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Discrete manufacturing products are often assembled from multiple parts through a series of discrete processes. How to effectively
configure resources in a discrete manufacturing environment is an important research topic worthy of attention. Based on an
in-depth analysis of the discrete manufacturing operation model and the manufacturing resource allocation process, this
paper fully considers the uncertainty factors of the manufacturing resource customers and the interests of the manufacturing
resource suppliers and proposes a bilevel planning model under a fuzzy environment that comprehensively considers the
customers’ expectation bias and the suppliers’ profit maximization. The method firstly uses a language phrase to collect the
language evaluation of the customers and suppliers for manufacturing tasks and uses a trapezoidal fuzzy number to convert
the language evaluation phrase into a value that can be calculated. Then, we use the prospect theory to optimize the
constraint indicators based on the language evaluation of customers and suppliers. Next, the bilevel planning model for
optimal configuration of manufacturing resources in discrete manufacturing environment is established under the
consideration of the respective interests of both the customers and the suppliers, and the fast nondominated sorting genetic
algorithm (NSGA-II) is used to solve the model. Finally, an example is given to verify the validity and feasibility of the model.

1. Introduction

With the rapid economic growth, customer demand for
products has become more diverse. How to effectively grasp
customer demand, shorten lead time, lower production cost,
and increase product quality are key factors for companies to
achieve sustainable development [1]. Due to unpredictable
market changes, this requires the manufacturing systems to
be able to rapidly reconstruct in response to rapid market
changes. Discrete manufacturing has gradually become the
mainstream model of manufacturing industry because of its
advantages such as noncontinuity and reconfigurability [2].
With lots of manufacturing units that provide the same
functionality but have different parameters in a discrete
system, effective resource configuration which can reflect
customer needs is often considered as a key technology [3].

Manufacturing resource configuration (MRC) plays a
very important role in discrete systems, especially when
manufacturing systems have to cope with shorter product life
cycles [4]. In order to fulfill the dynamic customer needs, it
always needs discrete systems to invoke several manufactur-
ing units in sequence and combine them together fast. Due
to complexity and diversity of manufacturing resources,
resource optimal configuration has become a key issue in
discrete systems and has been widely studied in both indus-
trial community and academia. Despite of significant prog-
ress achieved by the researchers in manufacturing resource
configuration, grey relational analysis [5], manufacturing
grids [6], the idea of Pareto [7], graph theoretic methods
[8], artificial intelligence-based methods [9], and other
methods have been proposed successively. Most of current
MRC algorithms where the data of MRC are in the form of
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real number are not suitable for discrete systems environ-
ment because the MRC of discrete systems is often fuzzy
and uncertain. For example, when MRD describe the quality
of products, they can better express their customers’ percep-
tion by using language evaluation words of “good,” “bad,”
and so on. Therefore, this paper proposes a resource optimi-
zation configuration that considers the customers’ expecta-
tion bias and considers the suppliers’ profit maximization
under fuzzy environment.

The remainder of this paper is organized as follows. After
reviewing the related literature in Literature Reviews, some
basic theories such as prospect theory and bilevel program-
ming model are introduced in Preliminary Knowledge. Prob-
lem Description and Symbol Introduction presents the issues
of the thesis research and some basic symbols. In The Pro-
posed Method, it proposes a novel method for discrete
manufacturing resource optimization configuration under
fuzzy environment. An illustrative example is given to dem-
onstrate the use of the proposed method in Illustrative
Example. Conclusions and discussions are drawn with brief
comments in Conclusions and Discussion.

2. Literature Reviews

MRC has emerged because of the need for manufacturing
organizations to cope with shorter product life cycles, time-
to-market, and a shift to respond to demands for MRD
[10]. In the past years, many approaches, models, and meth-
odologies have been proposed for solving manufacturing
resource configuration problems. Among them, the main
research algorithms are as follows:

(i) Grey relational analysis

(ii) Manufacturing grid

(iii) The idea of Pareto

(iv) Graph theoretic methods

(v) Artificial intelligence-based methods

Zhang used grey relational analysis to further study
manufacturing machine and manufacturing cell (MC) of
multigranularity resource configuration process. During
resource modeling, advanced information and sensor tech-
nologies are adopted to construct the information models
of resources, which make the traditional production process
more transparent, traceable, and on-line controllable [5].
Based on the quantum evolution theory, Zhang and Hu
proposed a hybrid chaotic quantum evolutionary algorithm
(CQEA) for resource combinatorial optimization (RCO)
problems. Using an example to prove the proposed CQEA
is effective, efficient, and scalable for the RCO problem in
manufacturing grid system [6]. Li et al. gave a resource
configuration method based on binary decision diagram
(BDD) which is a directed acyclic graph (DAG) based on
Shannon’s decomposition. This method extends the scale of
the reliability system. Through the results of three case
studies, it is found that the decision graph expansion method
is more computationally efficient than the traditional BDD

[7]. Xiang et al. introduce a new multiobjective optimization
algorithm based on the combination of the idea of Pareto
solution and group leader algorithm (GLA), which study of
quality of service (QoS) and energy consumption assessment
(EnCon) [8]. Tao et al. gave a parallel intelligent algorithm of
resource configuration, which can minimize implementation
time and cost and maximize the reliability of MGrid resource
service composition paths [9].

Although there are many research results on the optimal
configuration of resources, there are two obvious shortcom-
ings in the current research results. First of all, the existing
research results can promote and facilitate quicker and smar-
ter decisions for service composition, but it cannot play any
role in the fuzzy problem in the discrete system. That is, most
of the existing research methods use real number, but the
evaluation of manufacturing resources in discrete systems is
often fuzzy and uncertain. Secondly, most of the existing
research results are single objective, which can only consider
the interests of one of the MRD or the MRP, and there are a
few multiobjective research results, which consider the inter-
ests of both the MRD and the MRP, but when modeling, the
multiobjective is converted into a single objective by using
the weighted operator, and it is not truly multiobjective.

This paper proposes a bilevel programming model
considering customer expectation under a fuzzy environ-
ment. Based on the prospect theory, we calculate the
expected deviations of cost, quality, time, and green indica-
tors of manufacturing resource customers and establish the
objective function, then considering the efficiency, coordi-
nation, agility indicators of the manufacturing resource
suppliers, we establish the objective function. Based on
bilevel programming theory, the objective function and con-
straint conditions of MRD and MRP are established, respec-
tively, and the fast nondominated sorting genetic algorithm
(NSGA-II) is used to solve the model.

3. Preliminary Knowledge

3.1. Trapezoidal Fuzzy Number and Language
Evaluation Phrases

3.1.1. Trapezoidal Fuzzy Numbers. Let A be a fuzzy set, and a
fuzzy subset a of A is defined with a membership function
va x that maps each element x in a to a real number in the
interval [0, 1]. The function value of va x signifies the grade
of membership of x in a [11]. A trapezoidal fuzzy number a
represented with four points as follows: a = a1, a2, a3, a4 ,
a1 ≤ a2 ≤ a3 ≤ a4 (see Figure 1). Its membership function
va x is defined as

va x =

0, x < a1,
x − a1

a2 − a1
, a1 ≤ x ≤ a2,

1, a2 ≤ x ≤ a3,
x − a4

a3 − a4
, a3 ≤ x ≤ a3,

0, a4 ≤ x,

1
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where a1, a2, a3, and a4 are real numbers and these constants
reflect the fuzziness of the evaluation data [12]. As shown in
Figure 1, the trapezoidal fuzzy numbers can be denoted by
a1, a2, a3, a4 . The x in interval a2, a3 gives the maximal
grade of va x , that is, va x = 1, and it is the most probable
value of the evaluation data. a1 and a4 are the lower and
upper limits of the available area for the evaluation data,
and they reflect the fuzziness of the evaluation data. If a2 =
a3, then a = a1, a2, a3, a4 is reduced to a triangular fuzzy
number a = a1, aM , a4 , where aM = a2 = a3.

