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S1 Data Preprocessing

We use a data set of 1,444,051 tweets from 181,146 users, collected between 13 May 2011 and 31 May 2011. This data set
was extracted from the Twitter streaming API, which provides information on the date and content of the tweet, as well as
information about the sender, including location. Messages were captured when they contained one of the following hashtags
or keywords (which were selected as some of the most relevant during the emergence of the 15M movement): #15M, 15-
M, #democraciarealya, #tomalacalle, #Nolesvotes, #spanishrevolution, #acampadasol, #acampadabcn, #indignados, #noten-
emosmiedo, #nonosvamos, #yeswecamp. We filter messages in the data set using the location field in the description of the
user that sent the message. Since the 15M was (at least during the first days) mainly an urban phenomena, we analyse geo-
graphical interactions between the 15 cities with more activity in Twitter during 17 days of the protests. We find the 15 names
of cities most repeated in the data set, and counted messages corresponding to a specific city when the city name appeared
in the location field. Since the location is a field of the description of the user, it does not necessarily correspond to the real
location of the user at the moment the message was sent. We ran a test on geolocalized Twitter data from Spain, observing
that for a set of 20.000 random tweets in a 80.25% the profile location corresponds with the actual geolocation of the user,
giving the information of the user’s location field a moderately high reliability.

S2 Phase-Locking Statistics

Time series of activity at each city are generated by counting the number of messages from users located at the city in intervals
of 60 seconds for a period comprising 17 days, starting at 2AM May 14th 2011. Each time series is filtered using Morlet
wavelets at different frequencies. For each city i and frequency f we extract the phase content 6,(f,¢) for each moment of
time ¢, with a frequency span between [1.67 - 1073 Hz,9.26 - 107> Hz] (from 10 minutes to 3 hours) mapped into a logarithmic
sequence with intervals of 10001,

Phase-locking values are defined for each pair of cities i and j as defined in Equation 1. We introduce a corrector factor
A;j(t) to remove spurious synchronization when the network is inactive. A;;(t) is zero when the mean activity of node i or
node j for a moving window of 30 minutes is below a threshold of 0.25 times its mean activation, which generally happened
during some periods at night.

From phase-locking values we extract phase-locking links, which are activated when the phase-locking value is higher
than 99% of a set of 200 surrogate time series we generate for purposes of statistical validation, as indicated in Equation
2. Surrogate time series are generated using amplitude adjusted Fourier transform using the TISEAN software (Available
at http://www.mpipks—-dresden.mpg.de/~tisean/Tisean_3.0.1/). Amplitude adjusted Fourier transform
surrogates are time series that preserve the power spectrum of a distribution and a distribution of values, but remove the
temporal correlations present in the original signal.

’ Label \ Frequency ‘
fi ] 1.52-1073Hz
f> | 1.10-1073Hz
f3 | 6.78-107%Hz
fi | 4.00-107%Hz
fs | 2.90-107*Hz
fo | 1.91-107%Hz
f7 | 1.29-107%Hz
fs | 1.10-107%Hz

Table S1. Frequencies of salient synchronization. Table representing the frequency values corresponding to the peaks
represented in Figure S1.B.
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Figure S1. Peaks of salient synchronization. (A) Sum of total phase locking links S(f) for each value of frequency (solid
line). We detect a log-linear trend that we remove for detecting synchronization peaks. (B) Detrended S(f) for each value of
frequency (solid line). Synchronization peaks found using a two-dimensional wavelet transform (black dots).
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Figure S2. Stability of synchronization patterns. Average value of the sum of derivatives A®r (w) of the salient values of
synchronization A®;;(z, f,w) for different multiplicators w of the width of the wavelet windows. We find that small or large
multiplicators reduce the stability of salient synchronization patterns, suggesting that wavelet filtering is a good strategy for
defining the windows for phase-estimation filtering.



] Label \ Number of transitions between states

f 2276
1D 1903
Iz 1387
I 922
fs 865
f 692
I2 731
fs 641

Table S2. Number of state transitions for each frequency. Number of transitions between states s from the data used for
computing the Ising model at each selected frequency.
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Figure S3. Accuracy of the model. Values of 172 calculated for Ising models computed from subsets of combinations of

nodes at at each frequency. Each boxplot represents the distribution of 172 for 100 subsets of n nodes at a specific frequency
band selected randomly comparing the multi-information of the model and real data.

