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Timely detection and efficient recognition of fault are challenging for the bogie of high-speed train (HST), owing to the fact that
different types of fault signals have similar characteristics in the same frequency range. Notice that convolutional neural networks
(CNNs) are powerful in extracting high-level local features and that recurrentneural networks (RNNs) are capable of learning long-
term context dependencies in vibration signals. In this paper, by combining CNN and RNN, a so-called convolutional recurrent
neural network (CRNN) is proposed to diagnose various faults of the HST bogie, where the capabilities of CNN and RNN are
inherited simultaneously. Within the novel architecture, the proposed CRNN first filters out the features from the original data
through convolutional layers.Then, four recurrent layers with simple recurrent cell are used tomodel the context information in the
extracted features. By comparing the performance of the presented CRNNwith CNN, RNN, and ensemble learning, experimental
results show that CRNN achieves not only the best performance with accuracy of 97.8% but also the least time spent in training
model.

1. Introduction

As a prevalent and economical means of transportation, the
development of high-speed train (HST) has been an interest
of many countries, especially in China. Meanwhile, with the
increasing of train speed and the application of lightweight
design, it is crucial to ensure the safe operation and ride
stability ofHST. Since it becomes an accepted practice that the
HST must fail safe, the fault diagnosis of HST has attracted
a surging amount of attention. When the fault occurs, train
safety monitoring device might issue an alarm signal, which
ensures that the fault would not be developed to a serious
failure. Nevertheless, certain key components of train are still
not effectively monitored, such as bogie. According to [1],
the main factors influencing the stable running of HST are
closely related to the performance state of bogie.The effective
diagnosis and identification of the fault conditions of bogie
have become a focus of earlywarning and healthmaintenance
of HST.

Bogie is one of the most important components in the
structure of railway vehicles. Since the structure of bogie is
designed to facilitate the installation of springs and dampers,

bogie exerts a good performance in vibration damping. Train
can be reliably supported on railway track by bogie that
includes the wheelsets and suspension elements, as shown
in Figure 1. To be more specific, the suspension elements
of bogie consist of air springs, lateral dampers, antiyaw
dampers, and so on. Due to track irregularities, the train has
to experience irregular vibration. The bogie can mitigate the
interaction between vehicles and rails to effectively reduce
vibration. However, the abnormal vibration caused by bogie
failure may result in poor ride comfort and even side rollover.

Themechanism of bogie failure is so complicated and the
signal features are so obscure tomaster the fault laws of bogie.
Compared with traditional signal processing methods, deep
learning methods can adaptively extract fault features and
achieve intelligent diagnosis. This paper will employ a deep
learningmethod called convolution recurrent neural network
(CRNN) to identify various faults of HST bogie.

1.1. Related Work. Many researches have been conducted
on the fault diagnosis of HST bogie, where the main ideas
include signal-processing-based methods, machine learning,
and deep learning.
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Figure 1: Structure of the bogie.

The signal-processing-based methods are generally used
to analyze the collected signals and extract the time-
frequency-domain features that are most relevant to the fault
information. In [2], the features of the bogie acceleration
signal are analyzed in the time and frequency domains so as
to diagnose faults. In [3], the combination of power spectrum
and principal component analysis is proposed to extract
signal characteristics for fault diagnosis. The traditional
spectral analysis method is based on Fourier transform,
and suitable for the feature extraction of stationary signals.
However, the vibration signal of the actual system is the
nonstationary signal, so modern time-frequency analysis
methods represented by wavelet transform [4–6], empiri-
cal mode decomposition (EMD) [7–9], and Hibert-Huang
transform [10–12] are widely used in the fault diagnosis. The
ensemble empirical mode decomposition (EEMD) method
presented by Wu and Huang [13] is the improvement of the
EMD method and can decompose the signal into several
intrinsic mode functions (IMF), which reflects the time-
frequency characteristics of the signal.WithEEMDapplied to
fault diagnosis of bogie, [14] studied the relationship between
fault types and energy moment features in each IMF of bogie
signals.

Traditional pattern recognition only focuses on the
classification stage. Feature extraction is considered as an
independent problem, which is mainly based on manual
methods such asmodern signal processing and expert knowl-
edge. In contrast, feature extraction and classification are

simultaneously trained in deep learning [15]. In addition,
deep learning is more suitable for big data analysis than
modern signal processing methods. Therefore, deep learning
has become the technology of choice for fault diagnosis in
recent years.