Let a = a1, a2, a3, a4 and b = b1, b2, b3, b4 . When a > 0
and b > 0, the basic arithmetic operations are as follows [13]:

(1) a + b = a1 + b1, a2 + b2, a3 + b3, a4 + b4

(2) a − b = a1 − b1, a2 − b2, a3 − b3, a4 − b4

(3) a × b = a1 × b1, a2 × b2, a3 × b3, a4 × b4

(4) a/b = a1/b4 , a2/b3 , a3/b2 , a4/b1

Definition 1 (see [14]). There are two trapezoidal fuzzy num-
bers a = a1, a2, a3, a4 and b = b1, b2, b3, b4 . When a1 ≥ b4,
it can be said that a is greater than b and recorded as a > b;
when a1 = b1, a2 = b2, a3 = b3, and a4 = b4, it can be said that
a is equal to b and recorded as a = b; when b1 ≥ a4, it can be
said that a is less than b and recorded as a < b.

Definition 2 (see [14]). There are two trapezoidal fuzzy num-
bers a = a1, a2, a3, a4 and b = b1, b2, b3, b4 . The distance
between the trapezoidal fuzzy numbers a = a1, a2, a3, a4
and b = b1, b2, b3, b4 is defined as d a, b .

d a, b = a − b

=
1
3

a1 − b1
2 + a2 − b2

2 + a3 − b3
2 + a4 − b4

2

2

3.1.2. Language Evaluation Phrases. Let G = g0, g1,… , gl
be the preestablished finite and totally ordered linguistic term
set with odd cardinalities, where gi denotes the ith linguistic
term of set G, and l + 1 is the cardinality of G. The middle
term in linguistic term set G is thought to be represented an
assessment of “approximately 0.5” and the remaining terms
of G are thought to be placed around it symmetrically [15].

For example, a linguistic term set with seven terms can be
expressed as follows.

Let G = g0, g1, g2, g3, g4, g5, g6 be a linguistic term
set, where g0 = very unsatisfied (VU); g1 =unsatisfied (U);
g2 = slightly unsatisfied (SU); g3 =middle (M); g4 = slightly
satisfied (SS); g5 = satisfied (S); g6 = very satisfied (VS).

Therefore, gi can be approximately expressed as a trian-
gular fuzzy number a = a1, a2, a3, a4 using the following
formula [16]:

a = a1, a2, a3, a4

= max
2i − 1
2l + 1

, 0 ,
2i

2l + 1
,
2i + 1
2l + 1

, min
2i + 2
2l + 1

, 1

3

For example, by (3), each linguistic term in a linguistic
term set with seven terms, G = g0, g1, g2, g3, g4, g5, g6 ,
can be expressed as the corresponding trapezoidal fuzzy
numbers listed in Table 1, where l = 6 and i = 0, 1, 2,… , 6.

3.2. Prospect Theory. Tversky and Kahneman believe that the
actual decision-making behavior of an individual under
uncertainty is deviated from the basic principle of expected
utility. The uncertainty foreground f is a function from the
natural state set S to the result set X, that is, f S→ X. The
foreground f is a sequence of xi, Si sequences, where Si is
a division of S which is called Si event. When event Si occurs,
it produces a result of xi. If i > j, then xi > xj. The result xi
of each foreground is arranged in ascending order, that is,
x−m ≤ x−m+1 ≤⋯≤ x0 ≤ x1 ≤⋯ ≤ xn. If you choose x0 as
the reference point and its value is “0,” the profit is xi > 0
and the loss is xi < 0.

In 1992, Tversky and Kahneman proposed the cumula-
tive prospect theory [17] based on the prospect theory [18].
Cumulative prospect theory has introduced capacity theory,
which can better solve the problem of dominant advantage
and deal with problems with multiple results. The capacity
value can be expressed as w+ and w−, then the value of the
foreground f = xi, Si , −m ≤ i ≤ n is expressed as

V f =V f + +V f − , 4

where V f + and V f − can be obtained by (5) and
(6), respectively.

1

x

0 a1 a1 a1 a1

v a
 (x

)

Figure 1: A triangular fuzzy number a.

Table 1: Linguistic scales.

Linguistic variables and semantics Trapezoidal fuzzy numbers

g0 = very unsatisfied (VU) (0, 0, 0.077, 0.154)

g1 = unsatisfied (U) (0.077, 0.154, 0.231, 0.308)

g2 = slightly unsatisfied (SU) (0.231, 0.308, 0.385, 0.462)

g3 =middle (M) (0.385, 0.462, 0.538, 0.615)

g4 = slightly satisfied (SS) (0.538, 0.615, 0.692, 0.769)

g5 = satisfied (S) (0.692, 0.769, 0.846, 0.923)

g6 = very satisfied (VS) (0.846, 0.923, 1, 1)

3Complexity



V f + = 〠
n

i=0
w+

i v xi , 5

V f ‐ = 〠
m

i=0
w−

i v xi 6

Here, w+
i =w+ Si ∪⋯∪ Sn −w+ Si+1 ∪⋯ ∪ Sn , 0 ≤ i ≤

n − 1; w−
i =w− S−m ∪⋯∪ Si −w− S−m ∪⋯ ∪ Si−1 , 1 −m ≤

i ≤ 0.
If the result of event Si is probabilistic, the decision

problem can be seen as a probabilistic prospect, that is,
f = xi, Si → f = xi, pi . Here, p Si = pi represents the
probability of occurrence of event Si. Under these cir-
cumstances, w+

i =w+ pi ∪⋯ ∪ pn −w+ pi+1 ∪⋯∪ pn , 0 ≤
i ≤ n − 1; w−

i =w− p−m ∪⋯ ∪ pi −w− p−m ∪⋯∪ pi−1 , 1 −
m ≤ i ≤ 0.

The core content of the cumulative prospect theory is the
value function v and the weight function p, which can be
expressed as

V f = 〠
n

i=−m
v xi pi 7

3.2.1. The Weight Function. The weight function converts the
probability into the decision weight, so the calculation
formulas for the probability weight of the profit and loss are

p+1 =
pγ1

pγ1 + 1 − p1
γ 1/γ , 8

p−2 =
pδ2

pδ2 + 1 − p2
δ

1/δ , 9

where p is the probability; γ and δ are that parameters
that indicate the degree of curvature of the probability
weight function.

3.2.2. The Value Function. A great breakthrough in the
expectation theory is to replace the traditional utility func-
tion with a value function, so that the carriers concerned
can be implemented in the value change rather than the final
amount [19]. The value function is to convert surface value
into decision value. The specific form of the value function
of Tversky and Kahneman is [17]

v x =
xa, x ≥ 0,

−λ −x β, x < 0
10

Here, when x ≥ 0, v x indicates profit; when x < 0, v x
indicates loss. α and β indicate the degree of roughness of
the value function in the region of profit and loss, that is,
the rate of decline in the sensitivity of decision-makers, 0 <
α < 1 and 0 < β < 1 [20]. λ indicates that the loss area of the
value function is steeper than the income area, that is, it
reflects the degree of loss avoidance of decision-makers. If
λ > 1, it denotes that the decision-maker is more sensitive
to the loss. People tend to risk gambling when faced with
conditions of considerable loss but tend to accept certainty

profits when faced with fairly favorable earnings. The happi-
ness caused by profit is not equal to that caused by the same
amount of loss. The latter is greater than the former [21].