S3 Detection of Salient Synchronization Frequency Bands

We localize frequency bands synchronization by detecting peaks of salient phase-locking links in the logarithmic frequency
space. We compute the mean number of synchronization links for each frequency as the temporal mean of phase locking links
at that frequency S(f) = (¥; ;®i;(f,t)) (Figure SI.A). As S(f) increases with slower frequencies following approximately
a log-linear trend, we approximate the trend computing a least squares first order polynomial fit respect to the logarithm
of f and remove it from S(f) obtaining a detrended function. S(f)* In order to robustly detect peaks, we apply a two-
dimensional wavelet transform of the detrended S(f) over the vector of logarithmic frequencies. Using 10 Ricker wavelets
of widths from 1 to 10 steps in the selected logarithmic range of frequency (i.e. a range of [1.67 - 1073Hz, 9.26- 10 Hz]
logarithmically distributed with intervals of 10%°!) we compute the wavelet transform matrix and detect its ridge lines to
find eight peaks of salient synchronization (code available at https://github.com/scipy/scipy/blob/v0.14.
0/scipy/signal/_peak_finding.py#L410). As the position of the detected peaks vary slightly depending on the
parameters employed, we adjust the position of each peaks by climbing to the nearest local maxima if one is found within a
distance of two steps. In Figure S1.B we observe the result of the process and the 8 detected peaks. From these peaks we
extract 8 frequencies fi, with k = 1,..., 8, indicating the position of the peaks in S(f) (Table S1).


https://github.com/scipy/scipy/blob/v0.14.0/scipy/signal/_peak_finding.py#L410
https://github.com/scipy/scipy/blob/v0.14.0/scipy/signal/_peak_finding.py#L410

S4 Validation of Wavelet Window Length Used for Phase-Detection and Phase-Locking

As indicated in the manuscript, phase content 6;(f,¢) of the activity time series at city i at time 7 and frequency f is extracted
filtering the time series using Morlet wavelets, with a span of frequencies in the range [1.67 - 1073 Hz, 9.26 - 10> Hz] (from
10 minutes to 3 hours) logarithmically distributed with intervals of 10%°!. Morlet wavelets filter the signal using a Gaussian
window. The width of the window is determined by the frequency of the wavelet oscillations, being the standard deviation
of the Gaussian window equal to the period of the oscillations. The wavelet transform provides an arbitrary criterion for
establishing the length of the filtering windows used for estimating the phase content of a signal (i.e. window length should be
inversely proportional to the signal frequency). Other criteria could be using a fixed window length for all frequencies, as in
the short-time Fourier transform. We explore which criteria is more appropriate for the data analyzed here. Since our analysis
spans a wide range of frequencies, a wavelet transform appears as an appropriate choice. In this section we try to validate this
intuition by comparing the results of different window lengths.

For doing so, we select the 8 synchronization frequencies selected in the previous section and analyze them using different
window widths. For each frequency, we repeat the synchronization analysis from the section “Synchronization at Multiple
Frequencies” of the manuscript multiplying the width of wavelet windows by a factor w.

For 51 values of w, logarithmically distributed between [0.1, 10] we computed the values of ¢;;(f,z,w) for the time series
and the 200 surrogate series, obtaining the values of salient synchronization ®;;(f,z,w) for each pair of nodes at specific
times and frequencies. To evaluate the stability of the detected synchronization patters for each value of w, we compute the
derivative of ®;;(f,1,w) respect to w as AD;;(f,t,w) = %(d:'ij(f,t, w+dw) —®@;;(f,t,w))/dw, and the average of the sum of
derivatives over the different pairs of cities as ADy(w) = %Z, Y jA®;;(f,t,w), where T is the total number of samples of the
temporal series.

In Figure S2 we show A®7(w) for the 8 selected frequencies and the span of window widths. We find that most stable
synchronization patterns are found around w = 1 for slower frequencies, and slightly larger values for faster frequencies
(although those have a wider stability region. At extreme values of w the patterns found become unstable. This suggests that,
for our data, a wavelet transform is an adequate strategy to determine the phase contents of the signals, in comparison with
other strategies as using fixed windows.

