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Sulfur dioxide is an important source of atmospheric pollution. Many countries are developing policies to reduce sulfur dioxide
emissions. In this paper, a novel predictionmodel is proposed, which could be used to forecast sulfur dioxide emissions. To improve
the modeling procedure, fractional order accumulating generation operator and fractional order reducing generation operator are
introduced. Based on fractional order operators, a discrete grey model with fractional operators is developed, which also makes
use of genetic algorithms to optimize the modeling parameter 𝑟. The improved performance of the model is demonstrated via
comparison studies with other grey models. The model is then used to predict China’s sulfur dioxide emissions. The forecast result
shows that the amount of sulfur dioxide emissions is steadily decreasing and the policies of sulfur dioxide reduction in China are
effective. According to the current trend, by 2020, the value of China’s sulfur dioxide emissions will be only 86.843% of emissions
in 2015. Fractional order generation operators can be used to develop other fractional order system models.

1. Introduction

Sulfur dioxide (chemical formula SO2) is the most common
form of sulfur oxides. The colorless gas has a strong irritating
odor and is amajor air pollutant. Inhaling it will lead to respi-
ratory inflammation, bronchitis, emphysema, conjunctivitis,
and other health problems. Sulfur dioxide will also weaken
the immunity of young people, making them less resistant to
infections. When sulfur dioxide reacts with water, sulfurous
acid is formed [1]. If sulfurous acid is further oxidized
by particulate matter in the atmosphere, sulfuric acid (the
main component of acid rain) is rapidly and efficiently
produced. With the presence of oxidants, light can catalyze
the production of sulfate aerosols, which have an adverse
effect on human health and could increase the mortality of
patients [2]. Sulfur dioxide is the main cause of global “acid
rain.” It is estimated that the direct economic losses caused
by metal corrosion in industrialized countries account for
between 2 and 4 per cent of the gross domestic product
(GDP). Due to the serious negative impact of sulfur dioxide
on flora, fauna, and buildings, sulfur dioxide emissions and
the emission concentrations are under strict regulation. The
concentration of sulfur dioxide is an important indicator of

whether the air is polluted. Using coal as the main energy
source, China’s sulfur dioxide emissions are ranked the first
in the world [3]. Hence, it is of great practical significance to
forecast the emissions of sulfur dioxide in order to formulate
emission reduction policies.

The world has exerted great efforts to reduce sulfur
dioxide emissions. There has also been a lot of research
focusing on sulfur dioxide emissions. Lu and colleagues have
studied sulfur dioxide emissions inChina and sulfur trends in
East Asia since 2000 [4] and also analyzed sulfur dioxide and
primary carbonaceous aerosol emissions in China and India
from 1996 to 2010 [5]. Smith et al. investigated global and
regional anthropogenic sulfur dioxide emissions [6].Ma et al.
developed scenario analysis to study the reduction potential
of sulfur dioxide emissions in China’s iron and steel industry
[7]. Yang andHu conducted research on the inventory system
of sulfur dioxide emissions inChina [8]. Smith et al. discussed
themethods and results of historical sulfur dioxide emissions
from 1850 to 2000 [9]. Li et al. observed recent large reduction
in sulfur dioxide emissions from China’s power plants by
using ozone monitoring instruments [10]. Hao et al. desig-
nated sulfur dioxide and acid rain pollution control zones
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and studied the impact on energy industry in China [11].
Mohajan studied China’s sulfur dioxide emissions and local
environmental pollution [12]. Zhou and Zhang established
an improved metabolism grey model for predicting small
samples with a singular datum and applied it to study sulfur
dioxide emissions inChina [13]. An adaptive neurofuzzy logic
method has been developed by Yildirim et al. to estimate the
impact of meteorological factors on sulfur dioxide pollution
levels [14]. Hassanzadeh and coworkers developed statistical
models and time series to forecast sulfur dioxide [15]. Li
et al. looked into the contribution of China’s emissions
to global climate forcing [16]. Liu et al. believed that air
pollutant emissions fromChinese households are amajor and
underappreciated source of ambient pollution [17].

To improve China’s policies on sulfur dioxide emission
reduction, it is necessary to predict China’s future sulfur
dioxide emissions. Grey prediction model is an important
part of grey system theory [18, 19]. It has been studied
by many researchers and improved over the years [20–22].
Recently, Liu et al. [23], Wu et al. [24, 25], and Xiao et al. [26,
27] published results on fractional order accumulation and
grey system model with the fractional order accumulation.
However, all the existing research [28, 29] does not deduce
the analytical expression of fractional order accumulating
generation operator and fractional order reducing generation
operator, nor does it prove that these fractional order gen-
eration operators satisfy mutual invertibility. Accumulating
generation operator is similar to summation operator and
reducing generation operator is similar to difference operator.
Cheng and Wu [28, 29] proposed the analytic expression
of fractional summation operator but did not propose frac-
tional difference operator and believed that the fractional
difference operator generally does not satisfy the exponential
rule. In this paper, both the fractional order accumulating
generation operator and fractional order reducing generation
operator are studied. Furthermore, a discrete greymodel with
fractional operators is used to predict China’s future sulfur
dioxide emissions.

The rest of the paper is organized as follows: in Section 2,
the analytical expressions of fractional order accumulating
generation operator and fractional order reducing generation
operator are derived. In Section 3, the discrete grey model
with fractional operators and order optimization algorithm
is studied. This is followed by comparisons of the proposed
model with the other discrete grey models, demonstrated via
three case studies, in Section 4. In Section 5, the proposed
discrete grey model with fractional operators is used to
predict China’s sulfur dioxide emissions. Then, conclusions
are drawn in Section 6.

2. Fractional Order Generation Operators

Definition 1. Assume that

𝑋(0) = (𝑥(0) (1) , 𝑥(0) (2) , . . . , 𝑥(0) (𝑛)) (1)

is a sequence of raw data and𝐷 a sequence operator satisfying
that

𝑋(0)𝐷 = (𝑥(0) (1) 𝑑, 𝑥(0) (2) 𝑑, . . . , 𝑥(0) (𝑛) 𝑑) , (2)

where

𝑥(0) (𝑘) 𝑑 = 𝑘∑
𝑖=1

𝑥(0) (𝑖) , 𝑘 = 1, 2, . . . , 𝑛 (3)

and then the sequence operator 𝐷 is called a (first-order)
accumulating generator of𝑋(0), denoted as 1-AGO.

Definition 2. For 𝑟 ∈ Z+, we define
𝑋(𝑟) = (𝑥(𝑟) (1) , 𝑥(𝑟) (2) , . . . , 𝑥(𝑟) (𝑛)) (4)

as the 𝑟th-order accumulating generation sequence of 𝑋(0),
where

𝑥(𝑟) (𝑘) = 𝑘∑
𝑖=1

𝑥(𝑟−1) (𝑖) = 𝑘∑
𝑖=1

𝑖∑
𝑗=1

𝑥(𝑟−2) (𝑗) ,
𝑘 = 1, 2, . . . , 𝑛.