At present, the most studied and applied models of
deep learning systems are convolutional neural networks
(CNNs) and recurrent neural networks (RNNs). The biggest
advantage of CNN is feature extraction. Since CNN can
utilize the accumulated experience in the training process
to select features, it avoids relying on artificial processes
to extract features. Furthermore, as the neuron weights on
the same convolution kernel are identical, the network can
improve training speed through parallel learning. Therefore,
convolutional networks have the advantages of faster training
speed and higher feature extraction efficiency than traditional
deep neural networks. 1D-CNN [16–18], a CNN that uses
one-dimensional filters to process time series, has achieved
success in natural language processing tasks and voice recog-
nition.

Similar to CNN, RNN is another well-performing neural
network, which is also used in many natural language
processing tasks. The Long Short-TermMemory (LSTM) [19,
20] is a variation of the RNN. In contrast to standard RNN,
LSTM is amenable to overcome the problem of long-term
dependencies. Bruin [21] put forward to apply LSTM neural
network to fault identification of track circuits. However, the
dependencies of time series make it difficult to use LSTM
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for parallel computation. The calculation speed is far less
than that of the CNN. Reference [22] proposed the Simple
Recurrent Unit (SRU) model based on the study of the RNN
models. Under the premise of guaranteeing the speed, the
accuracy of the recognition task using the SRU model was
hardly affected.

To benefit from both CNN and RNN, the two approaches
can be integrated into a combined network, which has
several convolutional layers followed by multiple recurrent
layers. Ullah [23] combined CNN and a Deep Bidirectional
LSTM network into a kind of CRNN, which is adopted
to process video data for action recognition. Also, Lopez
[24] put forward a CRNN method, which incorporated two-
dimension convolutional neural network into LSTM and was
used to classify the network traffic. Similar methods had been
applied to the classification mask in audio signals [25, 26] and
electrocardiography signals [27].

This paper presents a joint neural network CRNN that
integrates 1D-CNN and SRU. For recognizing the bogie
vibration signals, the proposed CRNN has the advantages of
1D-CNN and SRU respectively:(1)The convolutional layers of the presented CRNN have
the same properties as 1D-CNN, which can detect hidden
features directly from the time series data effectively and does
not depend on manual selection.(2) The recurrent layer of the recommended CRNN has
the same advantages as RNN, and it has the ability to mine
timing related information.(3) Compared with the LSTM, the proposed CRNN
containing SRU cell can better improve the training speed
with the effective recognition accuracy.

The 1D-CNN part of the presented CRNN extracts the
depth characteristics of the bogie signals. The stacked SRU
section learns the sequence information of the signal frame
in each layer of forward delivery. Therefore, the proposed
method can quickly identify bogie sequence information to
ensure the real-time and accuracy requirements of diagnosis.
These advantages make the presented method more suitable
for the fault diagnosis of bogie.

The rest of this paper is organized as follows. Section 2
analyzes bogie signals. The recommended CRNN structure
is explained in Section 3. Section 4 discusses experimental
results, including evaluation indicators and comparisonswith
the other state-of-the-art methods. Section 5 concludes the
paper and summarizes the potential future works.

2. Analysis of Signals for Bogie

2.1. Acquisition of Original Signal. For specific diagnostic
objects, it is necessary to select the appropriate diagnostic
method by analyzing the characteristics of the signals. For this
reason, the bogie vibration signals need to be collected and
analyzed before realizing fault diagnosis of the bogie. It will be
at highly risk to install the bogie with faults on real operating
HST. In order to simulate the characteristics of faulty bogie
in actual operation, the multibody dynamic model of bogie is
built by SIMPACK software [28, 29].

In this paper, the data for analysis are collected from
SIMPACK. The Simulation Data Set (SDS) consists of seven

Table 1: Seven kinds of health conditions of the bogie.

