervolume (HV) [41],
was proposed by Zitler and Thiele. The metric calculates the
volume covered by all the solutions of a nondominated set
and a given reference point. The HV is defined as follows:

𝐻𝑉 = |𝐴𝑟|⋃
𝑖=1

V𝑖 (29)

where a hypercube volume V𝑖 is calculated with a reference
point 𝑤𝑟 and a solution 𝑋𝑖 ∈ 𝐴𝑟 as the diagonal corners of
a hypercube. For HV, a higher value is better. The reference
point𝑤𝑟 will affect the calculation of HV. In our experiments,
a same reference point is used for all the algorithms. The
statistical results of HV are compared in Table 12 among
four different algorithms. From Table 12, it can be seen
that the proposed MOCDOA obtains the largest HV values,
which means that MOCDOA has a better convergence and a
diversity performance than these of MOPSO, NSGA-II, and
PESA-II.

To evaluate the quality of the obtained Pareto optimal
solutions of the optimized problem with the unknown true
Pareto front, C-metric (CM) [42] is quite often used. It can
be used to show the dominance relationship between two
different algorithms. CM is defined as follows:

𝐶𝑀(𝐴𝑟1, 𝐴𝑟2) = 󵄨󵄨󵄨󵄨{𝑥2 ∈ 𝐴𝑟2, ∃𝑥1 ∈ 𝐴𝑟1 : 𝑥1 ≺ 𝑥2}󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝐴𝑟2󵄨󵄨󵄨󵄨 (30)

where 𝐴𝑟1 and 𝐴𝑟2 are two solution sets of two different
algorithms. 𝐶𝑀(𝐴𝑟1, 𝐴𝑟2) = 1 indicates that all solutions
in 𝐴𝑟2 are dominated by the solutions in 𝐴𝑟1. This shows
that 𝐴𝑟1 is closer to the true Pareto optimal front than 𝐴𝑟2.
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Figure 6: IEEE 30-bus 6-unit system Pareto fronts and compromise solution for the four algorithms on Case2.
Table 12: IEEE 30-bus 6-unit system statistical results of the HV on Case2.

Best Worst Median Average Std
MOCDOA 1.174740 1.172396 1.173860 1.173755 0.000630
MOPSO 1.162428 1.155299 1.159138 1.158993 0.002064
NSGA-II 1.167940 1.146496 1.162377 1.160582 0.005742
PESA-II 1.158865 1.120439 1.151565 1.148653 0.009073

𝐶𝑀(𝐴𝑟1, 𝐴𝑟2) = 0 represents that none solution in 𝐴𝑟2 is
covered by𝐴𝑟1. Table 13 shows the comparison results of CM
produced by the best solutions of different algorithms. From
this table, it can be seen that none solution in MOCDOA
is dominated by that of MOPSO, and near 4% and 2%
solutions of MOCDOA are dominated by those of NSGA-II
and PESA-II, respectively. Moreover, MOPSO, NSGA-II, and
PESA-II have 60%, 18%, and 16% solutions to be dominated

by MOCDOA, respectively. Thus, MOCDOA has a better
convergence performance than the three algorithms.

From the above analysis, it can be concluded that
MOCDOA has a better performance of uniformity, diversity
and convergence than those of the other algorithms in
Case2. More specifically, the better uniformity performance
of MOCDOA attributes to the common efforts of the
leader-updating strategy in Section 4.1 and the wise random
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Table 13: IEEE 30-bus 6-unit system statistical results of the CM on Case2.
MOCDOA MOPSO NSGA-II PESA-II

CM(MOCDOA,∗) - 0.6 0.18 0.16
CM(MOPSO,∗) 0 - 0.6 0.1
CM(NSGA-II,∗) 0.04 0.38 - 0.16
CM(PESA-II,∗) 0.02 0.36 0.12 -

Table 14: IEEE 30-bus 6-unit system statistical results of the three objectives on Case1.
Best Worst Median Average Std

Fuel cost 600.112572 600.277057 600.138081 600.159425 0.041390
Emission 0.194203 0.194325 0.194232 0.194243 3.33𝑒 − 05
ASD 0.759457 0.747940 0.754129 0.753532 0.002742