(5)

Definition 3. Assume that the sequence of raw data is

𝑋(0) = (𝑥(0) (1) , 𝑥(0) (2) , . . . , 𝑥(0) (𝑛)) ,
𝑋(1) = (𝑥(1) (1) , 𝑥(1) (2) , . . . , 𝑥(1) (𝑛)) (6)

and is the first-order accumulating generation sequence of𝑋(0), where
𝑥(1) (𝑘) = 𝑘∑

𝑖=1

𝑥(0) (𝑖) , 𝑘 = 1, 2, . . . , 𝑛, (7)

and it follows that

𝑋(1) = (𝑥(0) (1) , 𝑥(0) (1)

+ 𝑥(0) (2) , . . . , 𝑘∑
𝑖=1

𝑥(0) (𝑖) , . . . , 𝑛∑
𝑖=1

𝑥(0) (𝑖)) .
(8)

From Definition 2, it follows that

𝑥(𝑟+1) (𝑘) = 𝑘∑
𝑖=1

𝑥(𝑟) (𝑖) , 𝑘 = 1, 2, . . . , 𝑛. (9)

So

𝑋(2) = (𝑥(1) (1) , 𝑥(1) (1)

+ 𝑥(1) (2) , . . . , 𝑘∑
𝑖=1

𝑥(1) (𝑖) , . . . , 𝑛∑
𝑖=1

𝑥(1) (𝑖))
= (𝑥(0) (1) , 2𝑥(0) (1) + 𝑥(0) (2) , . . . , 𝑛𝑥(0) (1)
+ (𝑛 − 1) 𝑥(0) (2) + ⋅ ⋅ ⋅ + (𝑛 − 𝑘 + 1) 𝑥(0) (𝑘)
+ 𝑥(0) (𝑛)) .

(10)
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Theorem4. 𝑋(2) = (𝑥(2)(1), 𝑥(2)(2), . . . , 𝑥(2)(𝑛)) is the second-
order accumulating generation sequence of 𝑋(0), where

𝑥(2) (𝑘) = 𝑘∑
𝑖=1

(𝑘 + 1 − 𝑖) 𝑥(0) (𝑖) . (11)

Proof. By induction on 𝑘, consider the following.
First, for 𝑘 = 1, 𝑥(2)(1) = ∑𝑘𝑖=1(𝑘 + 1 − 𝑖)𝑥(0)(𝑖) = 𝑥(0)(1),

so it is true.
Next, assume that, for some 𝑘 = 𝑠 and 𝑠 ≥ 1, the statement

is true. That is,

𝑥(2) (𝑠) = 𝑠∑
𝑖=1

(𝑠 + 1 − 𝑖) 𝑥(0) (𝑖) . (12)

Then, for 𝑘 = 𝑠 + 1, it follows that
𝑥(2) (𝑠 + 1) = 𝑥(2) (𝑠) + 𝑥(1) (𝑠 + 1)

= 𝑠∑
𝑖=1

(𝑠 + 1 − 𝑖) 𝑥(0) (𝑖) + 𝑠+1∑
𝑖=1

𝑥(0) (𝑖)

= 𝑠+1∑
𝑖=1

(𝑠 + 1 − 𝑖) 𝑥(0) (𝑖) + 𝑠+1∑
𝑖=1

𝑥(0) (𝑖)

= 𝑠+1∑
𝑖=1

(𝑠 + 2 − 𝑖) 𝑥(0) (𝑖) . It is also true.
(13)

So, Theorem 4 is true.

Theorem 5. Assume that the sequence of raw data is

𝑋(0) = (𝑥(0) (1) , 𝑥(0) (2) , . . . , 𝑥(0) (𝑛)) , (14)

where 𝑟 ∈ Z+, and
𝑋(𝑟) = (𝑥(𝑟) (1) , 𝑥(𝑟) (2) , . . . , 𝑥(𝑟) (𝑛)) (15)

is the 𝑟th integer order accumulating generation sequence of𝑋(0), where
𝑥(𝑟) (𝑘)
= 𝑘∑
𝑖=1

(𝑘 − 𝑖 + 1) (𝑘 − 𝑖 + 2) ⋅ ⋅ ⋅ (𝑘 − 𝑖 + 𝑟 − 1)(𝑟 − 1)! 𝑥(0) (𝑖) ,
𝑘 = 1, 2, . . . , 𝑛.

(16)

Proof. By induction on 𝑟, consider the following.
For 𝑟 = 1, 𝑥(1)(𝑘) = ∑𝑘𝑖=1(((𝑘 − 𝑖 + 1)(𝑘 − 𝑖 + 2) ⋅ ⋅ ⋅ (𝑘 − 𝑖 +𝑟 − 1))/(1 − 1)!)𝑥(0)(𝑖) = ∑𝑘𝑖=1 𝑥(0)(𝑖). It is true.
For each 𝑠 ≥ 1, if 𝑥(𝑠)(𝑘) = ∑𝑘𝑖=1(((𝑘−𝑖+1)(𝑘−𝑖+2) ⋅ ⋅ ⋅ (𝑘−𝑖 + 𝑠 − 1))/(𝑠 − 1)!)𝑥(0)(𝑖) is true, it follows that

𝑥(𝑠+1) (𝑘) = 𝑥(𝑠+1) (𝑘 − 1) + 𝑥(𝑠) (𝑘)
= 𝑘−1∑
𝑖=1

(𝑘 − 1 − 𝑖 + 1) (𝑘 − 1 − 𝑖 + 2) ⋅ ⋅ ⋅ (𝑘 − 1 − 𝑖 + 𝑠 + 1 − 1)(𝑠 + 1 − 1)! 𝑥(0) (𝑖)

+ 𝑘∑
𝑖=1

(𝑘 − 𝑖 + 1) (𝑘 − 𝑖 + 2) ⋅ ⋅ ⋅ (𝑘 − 𝑖 + 𝑠 − 1)(𝑠 − 1)! 𝑥(0) (𝑖)

= 𝑘−1∑
𝑖=1

(𝑘 − 𝑖) (𝑘 − 𝑖 + 1) ⋅ ⋅ ⋅ (𝑘 − 𝑖 + 𝑠 − 1)𝑠! 𝑥(0) (𝑖) + 𝑘∑
𝑖=1

(𝑘 − 𝑖 + 1) (𝑘 − 𝑖 + 2) ⋅ ⋅ ⋅ (𝑘 − 𝑖 + 𝑠 − 1)(𝑠 − 1)! 𝑥(0) (𝑖)

= 𝑘∑
𝑖=1

((𝑘 − 𝑖) (𝑘 − 𝑖 + 1) ⋅ ⋅ ⋅ (𝑘 − 𝑖 + 𝑠 − 1)𝑠! + (𝑘 − 𝑖 + 1) (𝑘 − 𝑖 + 2) ⋅ ⋅ ⋅ (𝑘 − 𝑖 + 𝑠 − 1)(𝑠 − 1)! ) 𝑥(0) (𝑖)

= 𝑘∑
𝑖=1

(𝑘 − 𝑖 + 1) ⋅ ⋅ ⋅ (𝑘 − 𝑖 + 𝑠 − 1) (𝑘 − 𝑖 + 𝑠)𝑠! 𝑥(0) (𝑖) . It is also true.

(17)

SoTheorem 5 is true for all 𝑟 ∈ Z+.
Definition 6. For 𝑛 ∈ R and 𝑛 ∉ {0, −1, −2, −3, . . .},

Γ (𝑛) = ∫∞
0
𝑒−𝑡𝑡𝑛−1𝑑𝑡 (18)

is Gamma function for 𝑛.

