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Policymakings and regulations of financialmarkets rely on a good understanding of the complexity of financialmarkets.There have
been recent advances in applying data-driven science and network theory into the studies of social and financial systems. Financial
assets and institutions are strongly connected and influence each other. It is essential to study how the topological structures of
financial networks could potentially influencemarket behaviors. Network analysis is an innovativemethod to enhance data mining
and knowledge discovery in financial data. With the help of complex network theory, the topological network structures of a
market can be extracted to reveal hidden information and relationships among stocks. In this study, two major markets of the most
influential economies, China and the United States, are systematically studied from the perspective of financial network analysis.
Results suggest that the network properties and hierarchical structures are fundamentally different for the two stock markets.
The patterns embedded in the price movements are revealed and shed light on the market dynamics. Financial policymakers and
regulators can gain inspiration from these findings for applications in policy making, regulations design, portfolio management,
risk management, and trading.

1. Introduction

Thevisualization of networks and research of hierarchy struc-
tures are essential to study complex systems like financial
markets. Thanks to the significant development of complex
network science [1], quantitative methods and models have
been applied in the studies of financial markets network
structure. In financial network analysis, entities like assets,
stocks, markets, companies, and institutions are modeled as
vertices while their mutual relationships are abstracted as
edges. This approach empowers industrial professionals and
researchers to reveal hidden information embedded in the
topological structures of financial networks, such as the mar-
ket dynamics, trading activities, and investment sentiment.

This information is essential to evaluate and monitor the
financial market risks, contagions, distress propagation, as
well as market mode shifts. Financial network analysis has
been utilized in applications like portfoliomanagement, trad-
ing, market regulation, stress testing, and risk management.

The USA and China are the top two dominating
economies with influences over the global economies. The
two economies are similar in market size. However, the
US economy is well established and developed while the
Chinese economy is emerging and still undertaking fast
development. As the leading economic powerhouses, the
health and stabilities of these two economies are vital for the
prosperities of the world economy. During the past few years,
both countries suffered a series of stockmarket disasters, such
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as the 2008US subprime crisis and the 2007 and 2015Chinese
stock market bubble bursts. These dramatic market crashes
brought widespread and long-lasting negative impacts on
economies and markets. The stock markets of both countries
are also different regarding history, regulations, maturities,
and scales. Thus, it is essential to understand the properties
of these two markets by utilizing the data-driven science
approach. Recently, various major markets in the world
have been investigated using the financial network analysis
approach. However, there is still a lack of systematical studies
dedicating to compare the network structures and properties
of the US and Chinese stock markets using the financial
network analysis approach.

To understand how the two markets differ in the struc-
tures and topological properties, as well as the dynamics mar-
ket properties, this research investigates the markets using a
dataset spanning over nine years. In this research, the stock
markets are modeled as multiple networks including hier-
archical trees, minimum spanning trees, planar maximally
filtered graphs, and assets graphs. Meanwhile, their detailed
topological properties are analyzed and systematically com-
pared. Through quantitative analysis and network visualiza-
tion, results show the twomarkets are different inmany ways.
This provides insights for regulators on the structures and
dynamics of stock markets from the perspective of network
science.

This paper is organized as follows. First, Section 2 gives
a background on the theory of complex networks, financial
network analysis, and relevant complex network parameters
are introduced. Then, in Section 3, the data and method used
to construct networks are described. Section 4 presents the
network properties. In Section 5, the detailed hierarchical
structures of both stock networks are carefully investigated
and compared. Finally, conclusions and discussions are pre-
sented in Section 6.

2. Literature Review of
Financial Network Analysis

Network science has become an innovative tool widely used
in studies of complex systems in a variety of engineering and
scientific domains [2–4]. The network modeling methodolo-
gies and theoretical frameworks have revealed informative
and useful empirical discoveries [5]. Studying the statistical
properties such as degree distribution, average length, and
clustering coefficient can help describe the networks topolo-
gies and the dynamics of network evolution. Furthermore,
it is possible to study the information spreading, network
stability, and phase changes and hopefully to predict and
control the network dynamics [6].

Time series data can be modeled as networks [7, 8]. For
price time series [9], calculation of correlation matrices for a
group of assets is possible [10–12]. From the correlationmatri-
ces, financial network analysis could be applied to construct
networks for further analysis and data mining [13–17]. In
most existing literature, assets are treated as vertices, while
the interconnectivity relationships are modeled as pairwise
edges among assets. The correlation matrices are not only
important for network analysis and topological visualization

but also serve as a bridge between financial network analysis
and traditional finance theories. This is similar to modern
portfolio theory (MPT) [18, 19], which is based on the cor-
relation relationships among assets. Network-based portfolio
selection has been proposed for optimization and empirically
proofed workable [20].

Since the minimum spanning tree approach is first used
in the study of stock market structure [21], financial network
analysis has grown into an essential tool of financial big
data. However, this fast-growing field is still at an early stage
[22]. Financial network analysis provides an unprecedented
perspective shedding new insights on evaluating the market
stability, market risk, shock propagation, and contagion [23–
25]. The connectedness among assets plays the critical role
of market contagion phase transition [26] which is similar to
other tolerance properties of other nonfinancial complex
networks [27]. Further research reveals that intermediate
level of risk diversification can enhance themarket robustness
[28]. The importance and risk contribution of companies
can be identified through the network analysis [29, 30]. The
systemic risks and stability can also be evaluated according
to the topological properties of the financial network, and
providing implications for market regulations [22, 31, 32].
Through investigating the clustering of assets, portfolio opti-
mization can be achieved with better predicted over realized
risks [33]. Overlapping of portfolios is revealed by network
analysis as one primary factor for market contagion [34]. In
another approach, risk spillover networks are constructed to
study the behaviors of financial institutions [35]. Instead of
a single layer approach, by building multiple-layer network,
the banking system risk is analyzed and quantified [36].
Regression models can also take network structure into
consideration as factors for resilience and robustness of the
markets [37]. This financial network approach opens more
interesting newpossibilities and dramatically enriches regres-
sion models in finance studies. Recently, there has been a
thread of studies on major players in financial networks, such
as ‘too interconnected to fail’ institutions [38], ‘too central to
fail’ [39], and ‘too big to fail’ [40].The research demonstrated
that financial network analysis brings new insights to finance
studies and benefits to finance practices.

In the rise of quantitative trading, the causality and
lead/lag relationships revealed by financial network analysis
can be particularly interesting for trading strategy design [41,
42]. Many researches have revealed stylized evidence that the
network structure has a profound influence on the asset
returns [43]. Taking risks into consideration, it has been
found that investing in peripheries of financial networks
might generate better returns over risks [44]. Furthermore,
industry professionalswould be inspired by financial network
analysis to seek price movement signals for potential predic-
tions [45].

While most existing financial network analysis literatures
focus on the stock markets or specific economy sectors [46–
48], a variety of financial systems have been studied as fi-
nancial network such as global financial institutions [39, 40],
world trade web [49, 50], interbank markets [51–54], exchan-
ges [55], monetary market [56], corporate networks [57, 58],
global banking [59], CDSmarket [60], and credit market [61].
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Many major individual financial markets around the
world have also been studied in network approach, such asUS
[62, 63], China [64–66], Germany [67, 68], EU [69–71], Brazil
[33, 72], Italian [53, 56], Korea [73], Russia [74], and Mexico
[36, 75]. Furthermore, there is literature focusing on the
cross-board global markets [76, 77]. Using the partial data,
networks of global markets are reconstructed, and methods
are compared [56]. Bayesian graphical models are applied
to identify groups of counties which are major contributors
to systemic risks according to banking behaviors in the
global banks [78]. For the European markets, the risk and
contagion channels are studied, and results show the EU
markets are vulnerable to risks [71]. Global stock exchange
network is investigated to evaluate the attractions for IPOs
[79]. A recent study has demonstrated the approach which
uses transfer entropy to study a selection of major individual
stocks around the world and reveals that stocks are clustered
according to their countries and industries [80]. By looking
into the network structures of the global financial network,
it is possible to give new insights into the international
business cycle [81]. The diversification and participation are
investigated for various economies [82].

Considering a large number of assets in financial markets,
the initial networks havemassive edges. By filtering the noises
of the networks, the financial networks can be significantly
simplified to enable advanced analysis such as principal
component analysis (PCA) [76] and random matrix theory
(RMT) [83, 84] to further extract hidden patterns. Hierarchi-
cal tree (HT) [21, 68], minimum spanning tree (MST) [85],
planar maximally filtered graphs (PMFG) [86], asset graph
(AG) [87, 88], and partial correlation network [15, 89, 90]
are major approaches applied in filtering financial networks.
Mantegna [21] first introduces the minimum spanning tree
method into the study of hierarchical structures in financial
markets. With the network, we can study the topological
structure of a market or a portfolio. In this research, we
adopt the frameworks to study the correlations and the
corresponding networks of stock markets both in China and
theUnited States to systematically study how the twomarkets
behave differently.

3. Data and Research Methods

3.1. Indices of CSI300 and S&P500. We study the stock
markets of China and United States: the former is a typical
representative of emerging countries with fast-growing GDP
rate and influence on global economies, while the latter is
the most established and developed economy in the world.
To study the major stocks of each market, we focus on the
component stocks of the major indices of the two stock
markets, i.e., China Securities Index 300 (CSI300) for the
Chinese stock market and Standard & Poor’s 500 (S&P500)
for the US market. In our study, we cover a period of nine
years starting from 04/01/2007 and ending on 06/11/2015
with 2149 trading days for CSI300 and 2228 trading days
for S&P500. The reason why the two markets have different
numbers of trading dates is that the two markets have
different trading calendars. Index and all component stocks
daily price data of CSI300 are retrieved from the CSMAR

Solution Database of Shenzhen GTA Education Tech. Ltd.
We download the S&P500 index and component stocks daily
prices data throughYahoo finance service. Since not all stocks
are traded on each trading date, so we only select those
CSI300 stocks with at least 2000 trading dates, and without
continuous 100 nontrading dates, this selection results in a
final set of 163 stocks. For S&P500, we select those stocks with
at least 2100 trading dates, and in results, we get 468 stocks.
After stocks selection, we take the prices on the available
closest trading date to fill the nontrading dates. In Figures 1(a)
and 1(b) we plot the daily close prices and the daily log returns
for the index of CSI300 in the study period of 04/01/2007 and
06/11/2015 with 2149 trading days. In Figures 1(c) and 1(d),
we plot the daily close prices and the daily log returns for the
index of S&P500 in the same study period from 04/01/2007
to 06/11/2015 with 2228 trading days. From the figures, we see
that the two markets show large fluctuations in the last nine
years. CSI300 experienced huge market crashes in 2008 and
2015, while S&P500 kept climbing almost continuously after
the 2008 financial crisis.