Condition Label Health conditions
0 normal condition
1 failure of the air springs
2 failure of the anti-yaw damper
3 failure of the lateral damper
4 failure of the air spring + the antiyaw damper
5 failure of the air spring + the lateral damper
6 failure of the lateral damper + the antiyaw damper

Vehicle Body

Bogie Frame

Wheelset

Secondary 
Suspension

Primary
Suspension

(a)

(b)

Figure 2: Suspension system and multibody dynamic model of the
HST. (a) Suspension system and (b) multibody dynamic model.

subsets, which are relevant to seven different conditions
showed in Table 1. The SDS is essentially a mechanical vibra-
tion signal, which consists of the acceleration and relative
displacement of the main components of the bogie. The
connection of the main components of the simulation model
is shown in Figure 2(a). As can be seen from this figure,
the bogie is connected to the vehicle body by the secondary
suspension, while the wheelset is also connected to the bogie
by the primary suspension. Figure 2(b) shows the simulation
model of HST, which uses LMA treads and CN60 tracks. The
Wuhan-Guangzhou track spectrum [30] is adopted as the
excitation of simulation. Based on this model, the nonlinear
relationship of wheel-rail contact and suspension can be fully
considered.
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Table 2: The description of parameters of simulation.

Parameter Value
Sampling frequency 243Hz
Track spectrum Wuhan-Guangzhou track spectrum
Vehicle speed 200 km/h
Sensor channels 58

There are 58 sensor channels installed on the HST to
monitor the bogie operation status. Table 2 lists the simu-
lation parameters in the experiments. Each subset of SDS
indicates the vibration signal with a specific health condition,
containing 51030 sampling points and 58 channels. In each
sample, the extracted signals contain 486 sample points of the
simulation data. Since the sampling frequency is 243 Hz, each
sample records a signal with a length of 2 seconds. Hence,
there are totally 105 samples for each health condition.

2.2. Frequency-Domain Analysis of Signal

2.2.1. Fast Fourier Transform. The traditional fast Fourier
transform (FFT) is a method of analyzing signals, which can
convert time-domain signals into frequency-domain signals
[31–33], thereby providing more frequency-domain informa-
tion. As displayed in Figure 3, the time-domain vibration sig-
nals of bogie are transformed into frequency-domain signals
by FFT. By comparing Figure 3(a) with Figure 3(b), it can be
seen that they are extremely similar in frequency domain.
Comparing Figures 3(c) with 3(e), they both have relatively
prominent frequency components during the frequency band
of 0-5 Hz. In Figures 3(d) and 3(f), there are frequency
multiplication characteristics in the frequency band of 0-20
Hz. Further, in Figure 3(g), the peak points are 25 Hz and 36
Hz.

2.2.2. A Method Combining EEMD and Autoregressive Spec-
trum Analysis. FFT method could cause spectral aliasing,
spectral leakage, and barrier effects. To overcome the defi-
ciencies of FFT method, a method combining EEMD and
Autoregressive (AR) spectrum analysis is proposed to analyze
bogie signals. The ARmodel is the widely used mathematical
model in the time series analysis [34–37], and it has the
characteristics of accurate frequency location, which can
reflect the peak information in the power spectrum. EEMD
decomposes the complex unsteady vibration signals into
several single-component signals with a mean value of zero
and a local symmetry with respect to the time axis. The
EEMDmethod is equivalent to the smoothing of the original
signal. Therefore, more effective analysis results could be
achieved by applying this combined method.

First, EEMD is applied to deal with the vibration signals of
bogie, and the 12 IMF components (from IMF0 to IMF11) and
a residual component can be sequentially obtained.Thefirst 8
components after decomposition contain themost significant
information of the original signals. Accordingly, the AR
spectrum analysis based on Burg algorithm is performed on
the first 8 IMF components. The peak positions of EEMD-
AR power spectrum can be clearly observed in Figure 4.
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Figure 3: Comparison of frequency-domain analysis of bogie
signals under 7 health condition: (a) normal condition; (b) failure
of the air springs; (c) failure of the antiyaw damper; (d) failure of the
lateral damper; (e) failure of the air spring + the antiyaw damper; (f)
failure of the air spring + the lateral damper; (g) failure of the lateral
damper + the antiyaw damper.
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Figure 4: Comparison of EMD-AR spectra of the first 8 IMF components of bogie signals in 7 health conditions: (0) normal condition; (1)
failure of the air springs; (2) failure of the antiyaw damper; (3) failure of the lateral damper; (4) failure of the air spring + the antiyaw damper;(5) failure of the air spring + the lateral damper; (6) failure of the lateral damper + the antiyaw damper.
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Under different operating conditions ofHST bogie, the center
frequency of each IMF component gradually decreases. In
addition, the components from IMF3 to IMF5 reflect the
signal characteristics under different operating conditions.
From the power spectrum of these components as shown
in Figure 4, the bogie generates resonance with the track
spectrum mainly containing low-frequency orbit excitation
of 5-25 Hz, and the maximum amplitude appears in the
corresponding frequency band.However, EEMD-AR spectral
method is a fault diagnosis method based on signal process-
ing technology, and it depends onmanual processes in feature
selection and extraction. Hence, it is difficult to automatically
acquire and analyze the deep features of HST bogie based on
the EEMD-AR spectrum method.