Using integration by parts, the Gamma function satisfies
the function Γ (𝑛 + 1) = 𝑛Γ (𝑛) . (19)
In particular, if 𝑛 is a positive integer,

Γ (𝑛 + 1) = ∫∞
0
𝑒−𝑡𝑡𝑛𝑑𝑡 = 𝑛! (20)
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For example, Γ(1/2) = √𝜋, Γ(1) = Γ(2) = 1, Γ(3) = 2!, Γ(4) =3!, . . . , Γ(𝑛) = (𝑛 − 1)!
The Gamma function is an extension of the factorial

function.
By Gamma function, it follows that

𝑥(𝑟) (𝑘)
= 𝑘∑
𝑖=1

(𝑘 − 𝑖 + 1) (𝑘 − 𝑖 + 2) ⋅ ⋅ ⋅ (𝑘 − 𝑖 + 𝑟 − 1)(𝑟 − 1)! 𝑥(0) (𝑖)

= 𝑘∑
𝑖=1

(𝑟 + 𝑘 − 𝑖 − 1)!(𝑘 − 𝑖)! (𝑟 − 1)!𝑥(0) (𝑖)

= 𝑘∑
𝑖=1

Γ (𝑟 + 𝑘 − 𝑖)Γ (𝑘 − 𝑖 + 1) Γ (𝑟)𝑥(0) (𝑖) .

(21)

Definition 7. Assume that the sequence of raw data is

𝑋(0) = (𝑥(0) (1) , 𝑥(0) (2) , . . . , 𝑥(0) (𝑛)) , (22)

where 𝑟 = R+, and

𝑋(𝑟) = (𝑥(𝑟) (1) , 𝑥(𝑟) (2) , . . . , 𝑥(𝑟) (𝑛)) (23)

is the 𝑟th integer order accumulating generation sequence of𝑋(0), where
𝑥(𝑟) (𝑘) = 𝑘∑

𝑖=1

Γ (𝑟 + 𝑘 − 𝑖)Γ (𝑘 − 𝑖 + 1) Γ (𝑟)𝑥(0) (𝑖) ,
𝑘 = 1, 2, . . . , 𝑛.

(24)

Definition 8. Assume that

𝑋(0) = (𝑥(0) (1) , 𝑥(0) (2) , . . . , 𝑥(0) (𝑛)) (25)

is a sequence of raw data and𝐷 a sequence operator satisfying
that

𝑋(0)𝐷 = (𝑥(0) (1) 𝑑, 𝑥(0) (2) 𝑑, . . . , 𝑥(0) (𝑛) 𝑑) , (26)

where

𝑥(0) (𝑘) 𝑑 = 𝑥(0) (𝑘 + 1) − 𝑥(0) (𝑘) , 𝑘 = 1, 2, . . . , 𝑛, (27)

and the sequence operator𝐷 is called the first-order forward
reducing generation operator.

If

𝑥(0) (𝑘) 𝑑 = 𝑥(0) (𝑘) − 𝑥(0) (𝑘 − 1) , 𝑘 = 1, 2, . . . , 𝑛, (28)

the sequence operator 𝐷 is called the first-order backward
reducing generation operator.

By default, the reducing generation operator is a back-
ward reducing generation operator. The first-order reducing
generation operator is the first-order inverse accumulating
generation operator (IAGO), written as 1-RGO.

Definition 9. For 𝑟 ∈ Z+, we write
𝑋(−𝑟) = (𝑥(−𝑟) (1) , 𝑥(−𝑟) (2) , . . . , 𝑥(−𝑟) (𝑛)) (29)

as the 𝑟th-order reducing generation sequence of𝑋(0), where
𝑥(−𝑟) (𝑘) = 𝑥(−𝑟+1) (𝑘) − 𝑥(−𝑟+1) (𝑘 − 1) ,

𝑘 = 1, 2, . . . , 𝑛. (30)

Definition 10. Assume that the sequence of raw data is

𝑋(0) = (𝑥(0) (1) , 𝑥(0) (2) , . . . , 𝑥(0) (𝑛)) ,
𝑋(−1) = (𝑥(−1) (1) , 𝑥(−1) (2) , . . . , 𝑥(−1) (𝑛)) (31)

and is the first-order reducing generation sequence of 𝑋(0),
where

𝑥(−1) (𝑘) = 𝑥(0) (𝑘) − 𝑥(0) (𝑘 − 1) , 𝑘 = 1, 2, . . . , 𝑛, (32)

and then it follows that

𝑋(−1) = (𝑥(0) (1) , 𝑥(0) (2) − 𝑥(0) (1) , . . . , 𝑥(0) (𝑘)
− 𝑥(0) (𝑘 − 1) , . . . , 𝑥(0) (𝑛) − 𝑥(0) (𝑛 − 1)) . (33)

From Definition 9, it obviously follows that

𝑥(−𝑟−1) (𝑘) = 𝑥(−𝑟) (𝑘) − 𝑥(−𝑟) (𝑘 − 1) ,
𝑘 = 1, 2, . . . , 𝑛. (34)

Then, it follows that

𝑋(−2) = (𝑥(−1) (1) , 𝑥(−1) (2) − 𝑥(−1) (1) , . . . , 𝑥(−1) (𝑘)
− 𝑥(−1) (𝑘 − 1) , . . . , 𝑥(−1) (𝑛) − 𝑥(−1) (𝑛 − 1))
= (𝑥(0) (1) , (𝑥(0) (2) − 𝑥(0) (1)) − 𝑥(0) (1) , . . . ,
(𝑥(0) (𝑘) − 𝑥(0) (𝑘 − 1))
− (𝑥(0) (𝑘 − 1) − 𝑥(0) (𝑘 − 2)) , . . . ,
(𝑥(0) (𝑛) − 𝑥(0) (𝑛 − 1))
− (𝑥(0) (𝑛 − 1) − 𝑥(0) (𝑛 − 2))) = (𝑥(0) (1) , 𝑥(0) (2)
− 2𝑥(0) (1) ) , . . . , 𝑥(0) (𝑘) − 2𝑥(0) (𝑘 − 1) + 𝑥(0) (𝑘
− 2) , . . . , 𝑥(0) (𝑛) − 2𝑥(0) (𝑛 − 1) + 𝑥(0) (𝑛 − 2)

So, 𝑥(−2) (𝑘) = 𝑥(0) (𝑘) − 2𝑥(0) (𝑘 − 1) + 𝑥(0) (𝑘 − 2) ,
𝑘 = 3, 4, . . . , 𝑛.

(35)
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Theorem 11. 𝑋(−2) = (𝑥(−2)(1), 𝑥(−2)(2), . . . , 𝑥(−2)(𝑛)) is the
second-order reducing generation sequence of 𝑋(0), where
𝑥(−2) (𝑘)

=
{{{{{{{{{{{

𝑘−1∑
𝑖=0

(−1)𝑖 2(2 − 𝑖)!𝑥(0) (𝑘 − 𝑖) 𝑘 = 1, 2
2∑
𝑖=0

(−1)𝑖 2(2 − 𝑖)!𝑥(0) (𝑘 − 𝑖) 𝑘 = 3, 4, . . . , 𝑛.
(36)

Proof. By induction on 𝑘, consider the following.
For 𝑘 = 1,
𝑥(−2) (1) = 𝑘−1∑

𝑖=0

(−1)𝑖 2(2 − 𝑖)!𝑥(0) (𝑘 − 𝑖)

= 0∑
𝑖=0

(−1)𝑖 2(2 − 𝑖)!𝑥(0) (1 − 𝑖) = 𝑥(0) (1) .
It is true.