3.1.1. CSI300. China has two independent stock market
exchanges, i.e., the Shanghai stock exchange and the Shen-
zhen stock exchange. Opened at the beginning of 1990s with
only 25 years of trading history, the two markets have grown
into important financial markets playing vital roles in China’s
financial markets and economy. Among the many stock
market indices, the China Securities Index 300, or CSI300,
was introduced by the China Securities Index Company,
Ltd. in 2005 to a base of 1000 on 31/12/2004. In CSI300,
a set of 300 stocks are included as the index components;
all of them have the largest market values and are actively
traded in Shanghai or Shenzhen stock exchanges. CSI300 has
become a widely accepted benchmark to evaluate the whole
stock markets behaviors in China as well as a good basis
for other derivative products. Starting from 1000 points in
the early of 2004, now CSI300 has reached 3793 points as
of 06/11/2015 [91]. To give an image of the Chinese stock
market, we plot the 2149 CSI300 index daily close prices and
daily log returns in the study period between 04/01/2007
and 06/11/2015 in Figures 1(a) and 1(b). In the past nine
years, CSI300 experienced twomajor market crashes in 2007-
2008 and 2015, respectively, during which themarket suffered
huge losses and fluctuations. There are 163 stocks of CSI300
component stocks included in our dataset, as shown in
Table 1, in which we summarize the numbers of these 163
stocks for all 20 industry sectors. As shown, all industry
sectors from Agriculture to Comprehensive are represented.
For convenience, we will refer to these 163 stocks as CSI163 in
the following parts.

3.1.2. S&P500. Compiled by Standard & Poor’s in 1957, the
S&P500 is an established American stock market index
with more components, more risk diversification, and better
reflection of the overall stock market performance than
both the New York Stock Exchange (NYSE) and Nasdaq.
All components are large stocks in capitalization with good
liquidities and diversifications in different industry sectors.
The S&P500 represents major parts of the market and is
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(a) CSI300 daily close prices

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

CS
I3

00
 In

de
x 

D
ai

ly
 R

et
ur

n

2008 2009 2010 2011 2012 2013 2014 20152007
Time (Year)

(b) CSI300 daily log returns
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(c) S&P500 daily close prices
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(d) S&P500 daily log returns

Figure 1: CSI300 index daily close prices (a) and log returns (b) in the study period between 04/01/2007 and 06/11/2015 with 2149 trading
days. S&P500 index daily close prices (c) and log returns (d) in the study period between 04/01/2007 and 06/11/2015 with 2228 trading days.

considered as one of the best benchmarks for the US financial
markets and economy. Starting from less than 100, after more
than 50 years of development, the S&P500 reached 2099
on 06/11/2015 [92]. We plot 2228 daily close prices and log
returns of the index of the S&P500 in our study period
between 04/01/2007 and 06/11/2015 in Figures 1(c) and 1(d).
We can observe that the S&P500 index suffered a major
crash between 2008 and 2009 then recovered almost steadily
with minor fluctuations. After the selection, there are 468
stocks of the S&P500 component stocks included in our
dataset, as shown in Table 2. We summarize the numbers
of these 468 stocks for all ten industry sectors. As shown,
all industry sectors from Energy to Utilities are represented.
For convenience, from now we will refer to these 468 stocks
as S&P468 in the following parts. Table 3 gives a summary
of the two datasets of both CSI163 and S&P468; CSI163 has
a larger standard deviation 𝜎𝑟 of the log returns, indicating
larger fluctuations than S&P468. We use ⟨𝑥⟩ to denote the
average of variable 𝑥 in this paper.

3.2. Construction of Stock Networks

3.2.1. Price Returns and Correlations. From the time-stamped
price time series of a blanket of stocks, it is possible to
calculate the correlations for any pair of stocks once a time
window is given. 𝑃𝑖(𝑡) is the price at time 𝑡 of stock 𝑠𝑖. It could
be one of the daily prices of open, close, high, or low. Per
most literature suggests, we choose the most used daily close
price. To smooth the fluctuationwithout loss of generality, the
logarithmic return for 𝑠𝑖 in the period of [𝑡 − Δ𝑡, 𝑡] is defined
as

𝑌𝑖 (𝑡) = ln𝑃𝑖 (𝑡) − ln𝑃𝑖 (𝑡 − Δ𝑡) , (1)

and usually used instead of 𝑃𝑖(𝑡) itself. In most cases, daily
log returns are used where Δ𝑡 = 1. For stock pair of 𝑠𝑖 and𝑠𝑗, we can extract the two price time series in a time window
with a length or size of 𝐿, i.e., with 𝐿 price values included
in the window. The selection of 𝐿 is expected to meet the
requirement of 𝐿/𝑁 > 1. In a sliding window approach, we
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Table 1: 163 component stocks of CSI300 are included in our dataset. In this table, we list the China Securities RegulatoryCommission (CSRC)
industry code, sector name, and numbers of stocks for each industry sector of these 163 stocks. All 20 industry sectors are represented.

Industry code Industry Sector Number of Stocks
A Agriculture 1
B Mining 6
C0 Food & Beverage 4
C1 Textiles & Apparel 4
C3 Paper & Printing 2
C4 Petrochemicals 9
C5 Electronics 7
C6 Metals & Non-metals 20
C7 Machinery 27
C8 Pharmaceuticals 15
D Utilities 6
E Construction 5
F Transportation 10
G IT 8
H Wholesale & retail trade 10
I Finance and insurance 10
J Real estate 11
K Social Services 3
L Communication & Cultural Industry 2
M Comprehensive 3

Table 2: 468 component stocks of S&P500 are included in the
dataset. In this table, we list the Global Industry Classification
Standard (GICS) code, sector name, and number of stocks for each
industry sector in S&P500. All ten industry sectors are represented.

Industry code Industry Sector Number of Stocks
10 Energy 36
15 Materials 26
20 Industrials 63
25 Consumer Discretionary 78
30 Consumer Staples 33
35 Health Care 50
40 Financials 87
45 Information Technology 61
50 Telecommunication Services 5
55 Utilities 29

Table 3: Basic information ofCSI163 and S&P468 datasets including
the number of stocks, the number of trading days, the average log
returns ⟨𝑟⟩, and the standard deviation 𝜎𝑟 of the log returns is
presented. Compared to the US market, the Chinese market has
higher fluctuations in our study period between 04/01/2007 and
06/11/2015.

Dataset Stocks Days ⟨𝑟⟩ 𝜎𝑟 ⟨𝑟min⟩ ⟨𝑟max⟩
CSI163 163 2149 1.4795e-04 0.0340 -0.4832 0.1002
S&P468 468 2228 1.4691e-04 0.0252 -0.3413 0.2168

can extract subsets of prices in a serial of sliding windows:
[1, 𝐿], [2, 𝐿 + 1], ⋅ ⋅ ⋅ . For a given window, with the two time

series of prices, it is possible to generate two log return time
series using equation (1) for both stocks 𝑠𝑖 and 𝑠𝑗. Thus, the
correlation coefficient between two stocks can be calculated
by using the Pearson correlation coefficient [21]

𝜌𝑖𝑗 = ⟨𝑌𝑖𝑌𝑗⟩ − ⟨𝑌𝑖⟩ ⟨𝑌𝑗⟩
√(⟨𝑌2𝑖 ⟩ − ⟨𝑌𝑖⟩2) (⟨𝑌2𝑗 ⟩ − ⟨𝑌𝑗⟩2)

, (2)

where ⟨⋅ ⋅ ⋅ ⟩ stands for the average. The value of 𝜌𝑖𝑗 ranges
between -1 and 1, where a negative value of 𝜌𝑖𝑗 < 0 indicates
the two stocks fluctuate in a noncorrelated manner, i.e., one
falls downwhile another one climbs up. For a positive value of𝜌𝑖𝑗 > 0, the two stocks fluctuate in a positively correlated way.
In this case, they move in the same direction. If 𝜌𝑖𝑗 ≈ 0, then
they are not correlated. If |𝜌𝑖𝑗| ≈ 1, then the two stocks are
perfectly correlated or noncorrelated. In a stock market, the
stocks from the same industry aremore likely to be correlated.

For a portfolio of𝑁 stocks 𝑠1, 𝑠2, ⋅ ⋅ ⋅ , 𝑠𝑁, we can calculate
all 𝑁 × 𝑁 pairs of correlation coefficients 𝜌𝑖𝑗 for any 𝑠𝑖 and
𝑠𝑗. These𝑁2 pairs of values can be expressed as a correlation
coefficient matrix 𝐶 with a size of𝑁 ×𝑁.

Based on the correlation matrix 𝐶, we can define the
distance 𝑑𝑖𝑗 between stock pair of 𝑠𝑖 and 𝑠𝑗 as

𝑑𝑖𝑗 = √2 (1 − 𝜌𝑖𝑗). (3)

The values of 𝑑𝑖𝑗 form an adjacent symmetric matrix 𝐷, in
which there are 𝑁(𝑁 − 1)/2 different elements. It is verified
that this definition satisfies the three rules of Euclidean
distance: (1) 𝑑𝑖𝑗 = 0 if and only if 𝑖 = 𝑗; (2) 𝑑𝑖𝑗 = 𝑑𝑗𝑖;
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(3) 𝑑𝑖𝑗 ≤ 𝑑𝑖𝑘+𝑑𝑘𝑗 [21]. Since −1 ≤ 𝜌𝑖𝑗 ≤ 1, we have 0 ≤ 𝑑𝑖𝑗 ≤ 2.
With this definition, the distance for two stocks has a value
of 2 when they are completely anticorrelated (𝜌𝑖𝑗 = −1),
and a small distance close to 0 when they are positively and
completely correlated (𝜌𝑖𝑗 → 1). This makes it possible to
compare the distances for any two pairs of stocks.

3.2.2. Network 𝑁(𝑉,𝐸). With the adjacency matrix 𝐷, we
can further construct the network 𝑁(𝑉,𝐸) for the stocks,
where stock 𝑠𝑖 is represented as vertex V𝑖 ∈ 𝑉, and 𝑒𝑖𝑗 ∈ 𝑉
represents the edge between V𝑖 and V𝑗 with a distance of 𝑑𝑖𝑗.
The network 𝑁(𝑉, 𝐸) is undirected in which only one edge
exists between a pair of vertices. The size of the network is the
number of stocks𝑁.The possible maximumnumber of edges
is𝑁(𝑁 − 1)/2 for an undirected complete network in which
all vertex pairs are connected. For a portfolio with a large
number of stocks𝑁, the number of edges is a huge number.
Thus it is necessary to simplify the network by filtering
less important edges. In a simple threshold approach, by
introducing a threshold value 𝜃, we can reduce the network by
chopping those edges whose distance are greater than 𝜃 and
keeping the remaining edges. In other words, we only retain
the connections which are strong enough, i.e., those with
small distances, and all other weak edgeswith distances larger
than the threshold 𝜃 are filtered as the following equation:

𝑒𝑖𝑗 = {{{
1 if 𝑑𝑖𝑗 < 𝜃,
0 otherwise. (4)

Or in an edge ranking approach, we only keep a certain
number of top edgeswith the strongest relationships, say𝑁−1
edges. With this approach, the remaining edges are more
likely to form loops in strongly connected vertices and are
referred to as an asset graph [93].