3. Fault Diagnosis of the Bogie
Based on CRNN

Since the fault mechanism of bogie is complicated and the
features of signal are not evident, the signal processing
method cannot extract the signal features effectively and
timely. Hence, CRNN was used as the model for the fault
diagnosis of bogie. As depicted in Figure 5, the framework
contains five parts:(1) SDS, considered as the input, is fed to a one-dimension
convolutional block, which is composed of �푙𝑐 ∈ N alternat-
ing one-dimension convolutional layers and one-dimension
pooling layers;(2) the feature maps output by the last convolutional layer
are unstacked over the time axis;(3) the feature maps of the unstack layer are passed to �푙𝑟 ∈
N recurrent layers;(4) �푙𝑓 ∈ N fully connected layers with tanh activation
functions receive the outputs of the last recurrent layer and
encode them to retain the useful information;(5) output layer with softmax function estimates the
prediction probabilities of the sample for each class.

3.1. Convolutional Layers. CNN has the characteristics of
sparse weights, which can detect small and meaningful
features by using convolutional filters that are much smaller
in size than the input. This means that CNN reduces the
number of parameters that need to be stored and significantly
improves the efficiency of feature extraction. The convo-
lutional layer of CNN generally consists of two parts: (1)
the first part performs the convolution operation to extract
features; (2) the second part performs the pooling operation
to adjust the output of convolutional layer.

In CRNN, the convolutional layer function is regarded
as a feature extractor. The bogie vibration signals under
each health condition are passed as inputs to the CNN
layer with one-dimension convolution filters. The feature
maps �푥𝑙𝑗 are obtained through convolution operation for �푙-th
convolutional layer (�푙 ∈ �푙𝑐), which is elaborated below:

�푥𝑙𝑗 = �푓( ∑
𝑖∈𝑀𝑗

�푥𝑙−1𝑖 ∗ �푘𝑙𝑖𝑗 + �푏𝑙𝑗) (1)
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Figure 5: Framework of the proposed CRNN.

where �푘𝑙𝑖𝑗 and �푏𝑙𝑗 represent the weight and bias of �푗-th
convolutional filter, respectively, and �푀𝑗 is the number of
input feature maps.

The pooling process follows the convolution process,
which plays a role of secondary extraction. In this paper, max
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Figure 6:The structure diagram of the LSTM cell: �휎𝑓, �휎𝑖, and �휎𝑜 are
the logistic sigmoid activation function of forget gates, input gates,
and output gates. �푥𝑡, ℎ𝑡−1, �푐𝑡−1 are the inputs of the LSTM cell; ℎ𝑡 and�푐𝑡 represent the outputs of the LSTM cell.

pooling method is adopted to reduce the dimension of data
and to preserve useful information as

�푥𝑙𝑗 = �푓 (�훽𝑙𝑗�푑�표�푤�푛 (�푥𝑙𝑗) + �푏𝑙𝑗) (2)

where�훽𝑙𝑗 and �푏𝑙𝑗 represent the weight and bias of max pooling;�푑�표�푤�푛() means the max pooling function. After performing
operation in �푙𝑐 layers, the output of CNNblock is a tensorwith
deep features, which contains the most effective information
in a small dimension.

3.2. Recurrent Layers. RNN is the neural network for mod-
elling sequential data. At the current time �푡 the network
learns the lossy refinement ℎ𝑡 from relevant information
of the past sequences (�푥𝑡, �푥𝑡−1,..., �푥1). In this way, RNN
can adaptively model information captured from the past
sequences. Here, the RNN block of the CRNN uses the
SRU cell, which has faster computational capability than the
LSTM. The structural characteristics of the SRU and LSTM
are compared below.