(37)

For 𝑘 = 2,
𝑥(−2) (2) = 𝑘−1∑

𝑖=0

(−1)𝑖 2(2 − 𝑖)!𝑥(0) (𝑘 − 𝑖)

= 1∑
𝑖=0

(−1)𝑖 2(2 − 𝑖)!𝑥(0) (2 − 𝑖)
= 𝑥(0) (2) − 2𝑥(0) (1) . It is true.

(38)

For 𝑘 = 3, 4, . . . , 𝑛,
𝑥(−2) (2) = 𝑟∑

𝑖=0

(−1)𝑖 𝑟!𝑖! (𝑟 − 𝑖)!𝑥(0) (𝑘 − 𝑖)

= 2∑
𝑖=0

(−1)𝑖 2𝑖! (2 − 𝑖)!𝑥(0) (𝑘 − 𝑖)
= 𝑥(0) (𝑘) − 2𝑥(0) (𝑘 − 1) + 𝑥(0) (𝑘 − 2) .

It is also true.

(39)

So, Theorem 11 is true.

Theorem 12. Assume that

𝑋(0) = (𝑥(0) (1) , 𝑥(0) (2) , . . . , 𝑥(0) (𝑛)) , (40)

where 𝑟 ∈ Z+, and
𝑋(−𝑟) = (𝑥(−𝑟) (1) , 𝑥(−𝑟) (2) , . . . , 𝑥(−𝑟) (𝑛)) (41)

is the 𝑟th integer order reducing generation sequence of 𝑋(0),
where
𝑥(−𝑟) (𝑘)

=
{{{{{{{{{

𝑘−1∑
𝑖=0

(−1)𝑖 𝑟!𝑖! (𝑟 − 𝑖)!𝑥(0) (𝑘 − 𝑖) 𝑘 = 1, 2, . . . , 𝑟
𝑟∑
𝑖=0

(−1)𝑖 𝑟!𝑖! (𝑟 − 𝑖)!𝑥(0) (𝑘 − 𝑖) 𝑘 = 𝑟 + 1, 𝑟 + 2, . . . , 𝑛.
(42)

Proof. By induction on 𝑟, consider the following.
For 𝑟 = 1,

if 𝑘 = 1,
𝑥(−1) (1) = 𝑘−1∑

𝑖=0

(−1)𝑖 𝑟!𝑖! (𝑟 − 𝑖)!𝑥(0) (𝑘 − 𝑖) = 𝑥(0) (1) .
It is true;

(43)

if 𝑘 = 2, 3, . . . , 𝑛,
𝑥(−1) (𝑘) = 𝑟∑

𝑖=0

(−1)𝑖 𝑟!𝑖! (𝑟 − 𝑖)!𝑥(0) (𝑘 − 𝑖)

= 1∑
𝑖=0

(−1)𝑖 1!𝑖! (1 − 𝑖)!𝑥(0) (𝑘 − 𝑖)
= 𝑥(0) (𝑘) − 𝑥(0) (𝑘 − 1) . It is true.

(44)

For 𝑟 = 2,
if 𝑘 = 1,

𝑥(−2) (1) = 𝑘−1∑
𝑖=0

(−1)𝑖 𝑟!𝑖! (𝑟 − 𝑖)!𝑥(0) (𝑘 − 𝑖) = 𝑥(0) (1) .
It is true;

(45)

if 𝑘 = 2,
𝑥(−2) (2) = 𝑘−1∑

𝑖=0

(−1)𝑖 𝑟!𝑖! (𝑟 − 𝑖)!𝑥(0) (𝑘 − 𝑖)

= 1∑
𝑖=0

(−1)𝑖 2!𝑖! (2 − 𝑖)!𝑥(0) (2 − 𝑖)
= 𝑥(0) (2) − 2𝑥(0) (1) . It is true;

(46)

if 𝑘 = 3, 4, . . . , 𝑛,
𝑥(−2) (𝑘) = 𝑟∑

𝑖=0

(−1)𝑖 𝑟!𝑖! (𝑟 − 𝑖)!𝑥(0) (𝑘 − 𝑖)

= 2∑
𝑖=0

(−1)𝑖 2!𝑖! (2 − 𝑖)!𝑥(0) (𝑘 − 𝑖)
= 𝑥(0) (𝑘) − 2𝑥(0) (𝑘 − 1) + 𝑥(0) (𝑘 − 2) .

It is true.

(47)

For each 𝑠 ≥ 1, if
𝑥(−𝑠) (𝑘)

=
{{{{{{{{{

𝑘−1∑
𝑖=0

(−1)𝑖 𝑠!𝑖! (𝑠 − 𝑖)!𝑥(0) (𝑘 − 𝑖) 𝑘 = 1, 2, . . . , 𝑟
𝑠∑
𝑖=0

(−1)𝑖 𝑠!𝑖! (𝑠 − 𝑖)!𝑥(0) (𝑘 − 𝑖) 𝑘 = 𝑠 + 1, 𝑠 + 2, . . . , 𝑛
(48)



6 Complexity

is true, then it follows that

𝑥(−𝑠−1) (𝑘) = 𝑥(−𝑠) (𝑘) − 𝑥(−𝑠) (𝑘 − 1)
= 𝑠∑
𝑖=0

(−1)𝑖 𝑠!𝑖! (𝑠 − 𝑖)!𝑥(0) (𝑘 − 𝑖)

− 𝑠∑
𝑖=0

(−1)𝑖 𝑠!𝑖! (𝑠 − 𝑖)!𝑥(0) (𝑘 − 𝑖 − 1) = 𝑠!𝑠!𝑥(0) (𝑘)
− 𝑠!1! (𝑠 − 1)!𝑥(0) (𝑘 − 1) + 𝑠!2! (𝑠 − 2)!𝑥(0) (𝑘 − 2)
+ (−1)𝑖 𝑠!𝑖! (𝑠 − 𝑖)!𝑥(0) (𝑘 − 𝑖) + (−1)𝑠 𝑠!𝑠! (𝑠 − 𝑠)!
⋅ 𝑥(0) (𝑘 − 𝑠) − 𝑠!𝑠!𝑥(0) (𝑘 − 1) + 𝑠!1! (𝑠 − 1)!
⋅ 𝑥(0) (𝑘 − 2) − 𝑠!2! (𝑠 − 2)!𝑥(0) (𝑘 − 3) − (−1)𝑖+1
⋅ 𝑠!(𝑖 + 1)! (𝑠 − 𝑖 − 1)!𝑥(0) (𝑘 − 𝑖) − (−1)𝑠 𝑠!𝑠! (𝑠 − 𝑠)!
⋅ 𝑥(0) (𝑘 − 𝑠 − 1) = 𝑠!𝑠!𝑥(0) (𝑘) − ( 𝑠!1! (𝑠 − 1)! + 𝑠!𝑠!)
⋅ 𝑥(0) (𝑘 − 1) + ( 𝑠!2! (𝑠 − 2)! + 𝑠!1! (𝑠 − 1)!)
⋅ 𝑥(0) (𝑘 − 2)
+ ((−1)𝑖 𝑠!𝑖! (𝑠 − 𝑖)! + (−1)𝑖+1 𝑠!(𝑖 − 1)! (𝑠 − 𝑖 + 1)!)
⋅ 𝑥(0) (𝑘 − 𝑖) − (−1)𝑠 𝑠!𝑠! (𝑠 − 𝑠)!𝑥(0) (𝑘 − 𝑠 − 1) .