3.2.3. Network Filtering. By filtering edges in a threshold
approach, we may get isolated vertices or loops in the filtered
network. To avoid this, tree approaches including minimum
spanning tree (MST) can be used to chop edges but still
keep all vertices connected as a tree. MST is introduced to
investigate the hierarchical structure of stock networks first
by Mantegna [21]. Many studies also use this approach, such
as Jang et al., to investigate the foreign exchange market
using in the periods of currency crises finding that the
values of correlation coefficients decrease but the normalized
tree length increase in crises [94]. Matteo et al. find that
the dynamical planar maximally filtered graphs (PMFGs)
can preserve same hierarchical structure as the dynamical
MST, and the financial sector dominates the central role in
the network [47]. As an application of network analysis in
portfolio management, Onnela et al. suggest the assets of the
classic Markowitz portfolio are always located on the outer
leaves of the tree [88], and Pozzi et al. further suggest that
even it is better to invest in the peripheries of the MST of
a market [44]. In [85], MST networks extracted from real
correlation data are compared with those generated from
artificial random models. Results reveal that the properties
of MST from real data cannot be reproduced, showing the
uniqueness of real stock networks.

Based on the network 𝑁(𝑉,𝐸), we can extract a tree
connecting all vertices with𝑁−1 edges with aminimum total
distance also known asminimum spanning tree (MST) of the
stocks. By only using the 𝑁 − 1 edges out of the maximum
𝑁(𝑁 − 1)/2 edges, the network is dramatically simplified or
filtered while keeping the most important shortest edges. To
extract the MST, Kruskal’s Algorithm was applied in three
steps: (1) we rank all edges according to the distances from
the shortest to the longest; (2) in each round, we choose
the shortest edge into the MST while avoiding loops; (3) we
repeat round #2 until all vertices and all𝑁− 1 shortest edges
are added [95]. Bonanno et al. review the MST approach in
revealing information of markets [96].

Using the MST, we can construct the hierarchical tree
(HT) in which the subdominant ultrametric distance 𝑑<𝑖𝑗 is
defined as the maximum distance of an edge along the path
between V𝑖 and V𝑗. The HT satisfies the first two rules with a
stronger third one:

𝑑<𝑖𝑗 ≤ max (𝑑<𝑖𝑘, 𝑑<𝑘𝑗) , (5)

With this ultrametric inequality, we can construct a hierar-
chical tree based on a MST and present a unique topological
structure of the stocks [21, 97].

By loosening the requirements of MST up to 4 vertices,
but forbid crossings, as many as 3(𝑁 − 2) edges containing
the MST as the subgraph including all the top𝑁− 1 shortest
edges can be gathered. This new network can be drawn
on a planar surface without link crossings is called planar
maximally filtered graphs (PMFG) [47, 86, 98–101]. This
makes PMFG different from MST, which also shows richer
structures of the network. In a similar construction to MST,
to construct PMFG, we firstly rank the edges in ascending
orders according to the distances of edge pairs. Then we add
the shortest edges into the PMFG but keeping the genus 𝑔 =
𝑘, where the 𝑔 is the largest number of simple closed curves
one can draw on a planar surface without separating it. For
the case of 𝑔 = 0, when all edges are considered, PMFG can
be gathered [86]. It has also been proved that an MST is a
subgraph of a PMFG and the number of 3- and 4-cliques in a
PMFG is 3𝑛 − 8 and 3𝑛 − 4, respectively [102].

Since PMFG contains more edges and allows loops and
cliques, there is more information embedded in PMFG than
in MST. After the introducing of PMFG into the study of
network structures of stocks, PMFG has been used in studies
ofmany stockmarkets, andmore recently, PMFG is applied in
investment strategy design [44]. Based on PMFG, a clustering
approach called Directed bubble hierarchical tree (DBHT) is
proposed and show good performance compared with other
algorithms and also been applied to study financial data [103].
It has been reported that, in a running window approach, the
PMFG shows stronger stability in a long run compared with
MST [104].

4. Stock Network Topological Properties

A network 𝑁 = (𝑉, 𝐸) is a graph composed of a set of
vertices 𝑉 and a set of edges 𝐸. In a network model,
the participants are represented as the vertices 𝑉, and the
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Table 4: For the CSI163 network, the maximum possible number of edges of |𝑒|max for 𝑁 = 163 vertices, the existing edge number |𝑒|, the
edge density |𝑒|𝑑𝑒𝑛𝑠𝑖𝑡𝑦, the average degree ⟨𝑑⟩, the average distance ⟨𝑑𝑖𝑗⟩, the minimum distance 𝑑min

𝑖𝑗 , and the maximum distance 𝑑max
𝑖𝑗 are

presented for different 𝜃 from 0 to 1.5 in a step of 0.1.

𝜃 |𝑒|max |𝑒| |𝑒|𝑑𝑒𝑛𝑠𝑖𝑡𝑦 ⟨𝑑⟩ ⟨𝑑𝑖𝑗⟩ 𝑑min
𝑖𝑗 𝑑max

𝑖𝑗

0.1 13203 0 0.0000 0.0000 0.0000 0.0000 0.0000
0.2 13203 0 0.0000 0.0000 0.0000 0.0000 0.0000
0.3 13203 2 0.0002 0.0245 0.0000 0.0049 0.0089
0.4 13203 30 0.0023 0.3681 0.0000 0.0010 0.0593
0.5 13203 91 0.0069 1.1166 0.0003 0.0003 0.2200
0.6 13203 276 0.0209 3.3865 0.0010 0.0003 0.3689
0.7 13203 1594 0.1207 19.5583 0.0038 0.0003 0.4291
0.8 13203 5620 0.4257 68.9571 0.0177 0.0004 0.5353
0.9 13203 10555 0.7994 129.5092 0.0666 0.0004 0.7098
1 13203 12816 0.9707 157.2515 0.1866 0.0005 0.7996
1.1 13203 13194 0.9993 161.8896 0.4052 0.0006 0.9443
1.2 13203 13203 1.0000 162.0000 0.6957 0.0902 1.0887
1.3 13203 13203 1.0000 162.0000 0.9637 0.3719 1.1910
1.4 13203 13203 1.0000 162.0000 1.0966 0.5515 1.2878
1.5 13203 13203 1.0000 162.0000 1.1141 0.5515 1.3230

relationship between any pair of two participants 𝑖 and 𝑗 is
represented as the edge 𝑒𝑖𝑗 connecting the two vertices V𝑖
and V𝑗. In this study, the following properties of financial
markets are researched: (1) Degree and Degree Distribution
which describes the connectivities of vertices; (2) Clustering
Coefficient which is the indication of the transitivity and
density of a network; (3) Average Path Length, which is
a global property indicating how the network spans; (4)
Betweenness Centrality which describe the global importance
or centrality of vertices or edges; (5) Components which
describe the grouping phenomena of substructures of the
networks.

Based on how the correlations are calculated, there are
two approaches, static or dynamic. In a static approach,
the correlations are calculated over the whole period using
all available prices. Thus we get a single static correlation
matrix to describe the market regardless of the different
market periods.When sliding windows are used in a dynamic
approach,we get a sequence of correlationmatrices.The static
approach, which is the most used in literature, gives a static
description of the structure of the market with details of
different market periods like bear markets or bull markets.
However, the dynamic approach can reveal the evolution of
market structures and behaviors, which are especially useful
for the comparisons of calm periods and crashes.

In this part, we present the topological properties of
stock networks of the two markets, CSI163 and S&P468, in
a dynamic approach. Considered to meet the requirement
of 𝐿/𝑁 > 1, we set the sliding window size 𝐿𝐶𝑆𝐼163 =
170 for CSI163 and 𝐿𝑆&𝑃468 = 500 for S&P468. In total,
there are 2149 windows for CSI163 and 2228 windows for
S&P468. After calculating the log returns for both CSI163 and
S&P468 by using equation (1), we calculate the correlation
coefficient matrices over the period between 12/09/2007 and
06/11/2015 for CSI163, 26/12/2008 and 06/11/2015 for S&P468
using equation (2). Based on the correlation matrices, it is

straight to get stock networks. For CSI163, we have a network
of 163 vertices, and for the S&P468, we have a network of
468 vertices. The edge connecting two stocks indicates how
the two stocks behave correlatively or anticorrelatively. For a
positive correlation coefficient value, the two prices move in
the same direction, while for a negative value, the two prices
move in opposite directions, so to normalize all correlation
coefficients to positive values as edge distances, we adopt the
definition of distance based on equation (3). Through this
definition, all negative values are transformed into positive
distance values, and the order of values is preserved. All
vertices in the networks for both markets are fixed. However,
the edges vary in each sliding window as the correlation
coefficients change. In the following parts, the statistical
properties of both networks evolved in our study period are
investigated.

4.1. Degree and Degree Distribution. For a network of 𝑁
stocks, there are 𝑁 × 𝑁 edges, which is a huge number
for a large 𝑁. So we normally filter the weakest edges to
simplify the network. In the threshold approach, a threshold
𝜃 can be used to chop the edges, if 𝑑𝑖𝑗 > 𝜃. For a given
network, different 𝜃 can lead to different structures with
same vertices but different sets of remaining edges. Based
on the correlation matrices, we first investigate the stock
networks with different 𝜃 for both CSI163 and S&P468. In the
sliding window approach, using daily log return time series,
we first calculate the correlation matrices of 163 × 163 for
CSI163 and 468 × 468 for S&P468; then we average all the
correlation matrices over the study periods. After that, we get
the averaged correlation matrices, with which we can apply
the edge filtering process for different 𝜃 based on the equation
(4). Based on the result, small 𝜃 closes to 0 will filter most
edgeswhile larger 𝜃 close to themaximumvalue twowill keep
most edges. We use an 𝜃 interval of [0.1 − 1.5] with a step
of 0.1. We present the basic network properties in Table 4 for



8 Complexity

Table 5: For the S&P468 network, the max possible edges |𝑒|max for𝑁 = 468 vertices, the existing edge number |𝑒|, the edge density |𝑒|𝑑𝑒𝑛𝑠𝑖𝑡𝑦,
the average degree ⟨𝑑⟩, the average distance ⟨𝑑𝑖𝑗⟩, the minimum distance 𝑑min

𝑖𝑗 , and the maximum distance 𝑑max
𝑖𝑗 are presented for different 𝜃

from 0 to 1.5 in a step of 0.1.

𝜃 |𝑒|max |𝑒| |𝑒|𝑑𝑒𝑛s𝑖𝑡𝑦 ⟨𝑑⟩ ⟨𝑑𝑖𝑗⟩ 𝑑min
𝑖𝑗 𝑑max

𝑖𝑗

0.1 109278 0 0.0000 0.0000 0.0000 0.0000 0.0000
0.2 109278 2 0.0000 0.0085 0.0000 0.0935 0.1094
0.3 109278 2 0.0000 0.0085 0.0000 0.1959 0.2033
0.4 109278 18 0.0002 0.0769 0.0000 0.0005 0.2033
0.5 109278 137 0.0013 0.5855 0.0001 0.0003 0.3265
0.6 109278 729 0.0067 3.1154 0.0007 0.0003 0.4980
0.7 109278 3571 0.0327 15.2607 0.0038 0.0004 0.6125
0.8 109278 16433 0.1504 70.2265 0.0213 0.0004 0.7255
0.9 109278 50364 0.4609 215.2308 0.0952 0.0005 0.8122
1 109278 88680 0.8115 378.9744 0.2739 0.0005 0.9264
1.1 109278 106179 0.9716 453.7564 0.5356 0.0006 1.0334
1.2 109278 108956 0.9971 465.6239 0.7994 0.0007 1.1486
1.3 109278 109277 1.0000 466.9957 0.9906 0.0044 1.2480
1.4 109278 109278 1.0000 467.0000 1.0711 0.1959 1.3465
1.5 109278 109278 1.0000 467.0000 1.0711 0.1959 1.3465
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Figure 2: Edge densities of CSI163 and S&P468 for different
thresholds 𝜃 from 0.1 to 1.5. It shows that the densities increase
sharply from 0 to 1 in the 𝜃 interval of 0.6 and 1.

the CSI163 network and Table 5 with different 𝜃 between 0.1
and 1.5. The maximum possible edges are 13203 for CSI163
and 109278 for S&P468, respectively. For different distance
thresholds 𝜃, any edges whose distances are greater than the
threshold are filtered. So with smaller 𝜃, only a few edges
remain in the network and this results a smaller edge density
|𝑒|𝑑𝑒𝑛𝑠𝑖𝑡𝑦, smaller average degree ⟨𝑑⟩, average distance ⟨𝑑𝑖𝑗⟩,
minimumdistance 𝑑min

𝑖𝑗 , andmaximumdistance 𝑑max
𝑖𝑗 aswell.