S5 Number of Samples Required to Compute Probability Distributions

When we compute multi-informations and transfer entropies from the data set, we face a compromise between the size of
the probability distribution function of the system (corresponding to 2"V states) and the number of samples we employ for
calculating it. In order to correctly compute these probability distributions, we need to ensure that the number of samples
found in our data is sufficiently large for describing the frequency of occurrence of all possible states. Although the number
of samples in our data is large, as data changes at different frequencies, slower frequencies may present a smaller number of
transitions between states than fast frequencies, therefore offering a reduced effective sample of visited states.

In order to quantify the number of states visited at each frequency, we count the number of transitions between states s
used to infer the Ising models at each frequency (Table S2). Knowing that number, we can estimate a threshold of how many
states can have a probability distribution to be accurately estimated from our samples at different frequencies. We arbitrarily
establish a requirement of the number of transitions being larger than 2% times the number of possible states of the objective
probability distribution function. Although the exact value of the threshold is arbitrary, during the analysis we tried different
thresholds to ensure the robustness of the results.

S6 Multi-Information Measures for Assessing the Accuracy of Maximum Entropy Models

Once we infer the maximum entropy models that correspond to the means and correlations found in phase-locking data, it is
important to characterize what is the accuracy of the model, that is, to what extent the statistical model generated is mapping
the data we used in the inference. The accuracy of the model can be further evaluated by asking how much of the correlative
structure found in the data is captured. We can measure the overall strength of correlations in the network using multi-
information, which is defined as the total reduction in entropy relative to an independent model I = H[P] — H[P,], where H[P,]
is the entropy of the distribution of the real system whose data we are analysing and H[P;] is the entropy of an independent
model. In our case, an independent model would be the equivalent of adjusting an Ising model in which the couplings are zero,
and thus its energy function is defined as E(s) = —Y; h;s;. Multi-information can as well be used to compute the reduction
of entropy of the distributions P, of the pairwise Ising model we inferred from data as I, = H[P;] — H[P,]. The ratio between
these two quantities gives the fraction of the correlations captured by the pairwise Ising model:



L _H[P]-H[P)] M
[ H[P|-H[P]

Unfortunately, the data series available are not large enough for reliably computing P.. The probability distribution P, has
a number of possible states of 2>, while in our data the number of different states transited by the system is one or two orders
of magnitude inferior, depending on the frequency. However, we can compute accurately subsets of the complete probability
distribution P,(s’ ), with s’ C 5. For each frequency, we count the number of transitions between states found in the time
series in our data, and contrast that number with the dimension of the subset of the probability function using a number n of
nodes, i.e. 2". We use an arbitrary threshold requiring the number of states being at least 2* times larger than the number of
values of the probability distribution function. Different thresholds yield slightly different results, although they don’t change
significantly the final results. We find that for frequencies from f; to f3 we can compute reliably subsets with up to 5 nodes.
For frequencies f, and f3 the number increases to up to 6 and for f7 it is 7 nodes.

In Figure S3 we can observe the distribution of the values of [72 for 100 random choices of subsets for each number of
nodes. For each subset of nodes, we fit a new Ising model mapping the distribution of the subset and compute its entropy to
calculate 172 We can observe that most of the subsets the values of 172 indicate that between 60% and 80% of the correlations
are captured (Table S3)

The limited availability of data, specially for slower frequencies, prevents us to compute the accuracy of the model for
subsets with larger number of nodes. Future analysis applied to larger data sets should test if the accuracy of the model holds
for capturing the correlations between larger subsets of nodes.
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Figure S4. Negative couplings and number of metastable states. (A) Ratio of negative couplings for the inferred values
of J;; for each frequency. (B) Count of the number of metastable states for each frequency.

S7 Parameters of Ising Models

Here we display the parameters 7 and J inferred for the Ising models at each frequency. As we observe in Figure S6, as we
move from faster to slower frequencies, the amplitude of 7 and J increases. As well, the percentage of negative couplings
increases. We compute the ratio of negative couplings as:
X Vijl =i
i<j
Tneg =
2 ¥ Ui

i<j

@

In figure S4.A we can observe how the ratio of negative coupling increases with slower frequencies. It is known from spin
glass theory that metastable states emerge when some of the couplings between variables are negative. In Figure S4 we can
observe how there is a correlation between the ratio of negative couplings and the number of metastable states.
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Figure S5. Divergence of the heat capacity of the system. (A) Normalized heat capacity C(T)/N of the Ising models for
sizes 6, 9, 12 (averaged over 100 random models) and 15, where the larger peaks corresponds to larger sizes. (B) Linear trend
(solid line) of the peaks of C(T')/N (dots) respect the size of the system.