(49)

Then, it follows that

𝑥(−𝑠−1) (𝑘) = 𝑥(−𝑠) (𝑘) − 𝑥(−𝑠) (𝑘 − 1)
= 𝑠∑
𝑖=0

(−1)𝑖 𝑠!𝑖! (𝑠 − 𝑖)!𝑥(0) (𝑘 − 𝑖)

− 𝑠∑
𝑖=0

(−1)𝑖 𝑠!𝑖! (𝑠 − 𝑖)!𝑥(0) (𝑘 − 𝑖 − 1) .
(50)

The coefficient of 𝑥(0)(𝑘 − 𝑖) for the expansion of 𝑥(−𝑠−1)(𝑘) is
(−1)𝑖 𝑠!𝑖! (𝑠 − 𝑖)! − (−1)𝑖−1 𝑠!(𝑖 − 1)! (𝑠 − 𝑖 + 1)! = (−1)𝑖
⋅ 𝑠!𝑖! (𝑠 − 𝑖)! + (−1)𝑖 𝑠!(𝑖 − 1)! (𝑠 − 𝑖 + 1)! = (−1)𝑖

⋅ ( 𝑠!𝑖! (𝑠 − 𝑖)! + 𝑠!(𝑖 − 1)! (𝑠 − 𝑖 + 1)!) = (−1)𝑖

⋅ ( 𝑠! (𝑠 − 𝑖 + 1)𝑖! (𝑠 − 𝑖)! (𝑠 − 𝑖 + 1) + 𝑖 ⋅ 𝑠!𝑖 ⋅ (𝑖 − 1)! (𝑠 − 𝑖 + 1)!)

= (−1)𝑖 𝑠! (𝑠 − 𝑖 + 1 + 𝑖)𝑖! (𝑠 − 𝑖 + 1)! = (−1)𝑖 𝑠! (𝑠 + 1)𝑖! (𝑠 − 𝑖 + 1)!
= (−1)𝑖 (𝑠 + 1)!𝑖! (𝑠 − 𝑖 + 1)! .

(51)

So, 𝑥(−𝑠−1)(𝑘) = ∑𝑠𝑖=0(−1)𝑖((𝑠 + 1)!/𝑖!(𝑠 − 𝑖 + 1)!)𝑥(0)(𝑘 − 𝑖).
So, Theorem 12 is true.

Proposition 13. For 𝑟 ∈ Z+, the 𝑟th integer order reducing
generation operator

𝑥(−𝑟) (𝑘)

=
{{{{{{{{{

𝑘−1∑
𝑖=0

(−1)𝑖 𝑟!𝑖! (𝑟 − 𝑖)!𝑥(0) (𝑘 − 𝑖) 𝑘 = 1, 2, . . . , 𝑟
𝑟∑
𝑖=0

(−1)𝑖 𝑟!𝑖! (𝑟 − 𝑖)!𝑥(0) (𝑘 − 𝑖) 𝑘 = 𝑟 + 1, 𝑟 + 2, . . . , 𝑛
(52)

can be simplified as

𝑥(−𝑟) (𝑘) = 𝑘−1∑
𝑖=0

(−1)𝑖 Γ (𝑟 + 1)Γ (𝑖 + 1) Γ (𝑟 − 𝑖 + 1)𝑥(0) (𝑘 − 𝑖) ,
𝑘 = 1, 2, . . . , 𝑛.

(53)

Proof. According to the property of Gamma function, Γ(𝑛 +1) = 𝑛!
When 1 ≤ 𝑘 ≤ 𝑟,
𝑥(−𝑟) (𝑘) = 𝑘−1∑

𝑖=0

(−1)𝑖 𝑟!𝑖! (𝑟 − 𝑖)!𝑥(0) (𝑘 − 𝑖)

= 𝑘−1∑
𝑖=0

(−1)𝑖 Γ (𝑟 + 1)Γ (𝑖 + 1) Γ (𝑟 − 𝑖 + 1)𝑥(0) (𝑘 − 𝑖) .
It is true.

(54)

When 𝑟 + 1 ≤ 𝑘 ≤ 𝑛,
for 𝑘 − 𝑖 ≥ 1, then 𝑖 ≤ 𝑘 − 1;
for 𝑟 + 1 ≤ 𝑖 ≤ 𝑘 − 1, then 𝑟!/𝑖!(𝑟 − 𝑖)! = 0.

Thus, it follows that

𝑥(−𝑟) (𝑘) = 𝑟∑
𝑖=0

(−1)𝑖 𝑟!𝑖! (𝑟 − 𝑖)!𝑥(0) (𝑘 − 𝑖)

= 𝑟∑
𝑖=0

(−1)𝑖 𝑟!𝑖! (𝑟 − 𝑖)!𝑥(0) (𝑘 − 𝑖)

+ 𝑘−1∑
𝑖=𝑟+1

(−1)𝑖 𝑟!𝑖! (𝑟 − 𝑖)!𝑥(0) (𝑘 − 𝑖)

= 𝑘−1∑
𝑖=0

(−1)𝑖 Γ (𝑟 + 1)Γ (𝑖 + 1) Γ (𝑟 − 𝑖 + 1)𝑥(0) (𝑘 − 𝑖) .
It is also true.

(55)

So, Proposition 13 is true.
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Definition 14. Assume that

𝑋(0) = (𝑥(0) (1) , 𝑥(0) (2) , . . . , 𝑥(0) (𝑛)) , (56)

where 𝑟 ∈ R+, and
𝑋(−𝑟) = (𝑥(−𝑟) (1) , 𝑥(−𝑟) (2) , . . . , 𝑥(−𝑟) (𝑛)) (57)

is the 𝑟th integer order reducing generation sequence of𝑋(0),
where

𝑥(−𝑟) (𝑘) = 𝑘−1∑
𝑖=0

(−1)𝑖 Γ (𝑟 + 1)Γ (𝑖 + 1) Γ (𝑟 − 𝑖 + 1)𝑥(0) (𝑘 − 𝑖) ,
𝑘 = 1, 2, . . . , 𝑛.

(58)

Theorem 15. Assume that

𝑋(0) = (𝑥(0) (1) , 𝑥(0) (2) , . . . , 𝑥(0) (𝑛)) (59)

is a sequence of raw data, where 𝑝 ∈ R+ and 𝑞 ∈ R+. 𝑋(𝑝)
is the sequence of the 𝑝th-order accumulating generation of𝑋(0).𝑋(−𝑞) is the sequence of the 𝑞th-order reducing generation
of 𝑋(0). (𝑋(𝑝))(−𝑞) is the sequence of the 𝑞th-order reducing
generation of 𝑋(𝑝). (𝑋(−𝑞))(𝑝) is the sequence of the 𝑝th-order
accumulating generation of𝑋(−𝑞).The following holds true [19]:

(1) If 𝑝 − 𝑞 > 0, 𝑋(𝑝−𝑞) is the 𝑝 − 𝑞 order accumulating
generation of𝑋(0).