In Figure 2, we plot the edge densities of CSI163 and
S&P468 for different thresholds 𝜃 from 0.1 to 1.5. In the

interval of 0.1 to 0.6, the densities for both networks are close
to 0, meaning all edges are filtered. While in the interval of 1
to 1.5, the densities are close to 1, meaning that all edges are
preserved. Between these two intervals, we see that the two
curves have a similar shape with a slope when 𝜃 lies between
0.6 and 1. This indicates that most edges are within this
interval. A similar edge density distribution is also reported
in [65].The study shows that stock networks also demonstrate
a similar transforming interval.

We investigate the degree distributions of both networks
with different 𝜃. No matter if 𝜃 is too small or too large,
the degree distributions are noisy, while in a narrow interval
around 0.7, the distributions follow the power law. The
regressionfitting curve is a straight line in the plots of log 𝑃(𝑘)
against log(𝑘), where the log𝑃(𝑘) is the log10 probability for
a vertex with 𝑘 degrees and the log(𝑘) is the log10 degree.
After running on the data, we plot the typical power law
distributions in Figure 3(a) for CSI163 and Figure 3(b) for
S&P468 respectively. For both distributions, we fit the log10-
log10 distribution and get the power law exponents 𝛾 =−0.9935 for CSI163 and 𝛾 = −1.2323 for S&P468. In the
plots, we use the same 𝑏𝑖𝑛𝑠 = 20 to calculate the probabilities
for different degrees. As shown in Figure 3, we see that a
large number of vertices have small degrees. Only a few
vertices have large degrees. As the vertices are stocks, and
the degrees are rooted in the correlations between stocks,
for both CSI163 and S&P468 networks, only a few stocks
are the highly correlated with the most parts of rest stocks.
These stocks have a wider and larger influence over the
whole networks, while other stocks with relatively smaller
degrees are less correlated with other stocks. This presents
limited influence over the network. The negative fitting slope
value 𝛾 also indicates that both the CSI163 and S&P468
networks are scale-free networks in which a small portion
of vertices have larger degrees while a large portion of
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Figure 3: Log-Log degree distributions of CSI163 and S&P468 networks. By using different 𝜃, we can filter out edges with larger distances.
We find that not all the filtered networks can demonstrate the power law degree distributions. Only when 𝜃 falls within a narrow interval
around 0.7, the filtered networks follow the power law degree distribution. In Figure 3(a), for the CSI163 network, we use 𝜃 = 0.68 and we get
a fitting line with a slope of 𝛾 = −0.9935. In Figure 3(b), for the S&P468 network, we use 𝜃 = 0.75 and we get a fitting line with a slope of
𝛾 = −1.2323. This indicates that the degree distributions of both stock markets follow the power law in the form of 𝑃(𝑘) ∼ 𝑘−𝛾, which also
means the networks are scale free in which a small portion of vertices have larger degrees, while a large portion of vertices have small degrees.

vertices have smaller degrees this agree with previous studies
[105].

4.2. Average Clustering Coefficient. Average clustering coef-
ficient ⟨𝐶⟩ is an average of all clustering coefficients ⟨𝐶𝑖⟩
of all vertices. The clustering coefficient ⟨𝐶𝑖⟩ indicates the
transitivity for an individual vertex V𝑖, while the overall
averaged clustering coefficient ⟨𝐶⟩ is an indication of the
transitivity and density of the whole network. In Figure 4, we
present the average clustering coefficient ⟨𝐶⟩ for both CSI163
and S&P468 networks comparing with random networks.
The ⟨𝐶⟩ gets larger with the 𝜃 when larger 𝜃 will preserve
more edges, while it remains almost unchanged with a
slight increase in both random networks. Comparing with
random networks of same sizes of 163 × 163 for CSI163 and468 × 268 for S&P468, ⟨𝐶⟩ of both two stock networks are
significantly larger than that of the corresponding random
networks. For CSI163, ⟨𝐶⟩ is 4.9574 times larger than that
of the random networks on average with a maximum of
11.8903 times. For S&P468 the average multiple is 5.2305
times, andmaximummultiple is 10.4180 times comparedwith
the random networks. This shows that both stock networks
are well connected with better transitivity. This result agrees
with many other previous studies.

4.3. Average Path Length. Unlike clustering coefficient which
is a local property, for any two vertices V𝑖 and V𝑗 in a network,
the number of edges covering the shortest route linking the
two vertices is defined as the characteristic path length, 𝑙𝑖𝑗,
in [2] which is a typical global property. By averaging the
lengths of all possible pairs, we can calculate the average path
length ⟨𝐿⟩. As an indication of how the network is connected,
many real networks have small ⟨𝐿⟩ compared with random
networks. In Figure 5, we plot the average path length ⟨𝐿⟩

of both CSI163 and S&P468 networks with comparisons of
random networks in same sizes. The two stock networks
are significantly different from the corresponding random
networks with the same sizes of 163 × 163 and 468 ×
468. While the flat curves of ⟨𝐿⟩ of random networks stay
almost unchanged with 𝜃, this is a result of the universal
homogeneous edge distribution on the whole network. There
are peaks for the stock networks. On the left hand of the peak,
there is a decline of ⟨𝐿⟩ with the decrease of 𝜃, since when 𝜃
gets too small, most edges are filtered, and the giant networks
break into small parts and ⟨𝐿⟩ in small parts are decreasing
significantly. However, for the right hand of the peak, ⟨𝐿⟩
gets smaller with the increase of 𝜃 due to the increasing
connectivity when more and more edges are preserved. This
shows the stock networks of both CSI163 and S&P468 are
different from random networks.

4.4. Betweenness Centrality. The betweenness 𝑏V𝑖 of vertex V𝑖
is defined as the number of shortest paths passing V𝑖, which is
an indication of the importance of an individual vertex in the
contribution to the global connectivity. By averaging over the
betweenness of all vertices, we can compare the betweenness
for any two vertices. Larger betweenness means great global
influence of the stock networks. This is the same to the edges.
The betweenness 𝑏𝑒𝑖𝑗 is the number of shortest paths passing
the edge 𝑒𝑖𝑗 indicating the importance of this edge for its
contribution to the global connectivity. In this study, we focus
on the vertex betweenness. In the calculation of the shortest
paths, we can use the original distance 𝑑𝑖𝑗 defined in equation
(3) or simplify the network as a binary network according to

𝑒𝑖𝑗 = {{{
1 𝑑𝑖𝑗 > 0,
0 𝑑𝑖𝑗 = 0.

(6)
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Figure 4: Average clustering coefficient ⟨𝐶⟩ of CSI163 and S&P468 for different thresholds 𝜃. It shows that ⟨𝐶⟩ gets larger with 𝜃. To compare
with random networks, we plot the corresponding average clustering coefficients under the same interval of 𝜃. As is shown, for both CSI163
and S&P468 networks, ⟨𝐶⟩ values are significantly larger than the random networks of the same size. This indicates the stockmarkets are far
from random and the stocks are comparatively clustered.

In the former, edges with different distances have different
contributions to the paths, while, for the latter, all edges of
nonzero distance are normalized as 1 and treated equally with
great scarifying of original distance information. As shown
in Figure 6, we plot the average betweenness ⟨𝐵⟩ of CSI163
and S&P468 for both binary case and weighted case under
different 𝜃 in Figures 6(a) and 6(b) respectively. For binary
network case, all edges with positive distances are normalized
as unit 1, while, in weighted networks, the original distances
are directly used in the calculation of shortest paths. The
shapes for binary and weighted networks are different. There
are peaks for both stock networks in binary networks, while
⟨𝐵⟩ gets larger with 𝜃 from almost zero to large numbers in
weighted networks.

We visualize the stock networks of CSI163 and S&P468
with different 𝜃 of 0.6, 0.7, 0.8, 0.9 in Figures 7(a)–7(d) and
8(a)–8(d), respectively. It shows that the networks can be
dramatically simplified using small values of 𝜃 and the edges
are preserved in larger values of 𝜃. As listed in Table 4, the
edge density of CSI163 grows dramatically from 0.0209 (𝜃 =
0.6) to 0.7994 (𝜃 = 0.9), while, for S&P468 as shown in
Table 5, the edge density of S&P468 grows also dramatically
from 0.0067 (𝜃 = 0.6) to 0.4609 (𝜃 = 0.9). All networks
in this paper are generated using the Pajek complex network
software [106].

4.5. Components. A component 𝐶𝑜𝑚 is a subnetwork of the
whole network with connected vertices. For a given network
with a set of 𝑁 vertices, the possible size of 𝐶𝑜𝑚 can range
from 1 for an isolated vertex to N for all connected vertices.
When an individual vertex V𝑖 is disconnected from any other
vertices, V𝑖 itself forms the smallest component with a single
vertex. When all the vertices are connected without any
isolated vertices, the network is a single giant component.
For a stock network, the stocks are correlated with each
other, while stocks belonging to different components are not
correlated. The component structures of stock networks have
great implications for risk management of a portfolio. Since
the stocks fall in the same component are correlated, so it is a
bad idea to invest in most stocks from the same components.
We should invest stocks fromdifferent components to diverse
the risk of the whole portfolio. When 𝜃 is small, most edges
are filtered leaving many vertices isolated. As a result, we
see the emerging of a large number of small components.
However, with the growth of 𝜃, more and more edges are
preserved. This allows the connectivity increase resulting
in the appearing of larger components. In Figure 9, the
properties of components of CSI163 and S&P468 networks
with different 𝜃 is presented. For the two networks, the
number of components𝑁𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 (red), themax component
size 𝑆𝑚𝑎𝑥 (green), and the average component size ⟨𝑆⟩ (blue)
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Figure 5: Average path lengths ⟨𝐿⟩ for CSI163 and S&P468 under different 𝜃 compared with values for random networks in same sizes of
163 × 163 and 468 × 468. It shows that for the two networks, there are peaks of ⟨𝐿⟩ above the curve of the corresponding random networks.
At first, 𝜃 is small, most edges are filtered, and the whole networks are broken into parts; thus the disconnected vertices and edges are also
filtered. So on the left hand, starting from the peak, with the decrease of 𝜃, we see that ⟨𝐿⟩ decreases too, while starting from the peak, with
the increase of 𝜃, we see a constant decline of ⟨𝐿⟩, for more edges remained resulting in decreasing of ⟨𝐿⟩. For the random networks, ⟨𝐿⟩ stay
almost unchanged because of the homogeneous edge distributions across the whole networks.
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Figure 6: Average betweenness ⟨𝐵⟩ of CSI163 and S&P468 is calculated for both the original weighted approach and binary simplification
approach under different 𝜃. The average betweenness for binary networks is different from the weighted network. For binary networks, the
curves for CSI163 and S&P468 share a similar shape.On the left hand of the peak, the ⟨𝐵⟩ gets larger with the increase of 𝜃, for more edges and
more vertices are preserved, and this leads to a growing number of paths, while on the right hand of the peak, large connected network emerges
leading to a small value of averaged ⟨𝐵⟩. In other words, the importance of a single individual vertex or edge is weakened in well-connected
networks (large 𝜃).
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(a) CSI163 network 𝜃 = 0.6 (b) CSI163 network 𝜃 = 0.7