S8 Divergence of the Heat Capacity

At critical points, derivatives of thermodynamic quantities of the system as the entropy may diverge. An example of this is
the heat capacity, whose divergence is a sufficient condition for criticality (though not a necessary one). To test the divergence
of the heat capacity of the system, we extract Ising models of different sizes related to each frequency f;. From sizes 5 to
15, we fit 100 Ising models inferring the set of means and correlation from N random nodes of the system. For each size,
we compute the normalized heat capacity C(T)/N for the 100 models. In Figure S5.A we observe how the peaks of the heat
capacity diverge for sizes N = 6,9,12,15 (error bars are represented as a grey area). As size increases, the peak is higher and
closer to T' = 1. In Figure S5.B we represent the linear trend of the peaks from size 5 to 15. Trends are computed using a least
squares first order polynomial fit. We identify trends with slopes in the range [0.0188,0.0207] and R? coefficients in the range
[0.993,0.998]. A linear trend of max[C(T)/N] corresponds to a quadratic increment in the peak of the heat capacity C(T) as
N increases, suggesting a divergence of the heat capacity of the system.

| Frequency | n=>5 \ n==6 \ n=1

7 L=0.790.0 —0.0493 | £ =0.707,0 — 0.0434 | 1 = 0.696,0 — 0.0341
f | #=0.778,06 =0.0596 | u=0.696,0 =0.0520
f [ L=0.782,0 =0.0602 | 1 =0.698,0 — 0.0497
f1 | 1 =0.707,06 =0.0748
f [ 1=0692,0 = 0.0832
fo | 1 =0.739,0 — 0.0693
7 [ [L=0.685,0 =0.0863
fs | ©#=0.687,06 =0.0928

Table S3. Distributions of multi-information ratios. Mean and standard deviation for each distribution in Figure S3.
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Figure S6. Parameters of the Ising models. For each frequency, we depict the parameters & (A) and J (B) of the inferred
Ising models.

S9 Description of Metastable States

Metastable states are defined as states whose energy is lower than any of its adjacent states, where adjacency is defined by
single spin flips. This means that in a deterministic state (i.e. a Hopfield network with T = 0) these points would act as
attractors of the system. In our statistical model metastable states are points in which the system tends to be poised, since their
probability is higher than any of its adjacent states. In table S4 we can observe a list of the metastable states for the model
at each frequency. The probability of the metastable state P(s) is just the probability of the corresponding state of the ising
model, and the basin of attraction B(s) is computed as the number of states (over a total of 2'5) in the system that would fall
in the mestastable state if the system operated with deterministic dynamics (i.e. T = 0).

S10 Transfer Entropy

Using the energy of the Ising models Ey, at different frequencies, we compute transfer entropy by discretizing energy functions
into clusterized variables E;Zk We apply natural Break classification through the Jenks-Caspall algorithm (code available
at https://github.com/domlysz/Jenks—-Caspall.py), which for each cluster minimizes the average deviation
from the cluster’s mean to determine the best arrangement of values intro different clusters. Since computing transfer entropies
requires to compute joint probability functions with three variables, to meet the same criteria we used to compute multi-
information, we use a number of 3 clusters to ensure that for all the frequencies we have a number of samples of transited
states which is at least 2* times larger than the values in the probability distribution. After discretizing the energy functions we
compute the values of transfer entropies Jj;(T) = %;k ~E} () for values of 7 in a range between [1,28] (i.e. from 1 minute

to more than 4 hours) logarithmically distributed with intervals of 2°2°. Functions % (7) = 95; L (7) for different values
[
of k and [ are represented in Figure S7


https://github.com/domlysz/Jenks-Caspall.py
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Figure S7. Transfer entropy. We represents functions .7;(7) = %7 ~E; (7) for values of of 7 in a range between [1,2°]
T Wi

(i.e. from 1 minute to 8.5 hours) logarithmically distributed with intervals of 292>, Rows specify the value of f; while
columns specify the value of f;. For each graph, the vertical axis represents the value of transfer entropy and the horizontal
axis the value of 7 in minutes.