(2) If 𝑝 − 𝑞 < 0, 𝑋(𝑝−𝑞) is the 𝑞 − 𝑝 order accumulating
generation of𝑋(0).

(3) The fractional accumulating generation operator and
the fractional reducing generation operator satisfy the
exchange law and the exponential rate.

𝑋(𝑝−𝑞) = (𝑋(𝑝))(−𝑞) = (𝑋(−𝑞))(𝑝) . (60)

Theorem 16. Assume that

𝑋(0) = (𝑥(0) (1) , 𝑥(0) (2) , . . . , 𝑥(0) (𝑛)) (61)

is a sequence of raw data and 𝑟 ∈ R+. 𝑋(𝑟) is the sequence
of the 𝑟th-order accumulating generation of 𝑋(0). 𝑋(−𝑟) is the
sequence of the 𝑟th-order reducing generation of 𝑋(0). The𝑟th order accumulating generation operator and the 𝑟th-order
reducing generation operator are inverse operations [19].

𝑋(0) = (𝑋(𝑟))(−𝑟) = (𝑋(−𝑟))(𝑟) . (62)

3. Discrete Grey Model with
Fractional Operators

Definition 17. Assume that 𝑋(0) and 𝑋(𝑟) are defined as in
Definition 7, and

𝑥(𝑟) (𝑘 + 1) = 𝛽1𝑥(𝑟) (𝑘) + 𝛽2 (63)

is the discrete grey model with fractional operators. In
particular, consider the following.

If 𝑟 = 1, 𝑥(𝑟)(𝑘 + 1) = 𝛽1𝑥(𝑟)(𝑘) + 𝛽2 is DGM(1, 1).
𝑥(1) (𝑘 + 1) = 𝛽1𝑥(1) (𝑘) + 𝛽2. (64)

If 𝑟 = 0, 𝑥(𝑟)(𝑘+1) = 𝛽1𝑥(𝑟)(𝑘)+𝛽2 is direct modeling
DGM(1, 1).

𝑥(0) (𝑘 + 1) = 𝛽1𝑥(0) (𝑘) + 𝛽2. (65)

Theorem 18. Assume that

𝑋(0) = (𝑥(0) (1) , 𝑥(0) (2) , . . . , 𝑥(0) (𝑛)) (66)

is a sequence of raw data and

𝑥(𝑟) (𝑘) = 𝑘∑
𝑖=1

Γ (𝑟 + 𝑘 − 𝑖)Γ (𝑘 − 𝑖 + 1) Γ (𝑟)𝑥(0) (𝑖) ,
𝑘 = 1, 2, . . . , 𝑛

(67)

is the sequence of the 𝑟th-order accumulating generation of𝑋(0), where 𝑟 ∈ R+.
𝑋(𝑟) = (𝑥(𝑟) (1) , 𝑥(𝑟) (2) , . . . , 𝑥(𝑟) (𝑛)) (68)

is the 𝑟th-order accumulating generation of 𝑋(0), where
𝑥(𝑟) (𝑘) = 𝑘∑

𝑖=1

Γ (𝑟 + 𝑘 − 𝑖)Γ (𝑘 − 𝑖 + 1) Γ (𝑟)𝑥(0) (𝑖) ,
𝑘 = 1, 2, . . . , 𝑛.

(69)

The parameter vector 𝛽̂ = [𝛽1, 𝛽2]Τ of discrete grey model
with fractional operators 𝑥(𝑟)(𝑘 + 1) = 𝛽1𝑥(𝑟)(𝑘) + 𝛽2 can be
calculated by the least squares method.

𝛽̂ = (BΤB)−1 BΤY. (70)

It follows that

Y =
[[[[[[[
[

𝑥(𝑟) (2)
𝑥(𝑟) (3)
...

𝑥(𝑟) (𝑛)

]]]]]]]
]

B =
[[[[[[[
[

𝑥(𝑟) (1) 1
𝑥(𝑟) (2) 1
... ...

𝑥(𝑟) (𝑛 − 1) 1

]]]]]]]
]
,

(71)

where

𝑥(𝑟) (𝑘) = 𝑘∑
𝑖=1

Γ (𝑟 + 𝑘 − 𝑖)Γ (𝑘 − 𝑖 + 1) Γ (𝑟)𝑥(0) (𝑖) ,
𝑘 = 1, 2, . . . , 𝑛.

(72)
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So, it follows that

Y =
[[[[[[[
[

𝑥(𝑟) (2)
𝑥(𝑟) (3)
...

𝑥(𝑟) (𝑛)

]]]]]]]
]
=

[[[[[[[[[[[[[
[

2∑
𝑖=1

Γ (𝑟 + 2 − 𝑖)Γ (2 − 𝑖 + 1) Γ (𝑟)𝑥(0) (𝑖)
3∑
𝑖=1

Γ (𝑟 + 3 − 𝑖)Γ (3 − 𝑖 + 1) Γ (𝑟)𝑥(0) (𝑖)...
𝑛∑
𝑖=1

Γ (𝑟 + 𝑛 − 𝑖)Γ (𝑛 − 𝑖 + 1) Γ (𝑟)𝑥(0) (𝑖)

]]]]]]]]]]]]]
]

=
[[[[[[[[[[
[

𝑟𝑥(0) (1) + 𝑥(0) (2)
𝑟 (𝑟 + 1)2 𝑥(0) (1) + 𝑟𝑥(0) (2) + 𝑥(0) (3)

...
𝑛∑
𝑖=1

Γ (𝑟 + 𝑛 − 𝑖)Γ (𝑛 − 𝑖 + 1) Γ (𝑟)𝑥(0) (𝑖)

]]]]]]]]]]
]

.

B =
[[[[[[[
[

𝑥(𝑟) (1) 1
𝑥(𝑟) (2) 1
... ...

𝑥(𝑟) (𝑛 − 1) 1

]]]]]]]
]

=

[[[[[[[[[[[[[[
[

1∑
𝑖=1

Γ (𝑟 + 1 − 𝑖)Γ (1 − 𝑖 + 1) Γ (𝑟)𝑥(0) (𝑖) 1
2∑
𝑖=1

Γ (𝑟 + 2 − 𝑖)Γ (2 − 𝑖 + 1) Γ (𝑟)𝑥(0) (𝑖) 1
... ...