When people evaluate a thing or make a choice, they
always intentionally or unintentionally compare it with a
certain reference, which is called the reference point from
the definition of mathematics. The reference point is a very
important feature of the value function, because the profit
or loss is always compared with a certain reference point.
The value of the profit or loss from the reference point is
located on the right side of the profit or loss to indicate
positive evaluation, while the left side of the profit or loss
indicates negative evaluation [22]. The reference point is
used as an evaluation criterion. It is subjectively determined
by an individual and will change due to different evaluation
topics, environmental time, and the like.

This paper selects the expectations of MRD as a reference
point for the value function. At the same time, we divide
the decision indicators into benefit type and cost type.
The profitability index means that the larger the index
value, the better; and the cost index means that the
smaller the index value, the better. According to (7) and
Definition 2, the value function of the profitability index
and cost index is, respectively,

Vr1
ijk =

hrijk − θrik
αk

, hrijk − θrik ≥ 0,

−λk θrik − hrijk
βk

, hrijk − θrik < 0,
11

Vr2
ijk =

θik − hijk
αk , hijk − θik ≤ 0,

−λk hijk − θik
βk

, hijk − θik > 0,
12

where θrik is the reference point (i.e., expectation) given by the
MRD Bk for the r index of the manufacturing task TSi; h

r
jk

indicates that the r index of the selected manufacturing unit
MSij gives the manufacturing resource customers’ perception
after completing the manufacturing task. When hrijk − θrik ≥ 0,
Vr1

ijk and Vr2
ijk are referred to as the value of the profit gener-

ated by the MAD relative to the reference point θrik; on the
contrary, when hrijk − θrik < 0, Vr1

ijk and Vr2
ijk are referred to as

the value of the loss generated by the MAD relative to the
reference point θrik; α

k and βk are the degree of roughness
of the profit area and the loss area of the value function,
and λk is the loss aversion coefficient [20, 21]. In actual
decision analysis, these parameters are usually obtained by
nonlinear regression of experimental data [23].

3.3. The Bilevel Programming.Manufacturing unit configura-
tion is the main form of discrete manufacturing tasks. The
process of optimization selection belongs to the typical multi-
objective optimization problems (MOP). The traditional
MOP solution is to convert MOP into single-object problem
solving. Common methods include the main target method,
linear weighting method, and hierarchical optimization
method. But the discrete manufacturing unit configuration
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optimization process involves the interests of the cus-
tomers and suppliers, because the customers and suppliers
each have a part of the optimization variables, each repre-
sents their own interests, and each variable exists between
influences and constraints, and it cannot be solved using
traditional methods.

The bilevel programming [24] model is a hierarchical
model with a master-slave hierarchical structure. In the bile-
vel programming model, the upper and lower decision-
makers have their own objective functions and constraints.

The upper decision-maker makes decisions firstly.
According to their objective functions and constraints, the
lower decision-maker obtains the optimal solutions within
the possible range and sends back their own optimal
solutions to the upper decision-maker. Then, the upper
decision-maker obtains the global optimal solution of the
problem within the possible scope based on the optimal
solutions of the lower decision-maker. The mathematical
description of the bilevel programming model is as follows:

U min
y

 Z x, y

s t  G x, y £0,

L min
y

 f x, y

s t  g x, y ≤ 0,

13

where (U) is the upper plan and (L) is the lower plan; Z is the
objective function of the upper plan, x is the determinate
variable of the upper plan, and G is the constraint condition
of the decision variable x; z is the objective function of the
lower plan, y is the decision variable of the lower plan, g is
the constraint condition of the decision variable y, and the
lower decision variable y is the function of the upper level
decision variable x, that is, y= y(x).

The upper and lower optimization problems are rela-
tively independent, and their optimization processes are
dependent on each other, so the bilevel programming
problems cannot usually be independently solved layer by
layer. Not only the interests of MRD but also the interests
of MRP must be taken into account in a discrete manufactur-
ing environment. The idea of bilevel programming is used to
solve the problem of optimal configuration of manufacturing

unit in discrete manufacturing environments, as shown
in Figure 2.

4. Problem Description and
Symbol Introduction

The optimal configuration of manufacturing resources in
discrete environments refers to the process of configur-
ing reasonable manufacturing resources or manufacturing
resource combinations according to different manufacturing
tasks [5]. After a discrete manufacturing task is issued, the
MRP decomposes the total manufacturing task into a
set of manufacturing subtasks according to the decompo-
sition preferences. According to the matching principle of
manufacturing resources, we find all manufacturing units
that can meet the manufacturing subtasks and form a set of
manufacturing units. Considering the profit of MRD and
MRP, we select the optimal set of manufacturing units to
form the optimal manufacturing resource configuration, as
shown in Figure 3. With the emergence and development
of networked manufacturing technologies, manufacturing
units are not only confined to the internal structure of a
single company but are also composed of multiple companies
in different geographic locations, so the manufacturing
resource optimization configurations are distribution, het-
erogeneity, and dynamics.

Compared with the existing method for optimal configu-
ration of manufacturing resources, this paper proposes an
optimization algorithm for manufacturing resources in a
fuzzy environment that considers the interests of both
MRD and MRP. Firstly, the MRP decomposes the MRD’s
product demand for the MRP (i.e., the total manufacturing
task) according to design preferences and obtains a set of
manufacturing subtasks. Secondly, we use the existing
infrastructure to match the manufacturing subtasks with
the existing manufacturing units. A set of manufacturing
units for each subtask is obtained. Next, a questionnaire is
used to obtain the MRP and MRD’s linguistic evaluation of
each manufacturing unit, and u a trapezoidal fuzzy number
is used to translate the language phrase into numerical values.
Then, we obtain the customer’s expected deviation value for
each manufacturing unit based on the prospect theory. On
this basis, a bilevel planning model that considers the

Manufacturing resource demander (MRD)
decision indexes: C, T, Q, G

Manufacturing resource provider (MRP)
decision indexes: E, F, R

Constraint Feedback

The upper level
optimization object

The lower level
optimization object

Figure 2: Schematic diagram of the bilevel programming.
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interests of both MRD and MRP was established and solved
using NSGA-II algorithms. Finally, the resource configura-
tion of aircraft-bearing processing was taken as an example
to demonstrate the feasibility of the method.

(i) B = B1, B2,… , Bb is a set of manufacturing
resource customers (MRD), where Bk denotes
the kth manufacturing resource customers, k =
1,… , b.

(ii) TS = TS1, TS2,… , TSn is a set of manufacturing
subtasks, where TSi denotes the ith manufacturing
subtasks, i = 1,… , n.

(iii) MSi = MSi1, MSi2,… , MSimi
is a candidate

manufacturing unit set of the ith manufacturing
subtasks, which can provide a similar function.
Where MSij denotes the jth manufacturing units
of the ith manufacturing subtasks, i = 1,… , n and
j = 1,… ,mi.

(iv) Ci = Ci1, Ci2,… , Cimi
is a cost set of the ith

manufacturing subtasks, where Cij denotes the
cost of the jth manufacturing units of the ith
manufacturing subtasks, i = 1,… , n and j =
1,… ,mi.