’ Metastable state s \ P(s) \ B(s) ‘
fi

000000000000000 0.333 28349
101000111110111 | 9.65-107° 139
101001101110111 | 7.97-107° 128
111111111111111 | 1.01-107% | 4152
f2

000000000000000 0.283 29043
011011101001111 | 5.88E —06 52
011111101111001 | 4.361E—06 | 45
IT1111111111111 | 8.46E—05 | 3628
3

000000000000000 0.275 28934
100110010111111 | 1.48E —05 102
111111110111101 | 4.46E —05 883
I11111111111100 | 5.64E—05 | 1080
111111111111111 | 8.77E—05 | 1769
fa

000000000000000 0.280 30379
001110101111001 | 1.27E —05 47
101010111111111 | 1.84E —05 97
101110000111110 | 4.94E—05 | 292
111010110110111 | 3.98£—05 | 1377
111010111110001 | 3.77E—05 | 269
111101111010111 | 1.14E —05 165
111110110111111 | 1.96E —05 142
fs

000000000000000 0.256 29121
011011101110010 | 2.79-107° 246
110110010111001 | 4.43-107° 246
111111110110111 | 4.07-107 849
111111111111111 | 8.91-107 | 2306
Je

000000000000000 0.273 28445
000100101001111 | 6.17-107° 81
100000011100000 | 1.06-1073 485
100100111101001 | 4.44-10~* | 1268
100110010111001 | 7.67-1073 141
100110011001111 | 6.02-1073 228
100110011111011 | 6.20-1073 166
100111111111101 | 5.38-107° 125
101110111111111 | 2.64-1073 84
110001110101001 | 1.05-10~* 257
110011011001111 | 7.23-107° 479
110111110111001 | 1.06-10~* 232
110111111111111 | 4.31-1073 333
111100101100011 | 2.31-1073 39
111110000000111 | 1.37-10~* 405

] Metastable state s \ P(s) \ B(s) \
fa

000000000000000 0.194 23469
000000001111011 | 4.93-10~* | 466
000000010011011 | 7.83-10~* | 831
001000110111111 | 1.95-107* | 642
001001010111001 | 2.90-10~* | 301
001010101100110 | 2.56-107> | 35
001011010111111 | 7.29-107° | 151
010000111011011 | 1.39-107° | 66
011001111111001 | 2.68-107> | 111
011010001110000 | 2.92-10~* | 304
011011110110100 | 1.59-1075 | 41
011011111110011 | 1.70-1075 | 71
011011111111111 | 2.63-107° | 180
101000101111111 | 1.24-10~* | 800
101001110111101 | 8.42-107> | 236
101100100000100 | 1.56-1073 | 990
111010101110100 | 1.71-10~* | 193
111011001010000 | 3.53-10~* | 934
111011110010100 | 2.87-107> | 119
111101101000001 | 8.77-10~* | 1425
111111100000100 | 4.11-10~* | 401
111111101110101 | 2.17-10~* | 1002
S8

000000000000000 0.241 19686
000110000101101 | 6.14-10~* | 340
000110011100101 | 1.52-10~* | 160
001110010101101 | 1.94-10~* | 213
001111010001101 | 1.02-107* | 84
010000000111000 | 1.14-1073 | 716
010000000111101 | 5.60-10~* | 836
010111000111101 | 3.07-10~% | 281
011000100111001 | 3.86-10~* | 399
011001110000000 | 6.08-10~% | 463
011111010101101 | 1.27-10~* | 286
100111011000000 | 9.33-10~* | 2250
101010011000000 | 2.86-1073 | 2021
101110000101101 | 2.27-10~* | 247
101110011100101 | 2.54-10~* | 263
110010001110101 | 2.63-10~* | 764
110100000101110 | 8.45-107 | 156
110111000111100 | 3.54-10~* | 591
110111001110101 | 3.26-10~* | 263
111000000010101 | 3.57-10~% | 128
111010000111101 | 1.06-1073 | 798
111011111000000 | 5.09-10~* | 860
111011111110101 | 8.33-107° | 144
111111000111101 | 8.14-107% | 614
111111011101110 | 7.86-107° | 205

Table S4. Metastable states. Metastable state s (where positive spins are marked with 1s and negative with Os), probability
of the metastable state P(s) and basin of attraction of the metastable state B(s).
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