(c) CSI163 network 𝜃 = 0.8 (d) CSI163 network 𝜃 = 0.9

Figure 7: CSI163 networks with different 𝜃 of 0.6 (a), 0.7 (b), 0.8 (c), 0.9 (d). It shows that the network is relatively sparser with small 𝜃 while
denser with large 𝜃, for small 𝜃 greatly simplifies the network by filtering most edges with larger distance. As a result, the edge density when
𝜃 = 0.9 is about 38.25 times to that when 𝜃 = 0.6. Different vertex colors indicate different industry sectors.

shows similar pattern and changes with the values of 𝜃.
Critical changes are obvious for both networks in the 𝜃
interval about [0.3 − 0.8] for CSI163 and in [0.5 − 1.1] for
S&P468, respectively. Before the transition interval, most
vertices are isolated when the whole network breaks into
small components, and both of the maximum and average
component sizes are small. In the transition interval, the
number of components decreases with both maximum and
average component sizes. After the transition interval, the
three properties stay unchanged when the giant connected
component appear with maximum and average size equal
to the number of total vertices. The similar component
properties transition under different of 𝜃 phenomena is also
observed in the study of a set of Chinese stocks [65] with a
reported transition critical value about 𝜃 = 0.17.

To investigate how industry sectors are connected in the
stock network, we summarize the properties of both CSI163
and S&P468 networks with 𝜃 = 1.0 listed in Tables 6 and 7,
respectively. As it shows, in the CSI163 network, the industry
sectors are all most the same in average degree ⟨𝑑⟩ and
average clustering coefficient ⟨𝐶⟩, while with significantly
different values of average betweenness coefficient ⟨𝐵⟩. The

difference of average degree ⟨𝑑⟩ and average clustering coeffi-
cient ⟨𝐶⟩ are not significant among the industry sectors.This
indicates that all sectors have similar degrees and clustering
coefficients. The difference between the average betweenness
coefficient ⟨𝐵⟩ shows that the sectors contribute to the
global connectivity differently. It is worthmentioning that the
finance and insurance sector has the largest average clustering
coefficient ⟨𝐶⟩ of 0.9829 but with a relatively small value of
average betweenness coefficient ⟨𝐵⟩ which is only 118.4000.
For the S&P468 network, as shown in Table 7, we observe
that Financials sector has the largest value of ⟨𝑑⟩ of 421.7471
and the 3rd largest value of ⟨𝐵⟩ of 1297.8161, with a smaller
value of the average clustering coefficient ⟨𝐶⟩of 0.8975, which
are very different from the CSI163 network. Furthermore,
the Energy and Industrials have the largest values of ⟨𝑑⟩
and ⟨𝐵⟩, while Consumer Staples and Telecommunication
Services have the smallest ⟨𝑑⟩ and ⟨𝐵⟩. From this, we also
observe that, for the S&P468 network, the sectors with larger
⟨𝐵⟩ are likely to have smaller values of ⟨𝐶⟩ and vise verse.
The findings indicate that the US market is dominated by
Financials while the finance and insurance in Chinese stock
markets play relatively less influential roles.
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(a) S&P468 network 𝜃 = 0.6 (b) S&P468 network 𝜃 = 0.7

(c) S&P468 network 𝜃 = 0.8 (d) S&P468 network 𝜃 = 0.9

Figure 8: S&P468 networks with different 𝜃 of 0.6 (a), 0.7 (b), 0.8 (c), and 0.9 (d). It also shows that the edge densities with different 𝜃 change
dramatically.We find that the edge density when 𝜃 = 0.9 is 68.79 times to that when 𝜃 = 0.6. Different vertex colors indicate different industry
sectors.

By focusing on the top stocks, it is possible to look
into the details of the networks. In Table 8, for the CSI163
network with 𝜃 = 0.8, we present the top 10 stocks with
the largest values of degree 𝑑𝑖 and betweenness 𝑏𝑖 ranked
in descending order in the upper part and the lower part,
respectively. The stock code, company name, industry name,
and values of 𝑑𝑖, 𝑐𝑖, and 𝑏𝑖 are listed. Younger Group, which
is a leading fashion brand in China, has the largest degree
of 𝑑𝑖 = 133, and HuDong Heavy Machinery, which is a
major machinery manufacturer in China, has the largest
betweenness coefficient of 𝑏𝑖 = 5444. While, in the S&P468
network, as shown in Table 9, T. Rowe Price Group has
the largest degree of 266, and Loews Corp. has the largest
betweenness coefficient value of 13202, both stocks are in
the Financials sector. For both stock networks, the two lists
based on 𝑑𝑖 and 𝑏𝑖 are similar. In other words, top stocks
with largest degree values also appear as top stocks with
largest betweenness coefficients 𝑏𝑖. It is worth noting that
the list based on the ranking of clustering coefficients 𝑐𝑖 are
dramatically different those based on degrees or betweenness

coefficients.This indicates that degree 𝑑𝑖 and the betweenness𝑏𝑖 are consistent in describing the importance of an individual
vertex, since the higher degree a vertex has, the more likely
it is on the shortest paths. As indicated in the two tables,
the stocks with codes labeled in bold appear on both top 10
lists, and in fact, the rest of the stocks on one list also can
be found appearing in a similar ranking position on another
list. We can also observe that stocks belong to Industries
of Metals & Nonmetals, Machinery, and Pharmaceuticals
are dominant the two top 10 lists in the CSI163 network.
However, for S&P468 network, Financials, Industrials, and
Materials are major stocks in the two lists. As an emerging
market, Industrials sector has great influence in Chinese
stockmarket, while the Financials sector has greater influence
inUS stockmarketwhich agreeswith [10].The significant dif-
ference between the two stockmarkets confirms the previous
studies with similar results indicating that Industrials is the
most influential sector among all industry sectors, while the
financial sector has weaker influence [107]. This is consistent
with our previous results revealed Tables 6 and 7.
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(b) S&P468 Network

Figure 9: The component properties of the components number 𝑁𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 (red), the max component size 𝑆𝑚𝑎𝑥 (green), and the average
component size ⟨𝑆⟩ (blue) are plotted for CSI163 and S&P468 with different thresholds 𝜃 in (a) and (b), respectively. Both networks show
similar transitions when the networks transform from a large number of small isolated components into a connected giant network. Before
the transition interval, edges are filtered leaving isolated vertices are not correlated. After the transition interval, edges are preserved making
most vertices connected to form a single giant network in which all vertices are correlated.

Table 6: In this table, we list the China Securities Regulatory Commission (CSRC) industry code, the sector name and the numbers of stocks,
the average degree ⟨𝑑⟩, the average clustering coefficient ⟨𝐶⟩, and the average betweenness coefficient ⟨𝐵⟩ for each industry sector of these
163 stocks. The values are calculated from the CSI163 network with 𝜃 = 1.0.
Code Industry Sector Number ⟨𝑑⟩ ⟨𝐶⟩ ⟨𝐵⟩
A Agriculture 1 162.0000 0.9703 754.0000
B Mining 6 154.3333 0.9803 974.6667
C0 Food & Beverage 4 160.2500 0.9738 770.0000
C1 Textiles & Apparel 4 159.2500 0.9764 437.5000
C3 Paper & Printing 2 159.0000 0.9757 343.0000
C4 Petrochemicals 9 157.4444 0.9776 417.5556
C5 Electronics 7 157.1429 0.9783 176.8571
C6 Metals & Non-metals 20 159.9500 0.9756 808.0000
C7 Machinery 27 157.5926 0.9772 664.7407
C8 Pharmaceuticals 15 151.6000 0.9764 324.2667
D Utilities 6 159.6667 0.9770 199.6667
E Construction 5 160.2000 0.9768 945.2000
F Transportation 10 157.9000 0.9792 426.2000
G IT 8 156.3750 0.9775 444.0000
H Wholesale & retail trade 10 158.8000 0.9775 341.2000
I Finance and insurance 10 155.8000 0.9829 118.4000
J Real estate 11 153.2727 0.9791 302.3636
K Social Services 3 161.0000 0.9726 109.3333
L Communication 2 160.0000 0.9775 821.0000
M Comprehensive 3 159.6667 0.9777 582.6667
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Table 7: In this table, we list the industry code, the sector name, the numbers of stocks, the average degree ⟨𝑑⟩, the average clustering
coefficient ⟨𝐶⟩, and the average betweenness coefficient ⟨𝐵⟩ for each industry sector of S&P468 stocks. The values are calculated for the
S&P468 network with 𝜃 = 1.0.
Code Industry Sector Number ⟨𝑑⟩ ⟨𝐶⟩ ⟨𝐵⟩
10 Energy 36 419.6944 0.8948 1264.6111
15 Materials 26 404.2692 0.8948 1717.8462
20 Industrials 63 415.8571 0.8894 1937.0476
25 Consumer Discretionary 78 376.0256 0.9194 786.8205
30 Consumer Staples 33 269.0303 0.9194 37.8182
35 Health Care 50 309.6000 0.9135 213.8000
40 Financials 87 421.7471 0.8975 1297.8161
45 Information Technology 61 373.9344 0.9245 363.6721
50 Telecommunication 5 293.2000 0.9456 124.8000
55 Utilities 29 375.3448 0.9142 579.2414

Table 8: Top stocks with highest values of degree 𝑑𝑖, and betweenness 𝑏𝑖 ranked in descending order of 𝑑𝑖 and 𝑏𝑖 when the 𝜃 = 0.8 for CSI163
network. Stock codes in bold indicate the stocks appear at both top 10 stocks.