3.2.1. LSTM Cell. Standard RNN architecture performs poor
when using long-term information to process tasks. As the
length between the relevant information increases, the ability
of the RNN to concatenate related information becomes
weaker. LSTM is an advanced RNN architecture aiming to
handle long-term dependencies. Compared with standard
RNN, LSTM adds a new state referred to cell state, which is
used to preserve long-term information. The LSTM controls
the cell state through the structure called “gate”, which can
store the information in the cell state. The architecture of
LSTM cell is displayed in Figure 6. The LSTM cell outputs a
hidden vector ℎ𝑡 and a cell state vector �푐𝑡 at each time step.
More specifically, the computation of ℎ𝑡 and �푐𝑡 at the time step�푡 can be explained as follows:

�푓𝑡 = �휎𝑓 (�푊𝑓 ⋅ [ℎ𝑡−1, �푥𝑡]) + �푏𝑓 (3)

�푖𝑡 = �휎𝑖 (�푊𝑖 ⋅ [ℎ𝑡−1, �푥𝑡]) + �푏𝑖 (4)
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Figure 7: The structure diagram of SRU cell: �휎𝑓 and �휎𝑟 are the
logistic sigmoid activation function of forget gates and reset gates.�푥𝑡 and �푐𝑡−1 mean the inputs of the SRU cell; ℎ𝑡 and �푐𝑡 represent the
outputs of the SRU cell.

�표𝑡 = �휎𝑜 (�푊𝑜 ⋅ [ℎ𝑡−1, �푥𝑡]) + �푏𝑜 (5)

�푐 = tanh (�푊𝑐 ⋅ [ℎ𝑡−1, �푥𝑡]) + �푏𝑐 (6)

�푐𝑡 = �푓𝑡 ⊙ �푐𝑡−1 + �푖𝑡 ⊙ �푐 (7)

ℎ𝑡 = �표𝑡 ⊙ tanh (�푐𝑡) (8)

where �휎𝑓, �휎𝑖, �휎𝑜,�푊𝑓,�푊𝑖,�푊𝑜,�푊𝑐, and �푏𝑓, �푏𝑖, �푏𝑜, �푏𝑐, respectively,
represent the logistic sigmoid activation functions, weight
matrices, and bias vectors of forget gates, input gates, output
gates, and cell states. ⊙means element-wise multiplication.

3.2.2. SRU. Time series tasks such asmachine translation and
speech recognition all rely on the RNN model. However, the
sequence dependency of RNNmakes it difficult to parallelize
computations, so its computational speed is not as fast as
CNN. In addition, as the scale of the deployment model
enlarges, the real-time nature of the model will also be
seriously affected. Reference [22] proposed the SRU model
based on the research of LSTM and other models. Under
the premise of guaranteeing speed, there is not much loss in
accuracy.The architecture of SRU cell is displayed in Figure 7.
More concretely, SRU cell simplifies the calculation of the
LSTM cell, parallelizing the calculation process. In [22], the
computation of SRU cell at the time step �푡 is defined as
follows:

�푥𝑡 = �푊 ⋅ �푥𝑡 (9)

�푓𝑡 = �휎𝑓 (�푊𝑓 ⋅ �푥𝑡) + �푏𝑓 (10)

�푟𝑡 = �휎𝑟 (�푊𝑟 ⋅ �푥𝑡) + �푏𝑟 (11)

�푐𝑡 = �푓𝑡 ⊙ �푐𝑡−1 + (1 − �푓𝑡) ⊙ �푥𝑡 (12)

ℎ𝑡 = �푟𝑡 ⊙ tanh (�푐𝑡) + (1 − �푟𝑡) ⊙ �푥𝑡 (13)

where �휎𝑓, �휎𝑟 are the logistic sigmoid activation functions of
forget gate �푓𝑡, reset gate �푟𝑡.�푊,�푊𝑓,�푊𝑟, respectively, represent
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Table 3: Result of the CRNNmodels with different layer in the structure (%).

No The Structure of CRNN Accuracy (%) Iterations
CNN layers (cells) RNN layers (cells)

1 1 (116) 1 (450) 88.2% 1620
2 1 (116) 2 (450∗2) 93.6% 1200
3 2 (116/232) 1 (450) 95.6% 920
4 2 (116/232) 2 (450∗2) 96.3% 940
5 2 (116/232) 4 (450∗4) 97.4% 800
6 2 (116/232) 5 (450∗5) 96.5% 1020

weight matrices of linear transformation �푥𝑡, forget gate, and
reset gate. �푏𝑓 and �푏𝑟, respectively, represent bias vectors of
forget gate and reset gate.