(v) Ti = Ti1, Ti2,… , Timi
is a time set of the ith

manufacturing subtasks, where Tij denotes the
time of the jth manufacturing units of the ith
manufacturing subtasks, i = 1,… , n and j =
1,… ,mi.

(vi) Qi = Qi1,Qi2,… ,Qimi
is a quality set of the

ith manufacturing subtasks, where Qij denotes

quality of the jth manufacturing units of the
ith manufacturing subtasks, i = 1,… , n and j =
1,… ,mi.

(vii) Gi = Gi1,Gi2,… ,Gimi
is a green set of the ith

manufacturing subtasks, which is the set of envi-
ronmental protection, where Gij denotes green of
the jth manufacturing units of the ith manufactur-
ing subtasks, i = 1,… , n and j = 1,… ,mi.

(viii) Ei = Ei1, Ei2,… , Eimi
is an efficiency set of the

ith manufacturing subtasks, where Eij denotes
efficiency of the jth manufacturing units of the
ith manufacturing subtasks, i = 1,… , n and j =
1,… ,mi.

(ix) Fi = Fi1, Fi2,… , Fimi
is an agility set of the

ith manufacturing subtasks, where Fij denotes
agility of the jth manufacturing units of the
ith manufacturing subtasks, i = 1,… , n and j =
1,… ,mi.

(x) Ri = Ri1, Ri2,… , Rimi
is a coordination set of the

ith manufacturing subtasks, where Rij denotes
coordination of the jth manufacturing units of
the ith manufacturing subtasks, i = 1,… , n and
j = 1,… ,mi.

5. The Proposed Method

5.1. Discrete Manufacturing Index Optimization Based on
Prospect Theory. Prospect theory thinks that people are
bounded rational. For example, when a person gains or
loses the same item, the loss caused by the loss is much

Manufacturing 
resource demander 

(MRD)
Manufacturing task 

decomposition

Manufacturing 
subtasks

TS1

TSn

TSi

.

.

.

.

.

.

Resource matching (resource allocation)

Manufacturing units

MSn1 MSnj MSnmi
. . . . . .

MSi1 MSij MSimi
. . . . . .

MS11 MS1j MS1mi
. . . . . .

.

.

.

.

.

.

Flowchart drawing

The upper level and
lower level optimizations

The upper level and
lower level constraints

Optimal resource 
configuration

Resource configuration

Manufacturing 
total tasks

Figure 3: Manufacturing resource configuration diagram.
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greater than the joy after harvest. Therefore, the prospect
theory can be used to indicate people’s satisfaction with
products or equipment. The prospect theory focuses on
the difference in customer psychology, not just the cus-
tomer’s final value. In this paper, MRD expectation is used
as a reference point to optimize the MRD indexes and
MRP indexes.

5.1.1. Index Constraint Optimization of MRD

(1) Cost Constraint. In a discrete manufacturing system, the
cost indicators of each manufacturing unit include not only
the fixed costs of manufacturing units but also the logistics
costs between manufacturing units. The optimization of the

cost constraint index is based on the prospect value of the
MRD for the cost index. It can be calculated as

V C = 〠
n

i=1
V Ci

= 〠
n

i=1
〠
mi

j=1
Cij − θcij Hij, i = 1,… , n, j = 1,… ,mi

14

Here, V C denotes the total cost prospect value of
manufacturing units selected by MRD; Hij can be expressed as

The traditional cost constraint is that the cost of
completing the task for the selected manufacturing units’
combination cannot be greater than the maximum cost
required by the MRD. On the basis of the prospect theory,
the traditional cost constraint conditions are transformed
into that the combined cost prospect value of the selected
manufacturing units cannot be greater than the maximum
cost prospect value given by the MRD, which can be
expressed as

V C ≤ V C max 16

(2) Time Constraint. In discrete manufacturing systems,
the time of each manufacturing unit mainly refers to the
total time from which the raw material to workshop to
finished product leaving workshop. Each manufacturing
unit time involves the time of the unit running and the

product twisting time between the manufacturing units.
The optimization of the time constraint index is based
on the prospect value of the MRD for the time index. It
can be calculated as

V T = 〠
n

i=1
V Ti

= 〠
n

i=1
〠
mi

j=1
Tij − θTij Hij, i = 1,… , n, j = 1,… ,mi

17

Here, V T denotes the total time prospect value
of manufacturing units selected by MRD; Hij can be
expressed as

The traditional time constraint is that the time required
for the selected manufacturing unit combination to complete
the task cannot be greater than the longest delivery time
required by the MRD. On the basis of the prospect theory,
the traditional time constraint conditions are transformed
into that the combined time prospect value of the selected
manufacturing units cannot be greater than the maximum
time prospect value given by the MRD.

V T ≤ V T max 19

(3) Quality Constraint. In the discrete manufacturing system,
the quality index of each manufacturing unit refers to the

quality of each manufacturing unit to complete the relevant
manufacturing tasks, that is, the quality qualification rate
for each manufacturing unit to complete the relevant
manufacturing tasks. The optimization of the quality con-
straint index is based on the prospect value of the MRD for
the quality index. It can be calculated as

V Q = 〠
n

i=1
V Qi

= 〠
n

i=1
〠
mi

j=1
Qij − θQij Hij, i = 1,… , n, j = 1,… ,mi,

20

Hij =
1, the ithmanufacturing subtask is completed by themanufacturing unitMSij,

0, the ithmanufacturing subtask is not completed by themanufacturing unitMSij
15

Hij =
1, the ithmanufacturing subtask is completed by themanufacturing unitMSij,

0, the ithmanufacturing subtask is not completed by themanufacturing unitMSij
18
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where V T denotes the total quality prospect value
of manufacturing units selected by MRD; Hij can be
expressed as

The traditional quality constraint is that the quality
qualification rate of any manufacturing unit in the selected
manufacturing units’ combination should not be less than
the minimum quality qualification rate required by the
MDR. On the basis of the prospect theory, the traditional
quality constraint conditions are transformed into that the
quality prospect value of any manufacturing unit in the
selected manufacturing unit combination should not be less
than the minimum quality prospect value required by the
MRD, which can be expressed as

V Qij ≥V Q min, i = 1,… , n, j = 1,… ,mi 22

(4) Green Constraint. Green is based on the require-
ments of the current low carbon environmental protec-
tion. The evaluation of the environmental indicators
includes carbon emissions and processing material losses
in the manufacturing process of manufacturing units. In
discrete manufacturing systems, the green index of each

manufacturing unit is the degree of pollution to the
environment by which the selected manufacturing units
are combined to complete the related manufacturing
tasks. The optimization of the green constraint index is
based on the prospect value of the MRD for the green
index. It can be calculated as

V G = 〠
n

i=1
V Gi

= 〠
n

i=1
〠
mi

j=1
Gij − θGij Hij, i = 1,… , n, j = 1,… ,mi,

23

where V G denotes the total green prospect value of
manufacturing units selected by MRD; Hij can be
expressed as

The traditional environmental protection constraint is
that the pollution rate of any manufacturing unit in the
selected manufacturing unit combination cannot be greater
than the highest manufacturing pollution rate required by
the MRD. On the basis of the prospect theory, the traditional
environmental constraints are translated into that the pros-
pect value of pollution of any manufacturing unit in the
selected combination of manufacturing units cannot be
greater than the maximum prospect value of pollution
required by the MRD, which can be expressed as

V Gij ≤V G max, i = 1,… , n, j = 1,… ,mi 25

5.1.2. Index Constraint Optimization of MRP.Manufacturing
tasks in discrete manufacturing systems are susceptible to
changes in manufacturing tasks and changes in manufactur-
ing resources, making it impossible to complete manufactur-
ing tasks with high quality and efficiency. Therefore, it is
very important for manufacturing tasks to consider the
factors in the process of optimizing the configuration of
manufacturing resources.