Code Name Industry 𝑑𝑖 ↓ 𝑐𝑖 𝑏𝑖
600177 Youngor Group Textiles & Apparel 133 0.5416 2154
600642 Shanghai Wanye Enterprises Real estate 131 0.5732 2362
39 China International Marine Containers (Group) Metals & Non-metals 127 0.5929 2276
600010 Inner Mongolia Baotou Steel Union Metals & Non-metals 125 0.5738 1112
600166 Beiqi FotonMotor Machinery 123 0.6047 72
825 Shanxi Taigang Stainless Steel Metals & Non-metals 122 0.6005 2644
623 Jilin Aodong Medicine Industry (Groups) Pharmaceuticals 121 0.6058 60
600362 Beijinghualian Hypermarket Wholesale and retail trade 121 0.6127 1552
600717 Qinhuangdao Yaohua Glass Real estate 119 0.6095 1354
600005 Wuhan Iron And Steel Metals & Non-metals 118 0.6009 532
Code Name Industry 𝑑𝑖 𝑐𝑖 𝑏𝑖 ↓
600150 HuDong Heavy Machinery Machinery 110 0.6155 5444
898 Angang Steel Metals & Non-metals 114 0.6367 4560
600398 Anyuan Industrial Mining 95 0.6710 4140
2051 China CAMC Engineering Construction 114 0.6226 4136
601607 Aluminum Corporation of China Limited Metals & Non-metals 116 0.6304 2766
825 Shanxi Taigang Stainless Steel Metals & Non-metals 122 0.6005 2644
600031 Sany Heavy Industry Machinery 85 0.7300 2584
600642 Shanghai Wanye Enterprises Real estate 131 0.5732 2362
39 China International Marine Containers (Group) Metals & Non-metals 127 0.5929 2276
600177 Youngor Group Textiles & Apparel 133 0.5416 2154

5. Hierarchical Structures of Stock Networks

Mantegna introduced the minimum spanning tree and
hierarchical clustering methods into the study of financial
networks [21], in which a distance matrix 𝐷 is built from the
correlationmatrix for all stocks. Based on the distancematrix,
the minimum spanning tree is extracted. Since the minimum
spanning tree contains the information of edges connecting
all vertices in a single spanning tree with the shortest total
length, it is also possible to extract the hierarchical clustering
tree from the minimum spanning tree, where the distance
for vertex V𝑖 and V𝑗 is subdominant ultrametric distance
𝑑<(𝑖, 𝑗) as the maximum value of distance along the shortest

path between the two vertices V𝑖 and V𝑗 [108]. However, the
subdominant ultrametric distance approach will lose much
edge distance information, for two separated vertices which
are indirectly connected on the minimum spanning tree
with a specific larger subdominant ultrametric distancemight
be directly linked in the original distance matrix. Vertices
which should be clustered together might be separated in a
hierarchical clustering tree based on ultrametric distance. To
preserve the hierarchical structure of the minimum spanning
tree as well as more information allowing loops and cliques,
Planar Maximally Filtered Graph (PMFG) is proposed in
[86]. Based on PMFG, the influence of different sectors
of CSI300 is studied revealing that the industrial sector is
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Table 9: Top stocks with highest values of degree 𝑑𝑖, and betweenness 𝑏𝑖 ranked in descending order of 𝑑𝑖 and 𝑏𝑖 when the 𝜃 = 0.8 for S&P468
network. Stock codes in bold indicate the stocks appear at both top 10 stocks.

Code Name Industry 𝑑𝑖 ↓ 𝑐𝑖 𝑏𝑖
TROW T. Rowe Price Group Financials 266 0.3882 4536
L Loews Corp. Financials 263 0.4069 13202
SNA Snap-On Inc. Consumer Discretionary 263 0.3894 8350
IVZ Invesco Ltd. Financials 261 0.4016 2868
BEN Franklin Resources Financials 259 0.4074 7836
HON Honeywell Int’l Inc. Industrials 256 0.4151 1790
AMG Affiliated Managers Group Inc Financials 255 0.4128 2042
DD Du Pont (E.I.) Materials 255 0.4163 4966
SIAL Sigma-Aldrich Materials 254 0.4186 7020
ROP Roper Industries Industrials 247 0.4326 8626
Code Name Industry 𝑑𝑖 𝑐𝑖 𝑏𝑖 ↓
L Loews Corp. Financials 263 0.4069 13202
HST Host Hotels & Resorts Financials 223 0.4938 12510
OKE ONEOK Energy 174 0.5329 9978
ROP Roper Industries Industrials 247 0.4326 8626
SNA Snap-On Inc. Consumer Discretionary 263 0.3894 8350
BEN Franklin Resources Financials 259 0.4074 7836
FLS Flowserve Corporation Industrials 202 0.5271 7726
JPM JPMorgan Chase & Co. Financials 124 0.7409 7614
UTX United Technologies Industrials 217 0.4746 7590
SIAL Sigma-Aldrich Materials 254 0.4186 7020

the dominant part of the whole market [107]. In [109], the
hierarchical tree structure of multiple industry indices in
China are investigated before and after a crisis showing the
structure changes around the crisis period. A similar study
of global financial crisis impact on stock market shows that
the Turkish market is less influenced [110]. Authors propose
to use Kullback-Leibler distance for the filtering procedures
in [11]. International real estate market networks in different
countries are studied in [99] revealing that markets are
clustered according to geographical locations. Instead of
using the methods of [21], a typical approach is applied to
extract the hierarchical structure of the German stockmarket
in [68]. Using the industry classification information as the
benchmark, authors compared the methods used to extract
the clusters in financial networks [103]. In [111], Neighbor-
Net approach is applied in which more distance information
is used in the construction of the tree compared to the
hierarchical clustering.

Since a sliding window approach with a window size of
𝐿 is utilized, in a study period of total 𝑃 trading days, we
can get a sequence of 𝑃 − 𝐿 + 1 trading windows. We have𝑃𝑐𝑠𝑖163 = 2149 for CSI163 and 𝑃𝑠&𝑝468 = 2228 for S&P468
trading dates in our study period between 04/01/2007 to
06/11/2015, respectively. As we adapted in previous parts, we
set the sliding window size as 𝐿𝑐𝑠𝑖163 = 170 for CSI163 and𝐿𝑆&𝑃468 = 500 for S&P468. We have𝑊𝑐𝑠𝑖163 = 1980 windows
for CSI163 and 𝑊𝑆&𝑃468 = 1729 for S&P468 respectively.
For each sliding window at time 𝑡, we can get the distance
matrices 𝐷𝑐𝑠𝑖163(𝑡) and 𝐷𝑆&𝑃468(𝑡) where 𝑡 = 1, ⋅ ⋅ ⋅ ,𝑊. To
investigate the structures of the twomarkets taking the whole

study period as a whole, we calculate the averaged distance
matrix by averaging all elements overall sliding windows as

⟨𝐷⟩ = 1
𝑊 ∑
𝑡

𝐷𝑡. (7)

With this averaged distance matrix, we construct the hierar-
chical trees, minimum spanning trees, and asset graphs and
study the evolvement of the properties ofminimum spanning
trees and asset graphs for both CSI163 and S&P468.

5.1. Hierarchical Tree. In the study of the stock market or
a portfolio, a set of individual stocks belonging to different
economic sectors behavior correlated together. Based on the
prices information, the correlation matrix can be formed.
Based on that, a distance matrix can be derived. Using the
distance matrix, clustering algorithms can be further applied
to extract the clustering structures of the stocks. For the
stocks falling in the same cluster, they behave similar sharing
correlated price fluctuations, while, for the stocks coming
from different clusters, they are less similar than the ones of
the same clusters.Themain objective of clustering algorithms
is to minimize the dissimilarity for stocks in the same cluster
and maximize the dissimilarity for stocks in different clusters
meanwhile. Since the dissimilarity is naturally measured by
the distance, the selection of definition of distance between
clusters is important for clustering algorithms. Four distance
definitions as shown in equations (8)-(11) are used in extract-
ing of hierarchical clustering trees. The distance between two
clusters, 𝑐𝑚 and 𝑐𝑛, is defined as the minimum distance for
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Figure 10: CSI163 dendrogram hierarchical cluster trees extracted with different distance definitions in (a) smallest distance for stock pairs,
equation (8); (b) largest distance for stockpairs, equation (9); (c) average distance for stockpairs, equation (10); (d) distance between centroids
for clusters, equation (11).The color threshold is 0.7. All stockswhose linkage values are less than this thresholdwould be coloredwith a unique
color. As shown in the figures, different distance definitions extract different dendrogram hierarchical cluster trees whereas the same color
threshold generates different results. We see that the largest distance definition reveals more details of network.

all pairs as in equation (8), the maximum distance for all
pairs as in equation (9), the average distance for all pairs as
in equation (10), and the distance between average centroids
of the two clusters as in equation (11), respectively.

𝑑𝑚,𝑛 = min (𝑑
𝑜𝑖𝑚,𝑜
𝑗
𝑛
) (8)

𝑑𝑚,𝑛 = max (𝑑
𝑜𝑖𝑚,𝑜
𝑗
𝑛
) (9)

𝑑𝑚,𝑛 = 1
𝑁𝑚𝑁𝑛 ∑𝑖 ∑𝑗 𝑑𝑜𝑖𝑚,𝑜𝑗𝑛 (10)

𝑑𝑚,𝑛 = 𝑑 (𝑜𝑚, 𝑜𝑛) (11)

In our study, we use all these four definitions of cluster
distance. For CSI163 network, we present the dendrogram
hierarchical cluster trees in Figures 10(a)–10(d). For S&P468
network, we present the trees in Figures 11(a)–11(d). In these
trees, the leaf nodes are individual stocks, and the height of
two merged branches indicates the distance or dissimilarity
between two clusters or stocks. The higher they merge, the
larger the distance is. For similar clusters or stocks, they
merge in a lower value of height. To color the similar stocks,

a color threshold of 0.7 × max(𝑑
𝑜𝑖𝑚,𝑜
𝑗
𝑛
) is used. Thus all

similar clusters or stocks are colored with the same colors.
By adjusting this color threshold, we can get the clusters
from the dendrogram hierarchical cluster trees. As shown in
the figures, using different definitions, we can get different
hierarchical cluster trees and it is obvious that Figures 10(b)
and 10(c) reveal more details of the structures, in which
the distance between clusters is the largest of all pairs and
the average distance of all pairs, respectively. The similar
effect is also observed in Figures 11(b) and 11(c) for S&P468
networks. These clustering results are found to agree with
the classifications of stocks very well. The colored clusters are
composed of stocks mostly from the same economy sectors.
Though there are exceptions that some stocks from different
sectors are clustered together, or stocks from the same sector
are clustered in different clusters. It is still astonishing to see
that stocks can be clustered which agree with the economy
sectors classification only from the prices information. These
results indicate that hierarchical cluster trees constructed
fromprice correlation matrix can reveal economy sectors and
this has potential applications in portfolio selection and risk
management.
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Figure 11: S&P468 dendrogram hierarchical cluster trees extracted with different distance definitions in (a) smallest distance for stock pairs,
equation (8); (b) largest distance for stockpairs, equation (9); (c) average distance for stockpairs, equation (10); (d) distance between centroids
for clusters, equation (11).The color threshold is 0.7. All stockswhose linkage values are less than this thresholdwould be coloredwith a unique
color. As shown in the figures, different distance definitions extract different dendrogram hierarchical cluster trees whereas the same color
threshold generates different results. Again, the largest distance definition reveals more details of network.

5.2. Minimum Spanning Tree. For a given undirected
weighted network with 𝑁 vertices, we can simplify the
network by extracting the backbone of the network
connecting all vertices, but with a minimum total length
of edges, this backbone is called minimum spanning tree,
or MST for short. Since loops or circles are not allowed to
connect vertices, a MST has a topological structure of tree
with 𝑁 − 1 edges which is dramatically simplified from
the original network which might have a maximum of
𝑁(𝑁 − 1)/2 edges. This brings huge advantages to the study
of networks of stocks by reducing noises and simplifying the
computation as well.