Table 15: IEEE 30-bus 6-unit system statistical results of the three objectives on Case2.
Best Worst Median Average Std

Fuel cost 605.999549 606.1162352 606.015211 606.024775 0.026281
Emission 0.194179 0.194249 0.194188 0.194197 1.98𝑒 − 05
ASD 0.758042 0.744444 0.754744 0.753989 0.003077

perturbation strategy in Section 4.2. The better diversity
performance of MOCDOA attributes to the effort of the
geometric center-updating strategy in Section 4.3. The better
convergence performance of MOCDOA attributes to the
effort of a lot of random variables in the original CDOA,
which results in the fact that the population of MOCDOA is
able to escape the local Pareto front.

6.2.3. Robustness Analysis. In order to further investigate the
robustness of MOCDOA for the EED problem, 30 trials for
each case are performed to obtain the statistical results for
the solutions of three objectives, that is, the minimal fuel cost,
the minimal emission, and the ASD of compromise solution.
Tables 14 and 15 list the statistical results of the solutions of
the three objectives, respectively. Figure 7 depicts the box and
whiskers plots of the solutions of the three objectives for two
cases.

It can easily be seen from Figure 7 that the solutions
of each trial remain close to the best obtained values for
both cases. In Table 14, the standard deviations of the three
objectives are 0.041390, 3.33𝑒 − 05, and 0.002742 for Case1.
In Table 15, the standard deviations of the three objective are
0.026281, 1.98𝑒 − 05, and 0.003077 for Case2. From Tables 14
and 15, it is clear that the standard deviations of the solutions
for the three objectives are small. This illustrates that the
proposedMOCDOA provides the high-quality solutions and
has a strong robustness for solving the constrained EED
problem.

6.3. IEEE 30-Bus 10-Unit System. In this section, two exper-
iments are carried out for IEEE 30-bus 10-unit system. The
first experiment is to minimize the fuel cost and emission
objectives by using basic CDOA individually. The second
experiment is to compare the best solutions of the fuel cost,
the best solutions of the emission, and the compromise
solutions for the four algorithms on Case1 and Case2.

The fuel cost and the emission areminimized individually
by the basic CDOA in all cases. Table 16 shows the best
solutions. As in the above case, bold values in all tables
represent the best results obtained for each case. The conver-
gence of the fuel cost and the emission objectives for Case1
and Case2 is shown in Figure 8. The minimum values to
consider the cost as only objective function are 106183.951158
$/h and 111521.601406 $/h on Case1 and Case2, respectively.
The minimum values to consider the emission as only
objective function are 3651.072701 ton/h and 3933.012596
ton/h onCase1 andCase2, respectively.Multiobjective results
obtained by optimizing the cost and the emission simultane-
ously are discussed below.

In order to express how competitive the proposed algo-
rithm is, it is compared with MOPSO, NSGA-II, and PESA-
II. For fair comparison, 30 independent optimization runs
have been carried out. The beat fuel cost, the best emission
solutions, and the compromise solutions are given in Tables
17, 18, and 19, respectively. Figure 9 shows the Pareto fronts of
MOCDOA, MOPSO, NSGA-II, and PESA-II.

From Table 17, the cost value of MOCDOA is smaller
than those of the other three algorithms in Case1. In case2,
the cost value of PESA-II is the smallest in those of the four
algorithms, and the value of MOCDOA is only worse than
that of PESA-II. From Table 18, the best emission value of
MOPSO is the smallest in those of the four algorithms for
Case1 and Case2. The best emission value of MOCDOA is
worse than that of MOPSO and is better than those of the
other two algorithms. As can be seen from Table 19, the ASD
of MOCDOA is the best in those of the four algorithms; that
is, the satisfaction ofMOCDOA is the best in those of the four
algorithms. Moreover, the EED problem is a multiobjective
problem, and the results from Table 19 are the final results
of the IEEE 30-bus 10-unit system in the two cases. It can be
seen fromFigure 9 that the Pareto front ofMOCDOA ismore
homogeneous than those of the other three algorithms. It is
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Figure 7: IEEE 30-bus 6-unit system statistical results obtained by MOCDOA on Case1 and Case2.
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Figure 8: IEEE 30-bus 10-unit system convergence of cost and emission objective functions on Case1 and Case2.