(1) The Efficiency of the Manufacturing Units’ Configuration.
The efficiency of the configuration of manufacturing
units in a discrete manufacturing system refers to the
number of qualified products that the manufacturing
unit produces within a unit time after the manufacturing
task is reached. The efficiency index of manufacturing
units’ configuration mainly includes the functional effi-
ciency of each manufacturing unit En

ij and the decomposi-

tion capability of the manufacturing unit Ef
ij, which can be

expressed as

max E =max 〠
n

i=1
〠
mi

j=1
EijHij

=max 〠
n

i=1
〠
mi

j=1
En
ijHij + 〠

n

i=1
〠
mi

j=1
Ef
ijHij ,

 i = 1,… , n, j = 1,… ,mi

26

Hij =
1, the ithmanufacturing subtask is completed by themanufacturing unitMSij,

0, the ithmanufacturing subtask is not completed by themanufacturing unitMSij
21

Hij =
1, the ithmanufacturing subtask is completed by themanufacturing unitMSij,

0, the ithmanufacturing subtask is not completed by themanufacturing unitMSij
24
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Here,

The functional efficiency En
ij of any manufacturing units

cannot be less than the minimum functional efficiency En
min

required by MRP; and the decomposition capability of the

manufacturing unit Ef
ij of any MRP in the manufacturing

unit’s configuration cannot be less than the minimum

decomposition capability of the manufacturing unit Ef
min

required by MRP. They can be expressed as

En
ij ≥ En

min, i = 1,… , n, j = 1,… ,mi,

Ef
ij ≥ Ef

min, i = 1,… , n, j = 1,… ,mi

28

(2) The Agility of the Manufacturing Units’ Configuration.
The agility of the manufacturing unit configuration in
a discrete manufacturing environment refers to the
manufacturing units’ configuration ability to react quickly
and successfully complete the manufacturing task when the
content of the manufacturing task changes or a manufactur-
ing resource withdraws for some reason. So that enterprises

can cope with the rapidly changing and unpredictable market
demand, thus obtaining long-term economic benefits of
enterprises. The agility index of manufacturing units’ config-
uration mainly includes the functional diversity Fd

ij and the
manufacturing resource types Fz

ij of each manufacturing
unit, which can be expressed as

max F =max 〠
n

i=1
〠
mi

j=1
FijHij

=max 〠
n

i=1
〠
mi

j=1
Fd
ijHij + 〠

n

i=1
〠
mi

j=1
Fz
ijHij ,

 i = 1,… , n, j = 1,… ,mi,
29

where

The functional diversity Fd
ij of any manufacturing unit

cannot be less than the minimum functional diversity Fn
min

required by the MRP; the type of manufacturing resources
Fz
ij provided by any MRP in the manufacturing units’ config-

uration should not be less than the minimum type of
manufacturing resource Fz

min required by the MRP. They
can be expressed as

Fd
ij ≥ Fd

min, i = 1,… , n, j = 1,… ,mi,

Fz
ij ≥ Fz

min, i = 1,… , n, j = 1,… ,mi

31

(3) The Coordination of the Manufacturing Units’ Configura-
tion. The coordination of the manufacturing units’ configu-
ration in discrete manufacturing environment refers to
manufacturing units that can coordinate and efficiently

complete manufacturing task when the manufacturing task
comes down. The coordination index of manufacturing
units’ configuration mainly includes the reliability of the
manufacturing unit Rk

ij and the compatibility of the
manufacturing unit Rx

ij, which can be expressed as

max R =max 〠
n

i=1
〠
mi

j=1
RijHij

=max 〠
n

i=1
〠
mi

j=1
Rk
ijHij + 〠

n

i=1
〠
mi

j=1
Rx
ijHij ,

 i = 1,… , n, j = 1,… ,mi,
32

where

Hij =
1, the ithmanufacturing subtask is completed by themanufacturing unitMSij,

0, the ithmanufacturing subtask is not completed by themanufacturing unitMSij
27

Hij =
1, the ithmanufacturing subtask is completed by themanufacturing unitMSij,

0, the ithmanufacturing subtask is not completed by themanufacturing unitMSij
30

Hij =
1, the ithmanufacturing subtask is completed by themanufacturing unitMSij,

0, the ithmanufacturing subtask is not completed by themanufacturing unitMSij
33
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The reliability of any manufacturing unit Rk
ij in the

manufacturing units’ configuration cannot be less than the
minimum reliability Rk

min required by the MRP. The coor-
dination of any manufacturing unit Rx

ij in the manufactur-
ing unit combination cannot be less than the minimum

coordination Rx
min required by the MRP. They can be

expressed as

Rk
ij ≥ Rk

min, i = 1,… , n, j = 1,… ,mi,

Rx
ij ≥ Rx

min, i = 1,… , n, j = 1,… ,mi

34

Start

Initialization population

g < Gmax?

Order the population by the lower level objective function

g = 0

Select, cross, variation

Population consolidation

Nondominated rank sorting,
computation crowding

Population pruning

Order the population by the upper level objective function

End

g = g + 1

Yes

No

Figure 4: The NSGA-II algorithm for bilevel programming.

Table 2: Set of candidate manufacturing units.

Manufacturing subtasks TS1 TS2 TS3 TS4 TS5 TS6 TS7 TS8

Manufacturing units

MS11 MS21 MS31 MS41 MS51 MS61 MS71 MS81
MS12 MS22 MS32 MS42 MS52 MS62 MS72 MS82
MS13 MS23 MS33 MS43 MS53 MS63 MS73 MS83

MS24 MS34 MS54 MS64 MS84
MS25 MS65
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5.2. Discrete Manufacturing Optimization Model Based on
Bilevel Programming. In discrete manufacturing, it is difficult
for MRD and MRP to express their preference for a certain
characteristic with an explicit or implicit “utility function,”
but it is generally easy to determine what level of expectation
a certain target achieves and according to the actual situation
to adjust the level of the object expected to reach. In these
elements that influence multiobjective decision-making in
discrete manufacturing environment, they may contain
both integer variables and fractional variables and may be
continuous or discontinuous [25].