To construct a minimum spanning tree from a given
network, it is easy to be achieved by using Kruskal’s Algorithm
[95], in which all edges are ranked in ascending order. Start-
ing from the shortest edge on the edges ranking list, we add
edges to the tree by keeping the tree in spanning formwithout
introducing circles. When all edges are considered, we get a
final minimum spanning tree comprising all connected 𝑁
vertices with a minimum total length of 𝑁 − 1 edges. For
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Figure 12: The extraction of a minimum spanning tree from a six
vertices network using Kruskal’s MST Algorithm. We rank all edges
in descending order according to the edge lengths. Starting from the
shortest edge and add the edges into the tree but avoiding loops or
circles, after considering all edges, we get a final tree connecting all
vertices with the minimum total edge lengths. In our example, after
adding 𝑒1,3, 𝑒1,6, 𝑒2,4, 𝑒2,5, and 𝑒6,4, we finally extract a tree of 𝑇3,1,6,4,2,5
with a total length of 1.1.

a network in which all edges are with distinct lengths, the
extracted MST is unique. In Figure 12, we demonstrate the
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Industrials

Agriculture Mining

Food & Beverage Textiles & Apparel Paper & Printing Petrochemicals

Electronics Metals & Non-metals Machinery Pharmaceuticals

Utilities Construction Transportation IT

Wholesale & retail Finance & insurance Real estate Social Services

Communication Comprehensive

Figure 13: Minimum spanning tree of CSI163. Vertices are colored to indicate different industry sectors.

Table 10: In this table, we present the top 10 stocks with the largest degrees in the MST of CSI163. As is shown, the top 10 stocks are diverse
in industry sectors which represents 1 Wholesale & retail stock, 1 Metals & Non-metals stock, 2 Pharmaceuticals stocks, 2 Real estate stocks,
1 Finance & insurance stock, 2 Utilities stocks, and 1 Textiles & Apparel stock.

Degree Code Name Industry
11 600362 Beijinghualian Hypermarket Wholesale & retail
9 898 Angang Steel Metals & Non-metals
8 600085 Beijing Tongrentang Pharmaceuticals
7 2 China Vanke Real estate
7 600036 China Merchants Bank Finance & insurance
6 600008 Beijing Capital Utilities
6 600027 Huadian Power Utilities
6 600177 Youngor Group Textiles & Apparel
6 600642 Shanghai Wanye Enterprises Real estate
5 623 Jilin Aodong Medicine Industry Pharmaceuticals

process of extracting the minimum spanning tree from a six
vertices network following Kruskal’s MST Algorithm. The
edges are ranked in descending order, and we start from the
shortest ones and add them into the tree but omit the edges
which might introduce loops; after considering all edges, we
get a minimum spanning tree with a minimum total length.
In this example, edge (3,6) and (6,4) are omitted because that
𝑒3,6might bring a loop of (3,6,1) and 𝑒6,4might bring a loop of
(6,4,2,5). Another widely used algorithm is Prim’s Algorithm
[112] which begins with a starting vertex and adds the shortest
one to the existing tree from all edges connected to the
tree. By repeating this greedily, we can extract the minimum
spanning tree of the given network. In this research, we apply
Kruskal’s Algorithm to analyze the network structures of
CSI163 and S&P468.

To extract the minimum spanning trees of the stock
networks of CSI163 and S&P468, we average all correlation
matrices over the investigated time windows, presented in

Figures 13 and 14 for CSI163 and S&P468, respectively. We
see that the stocks of the same industry sectors are clustered
in the MSTs for both CSI163 and S&P468, and this clustering
effect is much more obvious for S&P468 in which stocks are
well clustered according to the industry sectors of S&P500.

We further look into the connectivities of MSTs for both
CSI163 and S&P468; we find that after the edge filtering
process, some stocks are still well connected with other
stocks. These stocks are the key stocks in the contribution
of connectivities of the MSTs, while most stocks are poorly
connected with the degree of only one or two. In Tables 10
and 11, we present the top 10 stocks according to their degrees
in MST of CSI163 and S&P468, respectively. We find that the
most connected stocks of CSI163 are diverse, while, for the
MST of S&P468, 3 Financials stocks appear in the top 10.This
agrees with other analysis that the Chinese stock market is
muchmore diverse and Financials stocks play important roles
in the US market.
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Health Care
Consumer Discretionary
Information Technology
Materials
Industrials

Financials
Consumer Staples
Energy
Utilities
Telecommunication

Figure 14: Minimum spanning tree of S&P468. Vertices are colored to indicate different industry sectors.

Table 11: In this table, we present the top 10 stocks with the largest degrees in the MST of S&P468. As is shown, Honeywell Intl. is the most
connected stock in the MST with a degree of 38. The top 10 stocks are composed of 2 Industrials stocks, 3 Financials stocks, 2 Utilities stocks,
1 Health Care stock, and 1 Consumer Discretionary stock.

Degree Tick Stock Name Industry
38 HON Honeywell Intl. Industrials
18 TROW T. Rowe Price Group Financials
11 SCG SCANA Corp Utilities
10 ITW Illinois Tool Works Industrials
9 ADP Automatic Data Processing IT
9 XEL Xcel Energy Inc Utilities
8 JNJ Johnson & Johnson Health Care
8 SPG Simon Property Financials
8 SNA Snap-On Inc. Consumer Discretionary
7 AMG Affiliated Managers Financials

5.3. Planar Maximally Filtered Graph. Like the minimum
spanning tree (MST) approach, planar maximally filtered
graphs, PMFG, is also an edge filtering method but the
allowance of cliques up to 4 vertices shows much richer
structure information of a network rather than a single tree.
Based on the correlation matrix, the PMFG spans on a planar
surface without crossing of edges but with loops and holes.
It is believed that a PMFG might reveal more details of the

networks. After the introduction of PMFG by Tumminello
et al. in the study of 100 stocks of NYSE [86], PMFG has
been applied in many studies of financial networks. In [67],
the authors study the PMFG networks of DAX 30 stocks.
Instead of using the correlation matrix, a 𝑝-values matrix of
EngleGranger cointegration test is used to extract the PMFG
for Chinese stocks in [98]. The stability and robustness of
PMFG for 300 NYSE stocks are compared with MST in a



Complexity 21

Figure 15: PMFG of CSI163.

Figure 16: PMFG of S&P468.

running window approach, and the results reveal that PMFG
is stabler than MST [104]. In [47], the same authors of
[104] confirm that PMFG provides stronger robustness and
stability in revealing network structures of stock markets. It
has also been proven that the PMFG always contains an MST
for the same distance matrix [86].

The PMFGs of CSI163 and S&P468 networks are plotted
in Figures 15 and 16, respectively. We see that PMFGs have
muchmore edges compared toMSTs. Further, we use another
layout to plot the two PMFGs in Figures 17 and 18, from
which, we find that PMFGs also produce good clusters for
stocks of different industry sectors.

5.4. Asset Graph. In the minimum spanning tree (MST),
a connected tree structure connecting all vertices with a
minimum total length of edges is extracted. The selection
process of adding edges in generating an MST out of a
distance matrix is presented in Figure 12; an MST is always
a connected single tree without disconnected parts. By
connecting the𝑁 vertices, a total of𝑁 − 1 edges are needed,

where 𝑁 is the number of vertices in the original network.
It is obvious that an MST does not guarantee to be with
the possible minimum total lengths of the 𝑁 − 1 edges.
By changing the strategy of how edges are selected and
allowing disconnected parts, the asset graph (AG) approach
is proposed in [87, 88]. Similar to MST, to generate an
AG, we start the distance matrix containing all pairwise
distances information of the network; we first rank all edges
in ascending order from the shortest to the longest. Without
considering the requirement of keeping a tree connected, we
choose the top 𝑁 − 1 edges to form an AG. It has been
found that AG extracts similar structures asMST can do with
smaller normalized length and with better stable structure
over time. In this section, we show the AG networks for both
markets. In Figures 19 and 20, we present AG structures for
CSI163 and S&P468 networks, respectively. Compared with
Figures 13 and 14 of the minimum spanning trees of CSI163
and S&P468 networks, we see that AG structures are more
complex than MST and there are many isolated vertices in
AG. The connected cliques in AG are the most correlated
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Figure 17: CSI163 PMFG. We label the vertices with stock codes in (a) and industry codes in (b).
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Figure 18: S&P468 PMFG. We label the vertices with stock codes in (a) and industry codes in (b).

stocks connected by the shortest possible edges; in other
words, by connecting the most correlated stocks, AG omits
the less correlated stocks. We also observe that many cliques
emerge in AG and this reveals more information about the
structures than inMSTwhere no loops or cliques are allowed.
We see thatAG is a simple but effective network simplification
approach in extracting the most correlated stocks. However,
the sacrifice is also obvious, as shown in Figures 19 and 20,
the clustering is poor in AG compared with MST for both
markets.

We have shown that AG allows isolated vertices and not
all vertices are connected in one giant tree. To generate anAG,
we can use different numbers of edges; with the increase in
edge number, we can see that the portion of isolated vertices
declines. It is interesting to investigate how the vertices are
related to the edge numbers. In the original distance matrix,
the maximum possible number of edges is 𝑁(𝑁 − 1)/2. The
percentage of the fraction of AG is the top edges added to AG
networks to the total possible edges. When we increase this
edge percentage, more and more vertices are connected. We

calculate the percentage of connected vertices as the number
of connected to the total vertices number of𝑁. We plot these
results in Figures 21(a) and 21(b) for CSI163 and S&p468
networks, respectively. As the figures show, with a small
fraction of edges being included, more and more vertices
are connected; it requires only 0.0123 and 0.0043 of the total
edges for all vertices to be connected in CSI163 and S&P468,
respectively.This indicates that the top edges are very effective
in connecting vertices for S&P468 than CSI163.

In the previous section, all structures are extracted from
the average distance matrices over the whole study periods
which is defined in equation (7) as ⟨𝐷⟩ = (1/𝑊)∑𝑡𝐷𝑡,
where𝑊 is the number of sliding windows. In this part, we
investigate the dynamic structures of the filtered networks
with a focus on the AG and MST. For each sliding window,
at time 𝑡, we get a series of distance matrices 𝐷𝑡 based on the
returns data on the interval of [𝑡, 𝑡 − 1, . . . , 𝑡 − 𝐿 + 1] where𝐿 is the length of a sliding window. For each sliding window,
using the distance matrix𝐷𝑡, we construct the corresponding
original network 𝑁𝑡, the asset graph 𝐴𝐺𝑡, and the minimum
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Figure 19: Asset graph of CSI163 with𝑁 − 1 shortest edges.

spanning tree𝑀𝑆𝑇𝑡. Using our dataset, we get𝑊𝑐𝑠𝑖163 = 1980
windows for CSI163 and 𝑊𝑆&𝑃468 = 1729 for S&P468 in the
study period between 04/01/2007 and 06/11/2015.