Table 16: IEEE 30-bus 10-unit system best solutions for cost and emission optimized individually.

Case1 Case2
Best cost Best emission Best cost Best emission𝐺1 54.354899 54.969212 54.237557 54.992582𝐺2 77.475920 76.928036 79.941879 78.938898𝐺3 88.276828 78.916625 104.852031 80.557478𝐺4 81.509714 78.967157 99.757723 82.288308𝐺5 66.071942 160 84.152371 159.974756𝐺6 71.847842 240 87.902733 239.943905𝐺7 287.674673 275.155451 298.512528 289.201904𝐺8 332.788181 276.363682 338.327682 296.527420𝐺9 470 379.528659 469.615571 400.653771𝐺10 470 379.171177 469.619537 398.609472

Fuel cost ($/h) 106183.951158 111870.335739 111521.601406 116381.181212
Emission (ton/h) 4278.459561 3651.072701 4545.826580 3933.012596
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Table 17: IEEE 30-bus 10-unit system best solutions for cost with four algorithms on Case1 and Case2.
Case1 Case2

MOCDOA MOPSO NSGA-II PESA-II MOCDOA MOPSO NSGA-II PESA-II𝐺1 54.158870 54.134753 53.691308 54.803688 54.127113 52.863198 51.755735 54.997131𝐺2 78.422533 78.139386 75.399985 77.335058 79.207632 78.825931 73.834838 79.995928𝐺3 97.804234 110.593988 84.188022 89.476491 94.923188 104.094617 93.469134 112.435619𝐺4 93.483470 92.354559 87.079197 62.613846 92.962807 102.294750 93.444728 85.764687𝐺5 76.419930 80.279634 110.049490 67.144314 81.761262 97.001150 111.290861 91.517523𝐺6 73.121641 70.016616 115.870843 86.785823 110.961706 95.871712 139.548089 82.535812𝐺7 280.934498 279.361011 278.237057 289.140313 299.253109 294.030349 293.422964 299.966549𝐺8 311.644912 321.711273 309.757782 335.411589 336.963929 325.450671 316.810101 339.967105𝐺9 466.664170 446.519442 437.948030 468.245354 467.138652 467.865756 456.774987 469.961342𝐺10 467.345738 466.889336 447.778284 469.043519 469.426001 468.141081 454.933764 469.969235
Emission 4252.190307 4260.635634 4001.839787 4249.562117 4463.735501 4487.984281 4294.006682 4545.689410
Fuel cost 106264.834496 106376.240273 107024.921918 106288.960020 111647.243250 111665.652452 112339.243763 111543.388926

Table 18: IEEE 30-bus 10-unit system best solutions for emission with four algorithms on Case1 and Case2.
Case1 Case2

MOCDOA MOPSO NSGA-II PESA-II MOCDOA MOPSO NSGA-II PESA-II𝐺1 52.532519 52.852002 52.991134 54.222507 53.96756 54.236469 53.956584 53.908881𝐺2 72.435520 69.597818 75.182766 75.066663 72.905941 78.981985 78.700245 77.049995𝐺3 82.379093 71.767701 75.899072 84.396494 91.018244 76.975535 84.717066 84.158908𝐺4 84.050261 81.122486 75.723913 84.227764 86.648978 77.977286 84.825929 80.928031𝐺5 152.491324 158.672750 146.318487 151.316167 159.951634 159.519513 154.470253 151.279898𝐺6 238.073874 238.166505 203.771856 230.429877 238.723255 237.781338 180.056057 235.222332𝐺7 274.238437 264.847460 268.891862 271.546877 276.910571 276.088787 299.343585 290.055655𝐺8 265.509554 286.431874 305.379732 277.395716 298.133654 300.031806 307.019564 304.265163𝐺9 404.020356 391.188744 397.523330 384.398490 389.569294 405.729260 425.923887 403.498611𝐺10 374.269061 385.352658 398.317844 386.999443 413.796996 414.886666 414.052021 401.556885
Fuel cost 111555.483102 111696.091418 110017.658015 111208.638485 116322.893631 116209.080846 114211.583909 115939.573531
Emission 3680.578627 3667.508603 3728.840966 3681.510679 3950.764391 3945.408627 4048.348353 3960.706739