To solve this kind of decision-making problem, this
paper proposes a bilevel programming decision method
based on the object expectation: selecting index cost (C),
time (T), quality (Q), and green (G) as the upper level opti-
mization objectives that affect the MRD of manufacturing
resources and then, selecting the index efficiency (E), agil-
ity (F), and coordination(R) as the lower level optimiza-
tion objectives that affect the MRP of manufacturing
resources. The bilevel optimization model under the discrete
manufacturing environment is established as follows:

U min  Z =wc ×
V C

V C max
+wT ×

V T
V T max

+wQ ×
V Q

V Q max
+wG ×

V G
V G max

35

s t  V Cij ≤V C max, 36

V Tij ≤V T max, 37

V Qij ≥V Q min, 38

V Gij ≥V G min, 39

L max  z = E, F, R T 40

s t  En
ij ≥ En

min, 41

Ef
ij ≥ Ef

min, 42

Fd
ij ≥ Fd

min, 43

Fz
ij ≥ Fz

min, 44

Rk
ij ≥ Rk

min, 45

Rx
ij ≥ Rx

min 46

Here, (35) denotes the upper-level optimization object
given by the MRD, and (36) and (39) denote the quality, cost,
time, and green indicator constraints of the upper-level
optimization objectives; (40) denotes the lower-level optimi-
zation object given by the MRP, and (41) and (46) denote the

Start TS1

TS2 TS3

TS4

TS5

TS6

TS7

TS8 Endn

MS11

MS12

MS13

MS21

MS22

MS23

MS24

MS31

MS32

MS34

MS41

MS43

MS51

MS52

MS53

MS54

MS61

MS63

MS65

MS71

MS73

MS81

MS82

MS83

MS84

Manufacturing 
subtasks

Manufacturing 
units

A set of 
manufacturing units

MS25

MS33

MS42

MS62

MS64

MS72

Figure 5: Manufacturing task flow chart.
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efficiency, coordination, and agility indicator constraints of
the lower-level optimization object.

5.3. Model Solving. There are more famous algorithms for
resource configuration optimization, such as genetic algo-
rithm, ant colony algorithm, particle swarm optimization,
and simulated annealing algorithm, but these algorithms
have certain constraints when solving the bilevel program-
ming model of manufacturing resource optimization config-
uration in this paper. The bilevel planning is a NP-hard
(nondeterministic polynomial, NP) problem. The process
of solving such problems is very complicated. The fast

nondominated sorting genetic algorithm (NSGA-II) is an
improvement of the NSGA algorithm and is one of the best
evolutionary multiobjective optimization algorithms [26, 27].

This paper uses the NSGA-II algorithm to solve the
bilevel planning model under the discrete manufacturing
environment. The general flow is shown in Figure 4.

6. Illustrative Example

6.1. Model Establishment of Discrete Resource Configuration.
The MDR submits the manufacturing task to the MDP
according to the market demand. On the basis of certain

Table 3: Language evaluation of the MRD (one MRD’s example).

Manufacturing units C T Q G

MS11 Between S and VS Between M and VS Between SU and M Between M and SS

MS12 Greater than M Between U and M Greater than M Between M and VS

MS13 Greater than M Lower than M Greater than M Between VU and S

MS21 Between U and M Greater than S Between U and M Lower than M

MS22 Between M and SS Greater than M Between S and VS Between SS and S

MS23 Between M and S Between U and M Greater than M Greater than SS

MS24 Between M and S Between VU and SU Greater than M Lower than M

MS25 Greater than M Between M and S Between U and M Between U and SS

MS31 Greater than S Lower than M Between M and SS Lower than M

MS32 Between U and M Between S and VS Between M and S Between VU and M

MS33 Greater than M Greater than M Between M and S Greater than M

MS34 Greater than U Greater than M Between U and SS Greater than M

MS41 Between VU and U Between U and M Between M and VS Lower than M

MS42 Between U and M Between M and SS Greater than M Greater than S

MS43 Greater than S Between M and S Greater than S Greater than M

MS51 Greater than S Between M and S Between SU and SS Between U and M

MS52 Between SS and S Greater than M Between U and VS Between VU and SU

MS53 Between VU and U Between S and VS Between M and VS Between M and S

MS54 Between M and S Greater than S Between VU and M Lower than M

MS61 Between U and S Between S and VS Lower than M Between S and VS

MS62 Lower than M Lower than M Greater than S Greater than M

MS63 between SS and S Between U and M Greater than M Greater than M

MS64 Greater than M Greater than M Between U and M Between U and M

MS65 Between VU and M Between S and VS Between VU and SU Between M and SS

MS71 Greater than M Greater than S Between M and S Between M and S

MS72 Lower than M Lower than M Greater than M Between M and S

MS73 Greater than S Greater than SS Greater than M Between S and VS

MS81 Greater than M Greater than S Between U and M Between M and S

MS82 Between U and M Greater than S Between U and SS Greater than M

MS83 Between VU and SU Between SS and S Between M and VS Lower than M

MS84 Between M and S Between VU and U Between U and S Between U and M

Expectation value M SS S M
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principles, the MDP decomposes the manufacturing task
and gets the set of manufacturing subtasks including 8
manufacturing subtasks (TS1, TS2,… , TS8). The MDP uses
the function object matching principle to form a set of
manufacturing units that complete each subtask, as shown
in Table 2. The sequence of tasks is successive, as shown
in Figure 5.

The questionnaire method to collect the language
evaluation of the MRD is given by the acceptable range and
expectation value for the four indexes (C/T/Q/G) of each
manufacturing unit, as shown in Table 3.

According to (3) and Table 4, the acceptable range and
expectation value of the MRD are converted into trapezoidal
fuzzy numbers, as shown in Table 4.

Selecting the MRD expectation value as the reference
point and referencing literature [28] obtains α = β = 0 88,
λ = 2 25, and δ = 0 56. Next, we calculate the expected devi-
ation (i.e., value function) of each manufacturing unit,
according to Definition 2 and (11) and (12) and then based
on (8) and (9) to calculate the decision weights of each
manufacturing unit. Finally, according to (7), we can calcu-
late the prospect value of MRD for each manufacturing,
which is shown in Table 5.

In the same way, first of all, we get the language eval-
uation of three indexes (E/F/R) given by the MRP. Then,
according to (3) and Table 2, we used formula a = a1 +
2a2 + 2a3 + a4 /6 to defuzzify the trapezoidal fuzzy numbers,
as shown in Table 6.

Table 4: The transformation of trapezoid fuzzy numbers for language evaluation (one MRD’s example).

Manufacturing units C T Q G

MS11 (0.692, 0.769, 1, 1) (0.385, 0.462, 1, 1) (0.231, 0.308, 0.538, 0.615) (0.385, 0.462, 0.692, 0.769)

MS12 (0.385, 0.462, 1, 1) (0.077, 0.154, 0.538, 0.615) (0.385, 0.462, 1, 1) (0.385, 0.462, 1, 1)

MS13 (0.385, 0.462, 1, 1) (0, 0, 0.538, 0.615) (0.385, 0.462, 1, 1) (0, 0, 0.846, 0.923)

MS21 (0.077, 0.154, 0.538, 0.615) (0.692, 0.769, 1, 1) (0.077, 0.154, 0.538, 0.615) (0, 0, 0.538, 0.615)

MS22 (0.385, 0.462, 0.692, 0.769) (0.385, 0.462, 1, 1) (0.692, 0.769, 1, 1) (0.077, 0.154, 0.846, 0.923)

MS23 (0.385, 0.462, 0.846, 0.923) (0.077, 0.154, 0.538, 0.615) (0.385, 0.462, 1, 1) (0.538, 0.615, 0.846, 0.923)

MS24 (0.385, 0.462, 0.846, 0.923) (0, 0, 0.385, 0.462) (0.385, 0.462, 1, 1) (0, 0, 0.538, 0.615)

MS25 (0.385, 0.462, 1, 1) (0.385, 0.462, 0.846, 0.923) (0.077, 0.154, 0.538, 0.615) (0.077, 0.154, 0.692, 0.769)

MS31 (0.692, 0.769, 1, 1) (0, 0, 0.538, 0.615) (0.385, 0.462, 0.692, 0.769) (0, 0, 0.538, 0.615)