𝑛−1∑
𝑖=1

Γ (𝑟 + 𝑛 − 1 − 𝑖)Γ (𝑛 − 1 − 𝑖 + 1) Γ (𝑟)𝑥(0) (𝑖) 1

]]]]]]]]]]]]]]
]

=
[[[[[[[[[[
[

𝑥(0) (1) 1
𝑟𝑥(0) (1) + 𝑥(0) (2) 1

... ...
𝑛−1∑
𝑖=1

Γ (𝑟 + 𝑛 − 1 − 𝑖)Γ (𝑛 − 1 − 𝑖 + 1) Γ (𝑟)𝑥(0) (𝑖) 1

]]]]]]]]]]
]

(73)

Theorem 19. Assume that B, Y, and 𝛽̂ are the same as in
Theorem 18. If

𝛽̂ = [𝛽1, 𝛽2]Τ = (BΤB)−1 BΤY, (74)

then the following is true.
(1) The time response sequence of the discrete grey model

with fractional operators

𝑥(𝑟) (𝑘 + 1) = 𝛽1𝑥(𝑟) (𝑘) + 𝛽2 (75)

is given by

𝑥(𝑟) (𝑘) = (𝑥(0) (1) − 𝛽21 − 𝛽1)𝛽1𝑘−1 +
𝛽21 − 𝛽1 ,
𝑘 = 2, 3, . . . , 𝑛

(76)

or

𝑥(𝑟) (𝑘) = 𝑥(0) (1) 𝛽1𝑘−1 + 1 − 𝛽1𝑘−11 − 𝛽1 𝛽2,
𝑘 = 2, 3, . . . , 𝑛.

(77)

(2) The restored values of 𝑥(0)(𝑘) can be given by

𝑥(0) (𝑘) = (𝑥(𝑟))(−𝑟) (𝑘)
= 𝑘−1∑
𝑖=0

(−1)𝑖 Γ (𝑟 + 1)Γ (𝑖 + 1) Γ (𝑟 − 𝑖 + 1)𝑥(𝑟) (𝑘 − 𝑖) ,
𝑘 = 2, 3, . . . , 𝑛

𝑥(0) (1) = 𝑥(0) (1) .

(78)

Theorem 20. Discrete grey model DGM(1, 1) is the special
case of the discrete grey model with fractional operators, where𝑟 = 1.

The conclusion is clearly true.
To determine the optimal order of the discrete grey

model with fractional operators, we can solve the following
optimization problem:

min𝑓 (𝑟) = 1𝑛 − 1
𝑛∑
𝑘=2

󵄨󵄨󵄨󵄨󵄨𝑥(0) (𝑘) − 𝑥(0) (𝑘)󵄨󵄨󵄨󵄨󵄨𝑥(0) (𝑘) , 𝑟 ∈ R+. (79)

Genetic algorithms have obvious advantages at solving
nonlinear optimization problems [30]. So, we can apply
genetic algorithms to solve the optimized value of order 𝑟.
Step 1 (start). Initialize the parameters of population (𝑡):
initial value of order 𝑟, range of value for 𝑟, population size𝑁, crossover probability pc, mutation probability pm, value
accuracy represented as 𝑒𝑒, fitness function results accuracy
re, and generations of terminating evolution 𝑇.
Step 2 (fitness). Determine the fitness of population (𝑡).
Step 2.1. Compute the 𝑟 order accumulating generation
sequence𝑋(𝑟).
Step 2.2. Compute the parameter vector 𝛽̂.

Step 2.3. Compute the time response sequence 𝑥(𝑟)(𝑘).
Step 2.4. Compute the forecast value 𝑥(0)(𝑘).
Step 2.5. Compute the fitness 𝑓(𝑟).
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Start

Step 1. Initialize the parameters of population (t)

Step 2. Determine fitness of population (t)

Step 3. New population

Step 4. Use new generated population for a further run of algorithm

End

Step 2.1. Compute the r order accumulating generation sequence
Step 2.2. Compute the parameter vector
Step 2.3. Compute the time response sequence
Step 2.4. Compute the forecast value
Step 2.5. Compute the fitness

Step 3.1. Select parents from population (t)
Step 3.2. Perform crossover on parents creating population (t + 1)
Step 3.3. Perform mutation of population (t + 1)
Step 3.4. Place new offspring in a new population

Step 5 (test). Is the end condition satisfied?

Step 6. Display the result data of the model

Yes

No

Figure 1: The modeling steps of discrete grey model with optimized fractional operators.

Step 3. New population.

Step 3.1 (selection). Select parents from population (𝑡).
Step 3.2 (crossover). Perform crossover on parents creating
population (𝑡 + 1).
Step 3.3 (mutation). Perform mutation of population (𝑡 + 1).
Step 3.4 (accepting). Place new offspring in a new population.

Step 4 (replace). Use new generated population for a further
run of algorithm.

Step 5 (test). If the end condition is satisfied, stop, and return
the best solution in current population; otherwise go to
Step 2.

Step 6 (result). Display the result data of the model, the
optimized order 𝑟, the parameter vector 𝛽̂, and the forecast
value 𝑥(0)(𝑘).

Theoverallmodeling steps of the discrete greymodelwith
optimized fractional operators are shown in Figure 1.

4. Verification of Discrete Grey Model with
Fractional Operators

In this section, the advantage of the discrete grey model with
fractional operators over the other discrete grey models is
demonstrated by three case studies. Mean absolute percent-
age error (MAPE) is used to compare the actual values with
forecasted values to evaluate the precision. MAPE is defined
as

MAPE = 1𝑛
𝑛∑
𝑘=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑥 (𝑘) − 𝑥 (𝑘)𝑥 (𝑘)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 × 100%. (80)

Case 1. In [31], a modified DGM(1, 1) was proposed to
predict China’s foreign exchange reserves. We consider the
example from this paper [31] which provides the sample
data. The actual values and the forecast values of the three
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Table 1: The fitted values and MAPE of different discrete grey models (unit: $ billion).

Year Actual value 𝑥(0)(𝑘) DGM(1, 1) Modified DGM(1, 1) 𝑟 = 0.020𝑥(0)(𝑘) Δ 𝑘 (%) 𝑥(0)(𝑘) Δ 𝑘 (%) 𝑥(0)(𝑘) Δ 𝑘 (%)
1994 51.620
1995 73.597 25.687 65.098 94.227 28.031 82.846 12.567
1996 105.049 34.109 67.530 106.679 1.552 107.697 2.521
1997 139.890 45.294 67.622 120.778 13.662 127.487 8.866
1998 144.959 60.145 58.509 136.740 5.670 143.251 1.178
1999 154.675 79.867 48.365 154.811 0.088 155.805 0.731
2000 165.574 106.055 35.947 175.271 5.856 165.796 0.134

MAPE (%) 9.143 4.333
2001 212.165 140.831 33.622 𝑟 = 0.662
2002 286.407 187.009 34.705 288.721 0.808 303.083 5.823
2003 403.251 248.329 38.418 407.365 1.020 431.186 6.927
2004 609.932 329.756 45.936 574.762 5.766 594.877 2.468
2005 818.872 437.882 46.526 810.949 0.968 806.887 1.464
2006 1066.300 581.463 45.469 1144.191 7.305 1083.648 1.627

MAPE (%) 4.846 3.662
MAPE (%) 48.979 7.190 4.028

Table 2: The fitted values and MAPE of different discrete grey models.