Table 19: IEEE 30-bus 10-unit system best compromise solutions with four algorithms on Case1 and Case2.
Case1 Case2

MOCDOA MOPSO NSGA-II PESA-II MOCDOA MOPSO NSGA-II PESA-II𝐺1 51.811253 54.146837 51.986438 54.500735 53.019793 54.564607 54.852490 54.399261𝐺2 74.716733 79.720887 73.179620 76.228593 75.439733 73.581243 76.037006 77.493806𝐺3 81.292214 83.454045 84.019834 82.014741 89.556375 88.832532 88.950481 87.999806𝐺4 82.075395 75.651603 82.096182 81.748678 86.966333 87.819192 89.313517 87.373982𝐺5 121.509751 144.184062 131.099548 121.142989 137.307583 128.411293 136.436222 120.078071𝐺6 147.511266 148.565014 147.290760 139.813680 147.649522 144.095165 155.293274 142.652156𝐺7 280.003081 284.922355 287.204027 288.236121 289.584082 298.618120 296.733338 297.184408𝐺8 307.750415 293.335856 295.380918 299.231441 322.652284 321.940573 318.147618 330.804592𝐺9 432.468854 407.299855 424.290718 421.127067 442.611979 443.421947 434.291352 445.836158𝐺10 420.861036 428.719484 423.451949 435.955950 439.648299 443.427277 433.995612 441.036231
Fuel cost 107838.048975 108390.120075 108052.518200 107665.729718 112729.353799 113274.171282 113135.673565 112556.796831
Emission 3891.545095 3827.895782 3867.175411 3900.324575 4180.868813 4208.176152 4152.140421 4231.601876
ASD 0.6810 0.6279 0.5842 0.6581 0.6802 0.6566 0.5730 0.6471
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Figure 9: IEEE 30-bus 10-unit system Pareto fronts and compromise solution for the four algorithms on Case2.
quite evident that the proposed MOCDOA performs better
than the other three algorithms. Combining the above results,
we can see that MOCDOA is more efficient than almost the
other three compared algorithms.

7. Conclusions

A novel algorithm MOCDOA presented in this paper is
successfully employed to solve the environmental/economic
power dispatch (EED) optimization problemwith constrains.
The algorithm extends the single-objective collective decision
optimization algorithm to solve the multiobjective optimiza-
tion problems for the first time. In order to enhance the
uniformity of the obtained Pareto optimal solutions, two
learning strategies are adopted, which are a leader-updating

strategy based on maximum distance to measure the sparse
degree of solutions and a wise random perturbation strategy
based on the sparse mark to search the area around a leader.
Furthermore, an extreme point of the nondominated solu-
tions inMOCDOA is picked at random to replace a geometric
center in CDOA, which can improve the diversity of Pareto
optimal solutions. In addition, a new constraint-handling
strategy to deal with the equality constraint of the EED
problem and an established cyclic crowded sorting method
to retain the external archive are designed in MOCDOA.
The IEEE 30-bus 6-unit system and 10-unit system are used
to investigate the effectiveness of the proposed MOCDOA.
The results ofMOCDOA’s extreme solutions and compromise
solutions are compared with those existing results obtained
by other eight established algorithms. The compared results
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exhibit that MOCDOA has a good compromise solution
and highly diverse Pareto optimal solutions in the lossless
and loss-considered cases. Compared with other well-known
algorithms for three metrics, SP, HV, and CM, MOCDOA
reveals its superior characteristics and strong robust in the
EED problem. It can be concluded that MOCDOA has the
potential to be applied for solving some other multiobjective
power system optimization problems.
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