Combining equations (3)-(8), it can be figured out that
the output ℎ𝑡 of LSTM cell at the time step �푡 depends on theℎ𝑡−1 from the previous step �푡 − 1. However, the main design
principle of SRU is that the gate calculation only depends
on the current input �푥𝑡. For input �푥𝑡 of SRU cell, (9)-(11)
can be calculated in parallel, so linear transformation �푥𝑡,
forget gate �푓𝑡, and reset gate �푟𝑡 are amenable to parallelize
calculation in the computer. Moreover, as shown in (7)-(8),
the element-wise multiplication is adopted to update the cell
state �푐𝑡, which depends on the calculation of previous step.
The matrix multiplications in SRU take up less computing
resources and time. Due to the independent architecture of
SRU, SRU can be trained as fast as CNN.

In CRNN, recurrent layers with SRU cell are used to
learn the extracted features. After staking the feature maps
output by convolutional layers, the output of staking layer
is transmitted to SRU as frames. Hence, the RNN block
of the presented CRNN is capable of mining the context
information ℎ𝑡, which is used as the inputs of the fully
connected layers.

3.3. Fully Connected Layer. In this paper, the RNN block of
the presented CRNN is followed by a fully connected layer
with a hyperbolic tangent activation function, which acts as
the output layer of CRNN mapping the hidden features ℎ𝑙𝑟+𝑙𝑐𝑡
learned from the stack layers of CNN and RNN to the tag
space ℎ𝑙𝑟+𝑙𝑐+𝑙𝑓𝑡 of the sample as

ℎ𝑙𝑟+𝑙𝑐+𝑙𝑓𝑡 = tanh (�푊 ⋅ ℎ𝑙𝑟+𝑙𝑐𝑡 + �푏) . (14)

In softmax layer, the softmax function is adopted to turnℎ𝑙𝑟+𝑙𝑐+𝑙𝑓𝑡 into probabilities �푎𝑖 for each class. The process of
training the neural network is the process to optimize the
cost function. To minimize the value of cross-entropy cost
function, the weights and biases of convolutional, recurrent,
and fully connected layers are iteratively updated by back-
propagation method. The computation of cross-entropy cost
function in softmax layer is elaborated below.

�퐶 = −1�푛
𝑛∑
𝑖=1

�푦𝑖 ln �푎𝑖 (15)

where �푎𝑖 means the probability distribution of predic-
tion for each category (�푖 = 1, 2, . . . , �푛) after performing

softmax operation and �푦𝑖 is the true class distribution of
sample.

CNN and RNN can be considered as two special cases
of the CRNN in this paper: (i) CNN is equivalent to CRNN
with multiple convolutional layers and zero recurrent layers;
(ii) RNN is composed of CRNN with zero convolutional
layers and several recurrent layers. In order to evaluate
the effectiveness of using CRNN for fault diagnosis of the
bogie, in Section 4, we conduct comparison experiments
on different structures such as LSTM, 1D-CNN, ensemble
learning (i.e., random forest (RF), Gradient Boost Decision
Tree (GBDT), and XGBoost and CRNN.

4. Experimental Results

For the sake of evaluating the proposed method, different
methods are compared based on the same HST datasets
and experimental environment. The experiments are all per-
formed onTensorflow and a desktopmachinewith Inter Core
i5-7400 Processor.The advantages of the CRNN structure are
further explained by analyzing the recognition accuracy rate
and time-consuming situation of different methods.

4.1. Setting. The acquisition of HST simulation data is
described in Section 2. In order to avoid the occasionality of
the experiment, the experimental data is randomly sorted.
The data is divided into 735 samples. Each sample contains
2 seconds vibration signals. From the samples created, 80%
are for training and 20% are adopted for testing. The recom-
mended method is tested on test datasets.

4.1.1. CRNN Structure Testing Result. The results of the
proposed CRNN model with different layers are presented
in Table 3. As can be seen from the results, the fifth CRNN
model that contains 2 1D-CNN layers and 4 SRU layers
achieves the best result. The first five experiments indicated
that the fitting ability of the model will be gradually increased
as the number of neural network layers expands. However,
the experimental data contains noise. If themodel overfits the
data, the recognition accuracy of the model will be degraded,
which confirms that the last experiment model is overfitting.
Therefore, the CRNN structure that consists of 2 1D-CNN
layers and 4 SRU layers is adopted.