MS32 (0.077, 0.154, 0.538, 0.615) (0.692, 0.769, 1, 1) (0.385, 0.462, 0.846, 0.923) (0, 0, 0.538, 0.615)

MS33 (0.385, 0.462, 1, 1) (0.385, 0.462, 1, 1) (0.385, 0.462, 0.846, 0.923) (0.385, 0.462, 1, 1)

MS34 (0.077, 0.154, 1, 1) (0.385, 0.462, 1, 1) (0.077, 0.154, 0.692, 0.769) (0.385, 0.462, 1, 1)

MS41 (0, 0, 0.231, 0.308) (0.077, 0.154, 0.538, 0.615) (0.385, 0.462, 1, 1) (0, 0, 0.538, 0.615)

MS42 (0.077, 0.154, 0.538, 0.615) (0.385, 0.462, 0.692, 0.769) (0.385, 0.462, 1, 1) (0.692, 0.769, 1, 1)

MS43 (0.692, 0.769, 1, 1) (0.385, 0.462, 0.846, 0.923) (0.692, 0.769, 1, 1) (0.385, 0.462, 1, 1)

MS51 (0.692, 0.769, 1, 1) (0.385, 0.462, 0.846, 0.923) (0.231, 0.308, 0.692, 0.769) (0.077, 0.154, 0.538, 0.615)

MS52 (0.538, 0.615, 0.846, 0.923) (0.385, 0.462, 1, 1) (0.077, 0.154, 1, 1) (0, 0, 0.385, 0.462)

MS53 (0, 0, 0.231, 0.308) (0.692, 0.769, 1, 1) (0.385, 0.462, 1, 1) (0.385, 0.462, 0.846, 0.923)

MS54 (0.385, 0.462, 0.846, 0.923) (0.692, 0.769, 1, 1) (0, 0, 0.538, 0.615) (0, 0, 0.538, 0.615)

MS61 (0.077, 0.154, 0.849, 0.923) (0.692, 0.769, 1, 1) (0, 0, 0.538, 0.615) (0.692, 0.769, 1, 1)

MS62 (0, 0, 0.538, 0.615) (0, 0, 0.538, 0.615) (0.692, 0.769, 1, 1) (0.385, 0.462, 1, 1)

MS63 (0.538, 0.615, 0.846, 0.923) (0.077, 0.154, 0.538, 0.615) (0.385, 0.462, 1, 1) (0.385, 0.462, 1, 1)

MS64 (0.385, 0.462, 1, 1) (0.385, 0.462, 1, 1) (0.077, 0.154, 0.538, 0.615) (0.077, 0.154, 0.538, 0.615)

MS65 (0, 0, 0.538, 0.615) (0.692, 0.769, 1, 1) (0, 0, 0.385, 0.462) (0.385, 0.462, 0.692, 0.769)

MS71 (0.385, 0.462, 1, 1) (0.692, 0.769, 1, 1) (0.385, 0.462, 0.846, 0.923) (0.385, 0.462, 0.846, 0.923)

MS72 (0, 0, 0.538, 0.615) (0, 0, 0.538, 0.615) (0.385, 0.462, 1, 1) (0.385, 0.462, 0.846, 0.923)

MS73 (0.692, 0.769, 1, 1) (0.538, 0.615, 0.846, 0.923) (0.385, 0.462, 1, 1) (0.692, 0.769, 1, 1)

MS81 (0.385, 0.462, 1, 1) (0.692, 0.769, 1, 1) (0.077, 0.154, 0.538, 0.615) (0.385, 0.462, 0.846, 0.923)

MS82 (0.077, 0.154, 0.538, 0.615) (0.692, 0.769, 1, 1) (0.077, 0.154, 0.692, 0.769) (0.385, 0.462, 1, 1)

MS83 (0, 0, 0.385, 0.462) (0.538, 0.615, 0.846, 0.923) (0.385, 0.462, 1, 1) (0, 0, 0.538, 0.615)

MS84 (0.385, 0.462, 0.846, 0.923) (0, 0, 0.231, 0.308) (0.077, 0.154, 0.846, 0.923) (0.077, 0.154, 0.538, 0.615)

Expectation value (0.385, 0.462, 0.538, 0.615) (0.538, 0.615, 0.692, 0.769) (0.692, 0.769, 0.846, 0.923) (0.385, 0.462, 0.538, 0.615)
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Assume that the parameters of the bilevel program-
ming model for optimal configuration of manufacturing
resources are wc = 0 272, wT = 0 231, wQ = 0 301, wQ =
0 196, V C max = 0 541, V T max = 0 425, V Q min = 0 786,
V G min = 0 775, En

min = 0 128, Ef
min = 0 128, Fd

min = 0 205,
Fz
min = 0 205, Rk

min = 0 195, and Rx
min = 0 180. According to

(35) and (40), a bilevel optimization model for resource
optimization configuration is as follows:

U min  Z = 0 506V Cij + 0 544V Tij

+ 0 382V Qij + 0 253V Gij

s t  V Cij ≤ 0 541,

V Tij ≤ 0 425,

V Qij ≥ 0 214,

V Gij ≥ 0 225,

47

L max  z = E, F, R T

s t  En
ij ≥ 0 128,

Ef
ij ≥ 0 128,

Fd
ij ≥ 0 205,

Fz
ij ≥ 0 205,

Rk
ij ≥ 0 195,

Rx
ij ≥ 180

48

6.2. Model Solving. NSGA-II algorithm was used to solve the
model study (48). The initial population of the algorithm is
50; the crossover probability is 0.6; the mutation probability
is 0.03; and the largest genetic algebra is 200. In the MATLAB
2016a calculation environment, the average fitness of each
population under different fitness functions is calculated
[29], as shown in Figure 6. In the 200-generation evolution
process, the average fitness value after 50 generations tends
to be stable. Therefore, after 50 generations of evolution,
the Pareto optimal solution of the lower level optimization
object of the manufacturing resource optimization configu-
ration model is obtained. Calculate the Pareto frontier of
optimal solution sets consisting of 50 solutions, as shown
in Figure 7. Each point in the graph represents a Pareto
optimal solution. The entire Pareto optimal solution set
is located on the first-level Pareto frontier and distributed
uniformly. That is, the ideal Pareto optimal solution set
is obtained.

The Pareto optimal solution of the lower-level opti-
mization of the manufacturing unit optimization selec-
tion model is regarded as the feasible solution of the
upper optimization goal, the corresponding target value
of the upper optimization goal is calculated, and the
global optimal solution of the optimal selection bilevel
programming model is obtained, according to the advan-
tages and disadvantages. The degree is ranked and the

first five groups of solutions are listed. The group with
the smallest target value is the global optimal solution
that satisfies the optimal choice between the customer
and the manufacturer.

The Pareto optimal solution of the lower level optimiza-
tion object of the manufacturing unit optimization model is
the feasible solution of the upper level optimization object;
then, the corresponding the upper level optimization object
values are calculated. Further, we get the global optimal
solution of the bilevel programming model and sort them
according to their pros and cons and take the first five
solutions listed, as shown in Table 7. The group with the
smallest object value is the global optimal solution of the
optimization problem.

Table 5: The prospect value of MRD (one MRD’s example).