In Figure 22, we present the distance distributions of
original distance matrices 𝑁𝑡, asset graphs 𝐴𝐺𝑡, and mini-
mum spanning trees 𝑀𝑆𝑇𝑡 for both of CSI163 and S&P468
in the study period between 04/01/2007 and 06/11/2015. In
the original network 𝑁𝑡, a number of 𝑁(𝑁 − 1)/2 edges
are considered, while, for 𝐴𝐺𝑡 and 𝑀𝑆𝑇𝑡, 𝑁 − 1 edges are
considered. Since the sliding window sizes are 𝐿𝑐𝑠𝑖163 = 170
and 𝐿𝑆&𝑃468 = 500, we should keep in mind that a slice of
distribution is a result of the past 𝐿 dates, i.e., about half of a
year for CSI163 and two years for S&P468.The shapes of these
distributions are influenced by the lengths of 𝐿. We choose
the same set of lengths by considering the requirements of
randommatrix theory approach which we shall discuss later.
The similar plots are reported in [87] in the study of 477 stocks
from NYSE which is in a similar size of our S&P468 dataset
in which 468 stocks are included. We add more evidence by
comparing two markets of CSI163 and S&P468. In Figures
22(a) and 22(b), we observe obvious shifts of the distribution
centers for both markets. In these shifts, positive shifts to
the mean value of ⟨𝑑𝑖𝑗⟩ = √2 roughly correspond to the
normal market periods, while negative shifts to the mean
value correspond to the bear or collapsing market periods.
This indicates that the stocks behave synchronized in bad
periods and this agrees with many previous studies. This also
provides a potential market measurement for investors and
regulators to watch how market shift behaviors. In Figures
22(c) and 22(d), the distributions of distances of AG for
CSI163 and S&P468 are plotted. Since AG is a subgraph of the

original network and is composed of the top 𝑁 − 1 shortest
edges, we expect the distributions show a left shift to themean
center of ⟨𝑑𝑖𝑗⟩ = √2 compared to the original networks, and
this is well shown in the plots for both CSI163 and S&P468,
more precisely, the distributions of AG are zoom-in of the
left tails of original networks. The MST, as shown in Figures
22(e) and 22(f), has a relatively wider distribution which is
positively shifted compared to AG but negatively shifted to
the original network. Also, we find that, in AG and MST
networks, the most parts of the distributions stay on the left
hand of the center √2 which means the network is correlated
on average; in other words, for periods when the mean center
stays on the left hand, the network backbones of AG and
MST are on average correlated, and rarely anticorrelated.
A potential implication is that, for the whole market, the
network provides a diversified portfolio when the market is
normal or in a bull state, but for the top edges in AG andMST,
the networkmoves together with less diversificationwhen the
market falls into bear markets or crisis periods.

The distance 𝑑𝑖𝑗 indicates how the two stocks correlate
with each other. Larger 𝑑𝑖𝑗means smaller correlation and vice
versa. For an original network 𝑁 at time 𝑡, the total distance
can be introduced as

𝑑𝑡𝑜𝑡𝑎𝑙 = ∑
𝑖,𝑗

𝑑𝑖𝑗, (12)

and the average distance for the original network can be
defined as

⟨𝑑𝑖𝑗⟩ = 1
𝑁 (𝑁 − 1) /2∑𝑖,𝑗 𝑑𝑖𝑗. (13)
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Figure 20: Asset graph of S&P468 with𝑁 − 1 shortest edges.
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Figure 21: Percentages of connected vertices of AG against edge densities for CSI163 and S&P468 networks.
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Figure 22: Probability distributions of all distances 𝑑𝑖𝑗 of 𝑁𝑡, 𝐴𝐺𝑡, and 𝑀𝑆𝑇𝑡 of CSI163 and S&P468 over the years in our study period
between 04/01/2007 and 06/11/2015. The total number of edges is 𝑁(𝑁 − 1)/2 for 𝑁𝑡, and 𝑁 − 1 for 𝐴𝐺𝑡 and𝑀𝑆𝑇𝑡, respectively. Since the
sliding window size 𝐿𝐶𝑆𝐼163 = 170 and 𝐿𝑆&𝑃468 = 500, so the data only starts after a period of 𝐿.

In the same way, we can calculate the total distances for
𝐴𝐺𝑡 and𝑀𝑆𝑇𝑡 using equation (12), but considering the edge
number for𝐴𝐺𝑡 and𝑀𝑆𝑇𝑡 is𝑁−1, we normalize the average
distance for them as

⟨𝑑𝑖𝑗⟩ = 1
𝑁 − 1∑𝑖,𝑗 𝑑𝑖𝑗. (14)

To investigate the tightness of the network, the total
distance 𝑑𝑡𝑜𝑡𝑎𝑙 and average distance ⟨𝑑𝑖𝑗⟩ for the original

network 𝑁𝑡, 𝐴𝐺𝑡, and 𝑀𝑆𝑇𝑡 in our study periods for both
networks are investigated. We plot the results in Figure 23
for 𝑑𝑡𝑜𝑡𝑎𝑙 and Figure 24 for ⟨𝑑𝑖𝑗⟩, respectively. For each stock
market, total distance 𝑑𝑡𝑜𝑡𝑎𝑙 and average distance ⟨𝑑𝑖𝑗⟩ show
similar shapes. For both stock markets, the values are in this
order:𝑁𝑡 > 𝑀𝑆𝑇𝑡 > 𝐴𝐺𝑡; i.e., the original networks have the
largest values of 𝑑𝑡𝑜𝑡𝑎𝑙 and ⟨𝑑𝑖𝑗⟩ compared to𝑀𝑆𝑇𝑡 and 𝐴𝐺𝑡,
while 𝐴𝐺𝑡 has the smallest values.

By comparing the total distance 𝑑𝑡𝑜𝑡𝑎𝑙 plotted in
Figure 23(a) and the average distance ⟨𝑑𝑖𝑗⟩ plotted in
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Figure 23: The evolving of total distances 𝑑𝑡𝑜𝑡𝑎𝑙 of original network𝑁𝑡, asset graph 𝐴𝐺𝑡, and minimum spanning tree𝑀𝑆𝑇𝑡 for CSI163 and
S&P468 over time in the study period.
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Figure 24: The evolving of average distances ⟨𝑑𝑖𝑗⟩ of original network 𝑁𝑡, asset graph 𝐴𝐺𝑡, and minimum spanning tree𝑀𝑆𝑇𝑡 for CSI163
and S&P468 over time in the study period.

Figure 24(a) for CSI163 over the study period, we find the
six plots share similar shapes. The same similarities are
also observed in Figures 23(b) and 24(b) for the S&P468
network. This indicates that the AG and MST are both good
backbones of the whole original market networks, and this
tracking stays robust over time. For both networks, we also
find that the curve of 𝑀𝑆𝑇𝑡 is above 𝐴𝐺𝑡 which means the
total and average distances are slightly larger in MST than
in AG. Our findings agree with the results reported in [87].
Since the two stock markets datasets have different stock
numbers, we compare the average distance between the two
markets, and as shown in Figure 24, we see that the CSI163
is slightly sparser than S&P468, which indicates that the
CSI163 which is a developing market is more diversified than

S&P468 which is a developed market; this also agrees with
many previous research.

In Table 12, we summary the average (𝑑𝑖𝑗), minimum
⟨𝑑𝑖𝑗⟩min, maximum ⟨𝑑𝑖𝑗⟩max, and standard deviation ⟨𝑑𝑖𝑗⟩𝜎
of CSI163 and S&P468 networks for three kinds networks:
original, AG, and MST. We can see that the values are in
the order of 𝑁 > 𝑀𝑆𝑇 > 𝐴𝐺 for average, minimum, and
maximum. Also the three networks have similar standard
deviations. We find that the values of (𝑑𝑖𝑗) and minimum⟨𝑑𝑖𝑗⟩min for CSI163 are slightly larger than S&P468 which
indicates stocks in CSI163 are less likely to correlated than in
S&P468. To visualize the distributions of these three kinds of
networks, we plot the probability density function (PDF) for
the original network, AG, and MST for CSI163 and S&P468
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Table 12: Average(𝑑𝑖𝑗), minimum ⟨𝑑𝑖𝑗⟩min, maximum ⟨𝑑𝑖𝑗⟩max, and standard deviation ⟨𝑑𝑖𝑗⟩𝜎 of CSI163 and S&P468 networks. The values
of first row belong to the original network𝑁, those of the second row belong to the AG, and those of the third row belong to MST.

CSI163 S&P468
(𝑑𝑖𝑗) ⟨𝑑𝑖𝑗⟩min ⟨𝑑𝑖𝑗⟩max ⟨𝑑𝑖𝑗⟩𝜎 (𝑑𝑖𝑗) ⟨𝑑𝑖𝑗⟩min ⟨𝑑𝑖𝑗⟩max ⟨𝑑𝑖𝑗⟩𝜎
1.1145 1.2445 0.9619 0.0650 1.0754 1.1968 0.9816 0.0731
0.7049 0.8708 0.5868 0.0578 0.6377 0.7607 0.5579 0.0623
0.8251 0.9565 0.7017 0.0540 0.7971 0.9092 0.7113 0.0615
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Figure 25: Probability density function (PDF) of average distance ⟨𝑑𝑖𝑗⟩ of original network𝑁, asset graph 𝐴𝐺, and minimum spanning tree
𝑀𝑆𝑇 for CSI163 and S&P468.

in Figures 25(a) and 25(b), respectively. We see that the
distributions of all three networks share similar shapes but
with different mean centers; as shown in the figures, the AG
locates on the left, MST locates in the center, and original
locates on the right.

6. Conclusion and Discussion

In this research, we investigated the properties and models
of the complex network theory and its applications from
data science perspective. Using the daily close prices of two
sets of stocks from CSI300 and S&P500, we constructed the
correlation matrices for both the whole study periods and
all sliding windows. Based on these correlation matrices, we
build the networks with stocks as the vertices and correlation
relationships as the edges. We systematically applied network
filtering methods like hierarchical tree, minimum spanning
tree, planar maximally filtered graph, and asset graph to
simplify the networks. For each filtered network, the network
properties are discussed. Financial markets are complex
systems, and it is important to extract useful information
from the noise background by applyingmethods like complex
networks. We find that, for the stock markets, CSI300

and S&P500, the former is an emerging market while the
latter is a mature well-developed market. They share similar
properties in many ways and also vary in many aspects. The
revealed properties and robustness might provide sights of
the structures and dynamics of the two stock markets for
practitioners and regulators. Furthermore, it is interesting
to develop trading strategies with the information revealed
from the topological networks of stocks or indices. For
instance, the pair trading [113–116] is a basic and market
neutral strategy considering the movement of a correlated
stock pair, in which if the spread widens, then traders can
short one and long another one to gain the spread. Onemight
use the information of the networks to identify the pairs
and evaluate the reliabilities. Also, considering pairs between
groups of stocks rather than only two stocks, wemight use the
component or cluster information revealed in the networks
to build the trading groups. Furthermore, the directed net-
works built with Granger causalities or lagged correlations
might give more lead/lag details of stock pairs on the time
factors asynchronously. Second, with the help of network
edge filtering, we can significantly simplify the networks,
but most studies focus on the topological simplification
without concerns of the original portfolio returns. What if
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we consider the returns with the topology of the networks
to optimize the portfolio selection? The topological structure
can give us information on how diverse the portfolio is but
this is not enough to design the portfolio without return
information. Apossibleway is to adjust the portfolio selection
by considering measurements like the ratio of returns over
total distances of a portfolio or other approaches combining
both topological and return information. Also, the techniques
of network modeling and analysis can enhance the ability in
policymodeling and decisionmaking. We hope this work can
inspire policymakers and researchers in applying network
theories in wider applications.
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