4.1.2. DifferentArchitecture Testing Result. Wehave compared
the proposed CRNN with the state-of-the-art methods. The
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Table 4: Hyperparameters used for comparison experiments.

(a) The architectures based on CNN, RNN, and CRNN

HST SDS200
CRNN 1D-CNN LSTM

Conv 1d cells 116/232 116/232 -
pool 1d size 3 3 -
RNN cells 450/450/450/450 - 450/450/450/450�푙𝑐 1D-CNN layers 2 2 -�푙𝑟 RNN layers 4 - 4�푙𝑓 Fully-connected layers 1 1 1
learning rate 0.005 0.0003 0.001

(b) The architectures based on ensemble learning

RF XGboost GBDT
estimators size 1000 1000 1000
learning rate - 0.15 0.01
max depth 500 3 8
max features sqrt - sqrt

hyperparameters used in the evaluation for each different
methods are presented in Table 4. The number of iterations
of training is set to 2000, and a dropout rate of 50% is used
to prevent overfitting. Adam optimizer [38] is an efficient
optimizer that occupies less computer resources and allows
the model to converge faster. In addition, it can iteratively
update neural network weights based on training data. So
Adam optimizer is used to train the proposed model and
make comparisons.

4.2. EvaluationMetrics. In this work, the classification report
function in Sklearn library [39] of Python is used to dis-
play the main classification metrics. It can enumerate the
precision rate, recall rate and f1-score of each category. For
the effect evaluation of the fault diagnosis of the bogies, the
classification results can be divided into true positive (TP),
false positive (FP), and false negative (FN). These statistical
indicators are calculated based on the real category of the
sample and the category predicted by the machine. Precision
rate �푃 and recall rate �푅 are defined as

�푃 = �푇�푃�푇�푃 + �퐹P
�푅 = �푇�푃�푇�푃 + �퐹:. (16)

F1-score is a harmonic mean based on P and R, which
comprehensively considers the performance metrics of P and
R as

�퐹1 = 2 ⋅ �푃 ⋅ �푅�푃 + �푅 . (17)

As shown in Table 5, CRNN performs best on precision rate,
recall rate, and f1-score compared to other methods. The
experiment results show that all the neural networks based
on deep learning framework have better performance in the

Table 5: Classification report of comparison experiments.

classification report
method Precision Recall F1-score
CNN 1d 0.95 0.95 0.95
LSTM 0.95 0.95 0.95
RF 0.94 0.93 0.93
GBDT 0.94 0.94 0.94
XGBoost 0.95 0.95 0.95
CRNN 0.98 0.98 0.98

above three statistical indicators than those methods based
on the ensemble learning framework. It is worth pointing
out that the neural networks with different kinds of hidden
units have a stronger ability to learn nonlinear models than
ensemble learning.

4.3. Time-Consuming Situation. It can be seen from Table 5
that CRNN, 1D-CNN, and LSTM all have higher precision
rate than ensemble learning methods such as RF. However,
CRNN obtains the best performance of 98% in accuracy, and
the accuracy of 1D-CNN and LSTM also exceeds 95%. To
further illustrate the superiority of the presented method, it
needs comprehensive consideration of the time-consuming
conditions and accuracy between CRNN, 1D-CNN, and
LSTM. After each iteration of the training network, the
accuracy and loss values of the test set are calculated once.
As can be seen from the Figure 8(a), the CRNN method’s
testing loss curve remains at 0.08, and the diagnostic accuracy
rate is 97.8%. In Figure 8(b), the testing loss curve of the
1D-CNN method also remains at 0.08, but a diagnostic
accuracy of 95.2% is obtained. As displayed in Figure 8(c),
the LSTM method testing loss curve remains at 0.21, and
the diagnostic accuracy rate is 95.2%. The analysis results
show that the CRNNmethod adopts a deeper neural network
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Figure 8: The accuracies (y-axis) of CRNN, 1D-CNN, and LSTM for 2000 iterations on HST test sets. x-axis: training iterations used.

after integration of 1D-CNN and SRU. Therefore, CRNN has
better detection capabilities than single-structure methods
such as 1D-CNN and LSTM. Comparison of accuracy and
time-consuming situations is shown in Table 6, from which
it can be seen that CRNN maintains an accuracy rate of97.8% on the test sets after 800 iterations and takes 24m35s.