Sequence Sample data Geometric shape of sequence Models MAPE (%)

𝑋1 (1.2, 2.9, 4.2, 5.1, 5.8) Up, convex
Direct modeling DGM(1, 1) 0.2958𝑟 = 1 6.1492𝑟 = 0 0.29549

𝑋2 (8.5, 16.4, 32.3, 64.2, 128.1) Up, concave
Direct modeling DGM(1, 1) 0.1754𝑟 = 1 0.5621𝑟 = 0.018 0.0086

𝑋3 (5.8, 5.1, 4.2, 2.9, 1.2) Down, convex
Direct modeling DGM(1, 1) 0.3321𝑟 = 1 19.1751𝑟 = 0 0.33136

𝑋4 (128.1, 64.2, 32.3, 16.4, 8.5) Down, concave
Direct modeling DGM(1, 1) 0.0756𝑟 = 1 0.7371𝑟 = 0.985 0.0258

𝑋5 (5, 11, 29, 83, 245) Strict nonhomogeneous
Direct modeling DGM(1, 1) 0.0000𝑟 = 1 13.8393𝑟 = 0 0.0000

𝑋6 (1.4, 2, 2.8, 3.9, 5.4) Approximate nonhomogeneous
Direct modeling DGM(1, 1) 0.1099𝑟 = 1 0.2766𝑟 = 0.943 0.0467

compared models are presented in Table 1. As can be
seen from Table 1, the discrete grey model with fractional
operators where 𝑟 = 0.020 and 𝑟 = 0.662 achieved the lowest
MAPE compared toDGM(1, 1) and themodifiedDGM(1, 1).
Case 2. In [32], the initial condition of DGM(1, 1) was
optimized and the results of direct modeling DGM(1, 1)were
tested against the original data, in respect of a geometric
shape with up, down, concave, and convex sequences. Sample

data from [32] were used in this case study. The actual
values and the forecast values of three compared models are
presented in Table 2. Again, the discrete grey model with
fractional operators achieved the lowest MAPE compared to
DGM(1, 1) (where 𝑟 = 1) and direct modeling DGM(1, 1).
Case 3. The authors of [25] proposed a discrete grey model
based on fractional order accumulation and studied the
turnover of goods in Jiangsu Province, China. We consider
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Table 3: The actual values of the turnover of goods in Jiangsu Province, China.

Year 2003 2004 2005 2006 2007 2008 2009
Actual value (unit: billion tons-km) 181.74 239.81 306.83 364.41 409.84 470.75 515.45

Table 4: The forecast values and errors of different discrete grey models (year 2009).

Model DGM1/2(1, 1) DGM2/3(1, 1) DGM(1, 1) 𝑟 = 0.27
Forecast value (unit: billion tons-km) 5236.45 5303.33 5585.60 5185.92
Absolute percentage error (%) 1.59 2.89 8.36 0.61

Table 5: Fitting accuracy of China’s sulfur dioxide emissions (unit: million tons).

𝑘 Year 𝑥(0)(𝑘) GM(1, 1) Fractional order DGM(1, 1)𝑟 = 1 𝑟 = 0 𝑟 = 0.07𝑥(0)(𝑘) Δ 𝑘 (%) 𝑥(0)(𝑘) Δ 𝑘 (%) 𝑥(0)(𝑘) Δ 𝑘 (%) 𝑥(0)(𝑘) Δ 𝑘 (%)
1 2007 24.681
2 2008 23.212 23.021 0.824 23.024 0.811 23.246 0.147 23.21 0.007
3 2009 22.144 22.532 1.752 22.534 1.762 22.299 0.701 22.387 1.097
4 2010 21.851 22.054 0.927 22.055 0.933 21.674 0.808 21.862 0.050
5 2011 22.179 21.585 2.676 21.586 2.675 21.262 4.134 21.478 3.161
6 2012 21.176 21.127 0.231 21.127 0.233 20.99 0.878 21.177 0.003
7 2013 20.440 20.679 1.167 20.677 1.161 20.811 1.813 20.929 2.392

Average relative error Δ 1.263% 1.262% 1.413% 1.118%

Table 6: Model testing result of China’s sulfur dioxide emissions (unit: million tons).

𝑘 Year 𝑥(0)(𝑘) GM(1, 1) Fractional Order DGM(1, 1)𝑟 = 1 𝑟 = 0 𝑟 = 0.07𝑥(0)(𝑘) Δ 𝑘 (%) 𝑥(0)(𝑘) Δ 𝑘 (%) 𝑥(0)(𝑘) Δ 𝑘 (%) 𝑥(0)(𝑘) Δ 𝑘 (%)
8 2014 19.744 20.240 2.512 20.237 2.497 20.369 3.166 19.642 0.517
9 2015 18.591 19.413 4.405 19.807 6.541 19.686 5.890 18.848 1.382

the sample data from this paper as an example. The actual
values and the forecast values of the different DGM models
being compared are presented in Tables 3 and 4. The results
show that the discrete grey model with fractional operators
has a lower MAPE than the discrete grey model based on
fractional order accumulate.

5. Prediction of China’s Sulfur
Dioxide Emissions

According to China’s environmental status report published
in 2016, from 2007 to 2015, the sulfur dioxide emission data
(unit, million tons) are as follows:

𝑋(0) = (24.681, 23.212, 22.144, 21.851, 22.179, 21.176, 20.440, 19.744, 18.591) . (81)

The order of discrete grey model with fractional order
operators can be resolved by the algorithm of particle swarm
optimization. The minimum mean relative error is thus
obtained. The results of discrete grey model with fractional
order operators where 𝑟 = 0.07, DGM(1, 1) model (discrete
grey model with fractional order operators where 𝑟 =1), direct modeling DGM(1, 1) (discrete grey model with
fractional order operators where 𝑟 = 0), and GM(1, 1) are
shown in Table 5. From Tables 5 and 6, we can see that the
discrete grey model with fractional order operators where𝑟 = 0.07 achieves the best fitting accuracy and test accuracy

among the four models. The average relative error of discrete
grey model with fractional order operators where 𝑟 = 0.07
is 1.118%. By using discrete grey model with fractional order
operators where 𝑟 = 0.07, the predicted values of sulfur
dioxide emissions in China in the next five years are shown
in Table 7.

According to the predicted results of China’s sulfur
dioxide emissions shown in Table 7, the emissions show a
steady decline in the five years from 2016 to 2020. By 2020, the
amount of sulfur dioxide emissions is 16.145million tons, only
86.843% of emissions in 2015.The result indicates that China’s
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Table 7: Prediction of China’s sulfur dioxide emissions (unit:
million tons).

Year 2016 2017 2018 2019 2020
Forecast value 17.926 17.637 17.145 16.569 16.145

current sulfur dioxide emission reduction policies have been
well implemented and achieved a positive outcome.

6. Conclusion

In this paper, the discrete grey model with fractional opera-
tors is firstly studied and then used to predict China’s sulfur
dioxide emissions. This paper introduces a new prediction
model by changing and optimizing the values of fractional
order, giving rise to a discrete grey model with fractional
operators. The steps of modeling and genetic algorithms of
order optimization for the proposed model are explained.
Case studies show that the discrete greymodel with fractional
operators can achieve the best precisionwith optimized order.
Then, China’s future sulfur dioxide emissions are predicted
by the discrete grey model with fractional operators. Genetic
algorithm can be used to determine the optimal order
under the condition of minimum mean error. The results
show that the proposed discrete grey model with fractional
operators can obtain a higher fitting accuracy than the grey
model GM(1, 1), discrete grey model DGM(1, 1), and direct
modeling DGM(1, 1). The forecast results show that China’s
sulfur dioxide emissions will decrease steadily, indicating
that China’s sulfur dioxide reduction policies are effective. It
is noted that the fractional order accumulating generation
operator and fractional order reducing generation operator
may have the same expression. The unified expression of
fractional order accumulating/reducing generation operators
is an attractive topic in the grey system theory.
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