Manufacturing units C T Q G

MS11 0.327 0.307 0.625 0.658

MS12 0.272 0.255 0.520 0.547

MS13 0.272 0.255 0.520 0.547

MS21 0.205 0.192 0.391 0.412

MS22 0.112 0.105 0.214 0.225

MS23 0.205 0.193 0.392 0.413

MS24 0.205 0.193 0.392 0.413

MS25 0.273 0.255 0.520 0.547

MS31 0.327 0.307 0.625 0.658

MS32 0.205 0.192 0.391 0.412

MS33 0.272 0.255 0.520 0.547

MS34 0.328 0.307 0.626 0.659

MS41 0.327 0.307 0.625 0.658

MS42 0.205 0.192 0.391 0.412

MS43 0.327 0.307 0.625 0.658

MS51 0.327 0.307 0.625 0.658

MS52 0.226 0.212 0.431 0.454

MS53 0.327 0.307 0.625 0.658

MS54 0.205 0.192 0.391 0.412

MS61 0.279 0.261 0.532 0.560

MS62 0.272 0.255 0.520 0.547

MS63 0.226 0.212 0.431 0.454

MS64 0.272 0.255 0.520 0.547

MS65 0.272 0.255 0.520 0.547

MS71 0.272 0.255 0.520 0.547

MS72 0.272 0.255 0.520 0.547

MS73 0.327 0.307 0.625 0.658

MS81 0.272 0.255 0.520 0.547

MS82 0.207 0.194 0.395 0.416

MS83 0.287 0.269 0.548 0.577

MS84 0.205 0.192 0.391 0.412
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6.3. Analysis of Algorithm Results. The results of the solu-
tion of the example are compared with the results of
the traditional algorithm to prove the validity of the
model example.

The upper-level optimization objective of the bilevel
programming model, presents the objective of the traditional
manufacturing resource configuration model. The exhaustive
method is used to calculate the functional target decision-
making scheme, and all the obtained data are ranked accord-
ing to the degree of pros and cons. The top 10 groups are
listed, as shown in Table 8.

From Tables 7 and 8, the five optimal solutions (groups 1,
3, 4, 7, and 9 in Table 7) of the model study in this paper all

contain the optimal top 10 optimal solutions. Therefore, the
results of the model calculation in this paper not only satisfy
the upper level optimization object but also satisfy the lower
level optimization object of the model.

7. Discussion

In this paper, when establishing a bilevel programming of the
discrete manufacturing resource optimization configuration
model, the upper level optimization object is to select the
smallest comprehensive value of the MRD and the lower level
optimization object is to consider the maximum demand of
the MRP.

Table 6: Evaluation information of MRP.

Manufacturing
units

The functional
efficiency En

ij

The decomposition

capability Ef
ij

The functional
diversity Fd

ij

The manufacturing
resource types Fz

ij

The
reliability Rk

ij

The
compatibility Rx

ij

MS11 0.872 0.718 0.423 0.577 0.682 0.572

MS12 0.718 0.346 0.718 0.718 0.682 0.417

MS13 0.718 0.282 0.718 0.419 0.329 0.286

MS21 0.346 0.872 0.346 0.282 0.818 0.561

MS22 0.573 0.718 0.861 0.483 0.682 0.542

MS23 0.650 0.346 0.718 0.714 0.682 0.415

MS24 0.650 0.205 0.718 0.282 0.329 0.201

MS25 0.714 0.654 0.346 0.423 0.548 0.489

MS31 0.872 0.282 0.577 0.282 0.621 0.242

MS32 0.346 0.872 0.654 0.282 0.621 0.561

MS33 0.718 0.718 0.654 0.718 0.402 0.618

MS34 0.564 0.718 0.423 0.718 0.682 0.618

MS41 0.128 0.346 0.718 0.282 0.682 0.277

MS42 0.346 0.577 0.718 0.872 0.828 0.591

MS43 0.872 0.654 0.872 0.718 0.475 0.583

MS51 0.872 0.654 0.500 0.346 0.536 0.464

MS52 0.731 0.718 0.564 0.205 0.682 0.454

MS53 0.128 0.872 0.718 0.654 0.268 0.680

MS54 0.654 0.872 0.282 0.282 0.268 0.561

MS61 0.501 0.872 0.282 0.872 0.828 0.750

MS62 0.282 0.282 0.872 0.718 0.682 0.382

MS63 0.731 0.346 0.718 0.718 0.329 0.417

MS64 0.718 0.718 0.346 0.346 0.195 0.499

MS65 0.282 0.872 0.205 0.577 0.621 0.655

MS71 0.718 0.872 0.654 0.654 0.682 0.680

MS72 0.282 0.282 0.718 0.654 0.682 0.361

MS73 0.872 0.731 0.718 0.872 0.329 0.673

MS81 0.718 0.872 0.346 0.654 0.389 0.680

MS82 0.345 0.872 0.410 0.718 0.682 0.701

MS83 0.205 0.731 0.718 0.282 0.475 0.485

MS84 0.654 0.128 0.500 0.346 0.276 0.180
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Figure 6: Average fitness curve of population.
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Figure 7: The Pareto frontier of optimal solution sets.

The upper level optimization goal is to select the upper
level to consider the resource suppliers’ comprehensive
foreground value to be the smallest and the lower layer to
consider the resource supply-side demand maximization,
while the upper and lower layer constraints are. There
are no interactions between the constraints imposed by
the resource suppliers and the resource customers. The
upper level and lower level give their own constraints,
but the constraints are given by the MRD and the MRP,
respectively, so there is no interaction between the con-
straints. We add a constraint condition which is strongly
related to the upper level optimization object to the
lower-level. A new bilevel programming model is estab-
lished as follows:

U min  Z =wc ×
V C

V C max
+wT ×

V T
V T max

+wQ ×
V Q

V Q max
+wG ×

V G
VG max

s t  V Cij ≤V C max,

V Tij ≤V T max,

V Qij ≥V Q min,

V Gij ≥V G min, 49

L max z = E, F, R T 50

s t  Vij ≤Vmax, 51

En
ij ≥ En

min, 52

Ef
ij ≥ Ef

min, 53

Fd
ij ≥ Fd

min, 54

Fz
ij ≥ Fz

min, 55

Rk
ij ≥ Rk

min, 56

Rx
ij ≥ Rx

min 57

In the lower constraint, add (51) which represent
the foreground value constraint of the MRD for each
manufacturing unit. By adding (51) to the lower constraint
conditions, when the MDP is optimizing the manufacturing
resource configuration, it is a priority to discharge the pros-
pect value of the MRD, thus simplifying the complexity of
computing, speeding up the calculation speed, and further
improving the interactivity between the upper level and the
lower level.

8. Conclusions

The traditional discrete manufacturing object decision-
making method only considers the requirements of the
MRD and ignores the practical difficulties of the MRP or only
from the perspective of theMRP to provide self-perceived the
MRD satisfaction and then through the linear weighting
method to convert the multiobjective optimization problem
into a single-objective optimization problem to solve. This
paper analyzes the importance and current deficiencies of
manufacturing resource optimization configuration in a
discrete manufacturing environment and considers uncer-
tainties such as manufacturing resource changes and
manufacturing task changes. On this basis, according to the
process and characteristics of manufacturing resource
configuration in a discrete manufacturing environment, and
from the interests of different participants, a bilevel program-
ming mathematical model for manufacturing resource
optimization configuration was built. It not only ensures
the interests of different participants but also ensures the
smooth progress of the manufacturing service. Finally, it uses
NSGA-II to solve the model. The method presented in this
paper has the characteristics of clear concept and simple
calculation process and has strong operability and practical-
ity. It provides a new way to solve the problem of multiobjec-
tive resource optimization configuration.
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