For the same test sets, the CRNN is significantly better than
1D-CNN and LSTM. Compared with 1D-CNN, CRNN does
not consume much time while obtaining higher accuracy.
In addition, compared with LSTM, CRNN not only reduces
the time-consuming amount by 10 times, but also improves
the accuracy by 2%. This means that the high accuracy and
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Table 6: Comparison of the time-consuming conditions and accu-
racy between CRNN, 1D-CNN, and LSTM.

Method
CRNN 1D-CNN LSTM

highest precision iterations 800 1600 1500
time-consuming situations 24m35s 6m40s 4h53m15s
accuracy 0.974 0.952 0.952

CRNN Confusion Matrix
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Figure 9: The confusion matrix of CRNN. The definition of the
condition label of each fault is shown in Table 1.

low time-consuming situation of CRNN can be explained by
the integrated structural advantages rather than the model
parameter settings.

4.4. Misclassifications. To specifically analyze CRNN’s iden-
tification of each test sample, the true class and the predicted
class assigned the highest probability are compared on the
each sample. Based on the comparison results for the each
sample, the Sklearn library gives a CRNN confusionmatrix as
shown in Figure 9. Of the 147 test samples, 144 are accurately
identified. It can be seen that the network is very sensitive
to the faults of HST bogie and can completely distinguish
whether the bogie operation status is normal. Moreover, the
network also has a good ability to recognize the various faults
of bogie. Compared to the 144 correctly classified samples,
the 3 misclassified samples are more interesting. The sample
with condition label 3 is misclassified as the faults with the
label 6. A sample with fault label 4 is considered as the fault
with the label 1, and a sample with fault label 1 is identified as
the fault with the label 4.These misclassifications correspond
to the results of the analysis in Section 2.Themultifault signal
features contain the feature components of single fault, which
makes it difficult to distinguish between multiple faults and
corresponding single faults. Faults with condition labels of 3
and 6 all contain failure factor of lateral dampers, and those
with the labels of 1 and 4 both contain failure factor of air
spring, which will inevitably cause misclassifications.

In order to visualize the classification result of the test
set, the t-SNE [40] method is used to map the features of
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Figure 10: t-SNE visualization of the output layer of CRNN. The
condition label of each fault is defined in Table 1.

the last layer of the proposed CRNN to the low-dimensional
space, which is shown in Figure 10. In the low-dimensional
space, the boundary between different types is very clear, and
the three misclassified test samples are also distributed on
the edge of the misclassified class. This verifies that CRNN
is very effective in feature extraction and fault recognition
of HST bogies. In addition, CRNN also has time-saving
advantages over the other welcomed methods. Therefore,
CRNNcanmeet the high-precision and low-time-consuming
requirements for fault diagnosis of HST bogie.

5. Conclusion

In this paper, the proposed CRNN is a combination method
of 1D-CNN and SRU, which inherits the advantages of two
complementary methods. The method first extracts features
from bogie signals through a plurality of convolution lay-
ers (having a one-dimensional small filter). Then features
extracted are passed to the stacked SRU recurrent layers
to obtain hidden features with time series correlation. The
hidden features are sent to the fully connected layer to calcu-
late the probability of signal classification. The experimental
results in Section 4 show that the deep learning method
is more effective than the ensemble learning method for
the fault diagnosis of HST bogie. More importantly, the
recommended CRNN method has significant performance
improvements over 1D-CNN and SRU. Specifically, the
CRNN not only has a higher accuracy than the conventional
model structure (i.e., 1D-CNN and LSTM), but also can
significantly reduce the time spent in training. This means
CRNN can simultaneously ensure the high efficiency and
time saving of HST bogie fault diagnosis.

The experimental results we obtained in this work need
to be further studied; i.e., it deserves applying more different
methods based on deep learning to the fault diagnosis of HST.
As a future direction of work, CRNN and other deep learning
methods can be used to solve the pattern recognition of the
gradual deterioration of key components that occur during
actual operation ofHST. For instance, monitoring data can be
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utilized to estimate the degree of change in train performance
and conduct safety assessments. It is even possible to detect
early dangers of HST by mastering the deterioration law of
fault states.
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