Research Article

Methods Dealing with Complexity in Selecting Joint Venture Contractors for Large-Scale Infrastructure Projects

Ru Liang1, Zhaohan Sheng1, and Xiangyu Wang2,3

1School of Management and Engineering, Nanjing University, Nanjing 210093, China
2School of Built Environment, Curtin University, Perth, WA 6102, Australia
3Department of Housing and Interior Design, Kyung Hee University, Seoul 130701, Republic of Korea

Correspondence should be addressed to Ru Liang; rliang24@163.com

Received 17 July 2017; Accepted 19 November 2017; Published 3 January 2018

Academic Editor: Daniela Paolotti

The magnitude of business dynamics has increased rapidly due to increased complexity, uncertainty, and risk of large-scale infrastructure projects. This fact made it increasingly tough to “go alone” into a contractor. As a consequence, joint venture contractors with diverse strengths and weaknesses cooperatively bid for bidding. Understanding project complexity and making decision on the optimal joint venture contractor is challenging. This paper is to study how to select joint venture contractors for undertaking large-scale infrastructure projects based on a multiattribute mathematical model. Two different methods are developed to solve the problem. One is based on ideal points and the other one is based on balanced ideal advantages. Both of the two methods consider individual difference in expert judgment and contractor attributes. A case study of Hong Kong-Zhuhai-Macao-Bridge (HZMB) project in China is used to demonstrate how to apply these two methods and their advantages.

1. Introduction

Rapid urbanization in recent years has increased the number of construction projects with large amounts of dollars invested in large-scale infrastructure projects [1]. These projects are usually highly complicated [2] and beset with issues such as low performance, schedule delays, and cost overruns [3, 4] because of lacking relevant knowledge on the part of project managers, especially an appropriate joint venture constructor [5]. These challenges present a paradox: a few of these demands directly contribute to the physical construction of the project; however, a failure to properly manage them can lead to problems for the entire project and construction team [6]. Therefore, understanding project complexity and selecting an appropriate joint venture contractor in the process of construction management are extremely critical and very difficult for large-scale infrastructure projects because of its complexity and dynamic environment [7].

Many scholars have carried out a great number of research studies to identify the selection attributes and categorize these attributes of contractors [8–12]. Hutush and Skitmore [8] proposed a set of attributes classified into five categories to assess contractors, including financial soundness, technical ability, management capability, health and safety, and reputation. However, this work is criticized, for example, for lacking consistency. The study by Lam et al. [9] presents an artificial neural network as a decision support tool for prequalifying contractors through examination of the multiple contractor competitive attributes like technical strength, financial status, and so on. These studies have led to a recent study by Shen et al. [10] that summarizes competitive attributes of contractors as social influence, technical ability, financing ability and accounting status, marketing ability, management skills, and organizational structure and operations. Nevertheless, it is not satisfactory for decision makers (DMs) anymore to evaluate the contractor’s performance just by using competitive attributes [11]. Indeed, joint venture contractor selection is a critical decision that influences the project success and therefore cooperation attributes must be taken into consideration [12]. As a result, many different attempts have been made for contractor selection based on
competitive attributes and cooperation attributes at the same
time [13].

There are a number of existing tools and methods
formulated to evaluate and select joint venture contractors,
including the multiattribute analysis such as Zavadskas et
al. [14] and multiattribute utility theory (especially among
“earlier” studies in the field), along with several interpreta-
tions of artificial neural networks (ANN) [15], multivariate
discriminant analysis [16], fuzzy theory [17], and analytical
hierarchy process (AHP) [18]. Researchers Zavadskas et al.
[14] used the multiattribute method to assess and select contractors by specifically developing a model that takes into
account all attributes affecting construction efficiency. The
ANP-Monte Carlo simulated model proposed by El-Abbasy
et al. [19] is a novel approach where multiattribute is con-
sidered to select the best contractor for highway projects.
Furthermore, analysis of the methodological approaches was
based on the chosen categories of statistical/deterministic
modelling [20], literature/documentary analysis [21], surveys
[22], and other nondeterministic forms [23–28].

Despite the fact that the literature is rich with approaches
and models for contractor selection, the two important issues
of interdependency and uncertainty were not addressed
concurrently. The decision-making process in the bidding
stage is influenced by cooperation attributes and competitive
ttributes that should characterize any competitive joint ven-
ter contractor [8–10, 29]. Furthermore, those attributes are
not isolated from the bidding system structure and its
turbulent environment [11]. The second issue concerns the
uncertainty inborn as for the subjectivity of attribute weight-
ing. Different respondents gave different answers. Overall,
the issue of integrating a system of interdependency and
simulation has not yet been addressed.

To address this drawback, this research aims at developing:
(1) an analyzed model of selecting joint venter contractor
in large-scale infrastructure projects to solve interdepen-
dency of one joint venter contractor through considering
competitive attributes besides cooperation attributes. A good
joint venter contractor should be with good performance in
competition and cooperation at the same time, which needs
decision methods that can reflect the balance [11–13]. (2)
Two proposed methods evaluate importance of alternative joint
venter contractors for solving the uncertainty of attribute
weighting by utilizing linguistic variables. Selecting joint ven-
ter contractor involves gathering of the candidates’ objective
statistics and the experts’ subjective evaluation information
[30–32]. This research considers that experts have different
weights to evaluate attribute values and their weights by uti-
lizing linguistic variables, which is lean close to construction
practice.

The rest of this paper is organized as follows. In Section 2,
the preliminaries on triangular fuzzy numbers, linguistic
variables, and TOPSIS method are briefly introduced. In
Section 3, research problem and analyzed model are described.
Section 4 develops two proposed methods, followed by a
case study of Hong Kong-Zhuhai-Macao-Bridge (HZMB)
project in China to demonstrate selection of bridge route and
project complexity in Section 5. The final section presents the
conclusions for the proposed methods.

2. Preliminaries

In this section, some preliminaries are briefly introduced,
including triangular fuzzy numbers, linguistic variables, and
TOPSIS method.

2.1. Triangular Fuzzy Numbers. A triangular fuzzy number
̃A can be defined by a triplet (d^L, d^M, d^R). Its membership
function µ̃A(x) is defined as [33]

\[
µ̃A(x) = \begin{cases}
0, & x < d^L \\
\frac{(x - d^L)}{(d^M - d^L)}, & d^L \leq x \leq d^M \\
\frac{(d^M - x)}{(d^R - d^M)}, & d^M \leq x \leq d^R \\
0, & x > d^R,
\end{cases}
\]

(1)

where d^L, d^M, and d^R are real numbers and d^L ≤ d^M ≤ d^R. If
x = d^M, then the grade µ̃A(x) is maximal (i.e., µ̃A(x) = 1),
and d^M is the most probable value of the evaluation data.
Constants d^L and d^R are the lower and upper bounds of the
available range for the evaluation data, respectively.

The Euclidean distance of two triangular fuzzy numbers
̃A_1 = (d^L_1, d^M_1, d^R_1) and ̃A_2 = (d^L_2, d^M_2, d^R_2) is defined as [33]

\[
(̃A_1, ̃A_2) = \sqrt{\frac{1}{3} \left[(d^L_1 - d^L_2)^2 + (d^M_1 - d^M_2)^2 + (d^R_1 - d^R_2)^2 \right]}.
\]

(2)

Readers who are interested in fuzzy numbers can refer to
papers by Kaufmann and Gupta [34].

2.2. Linguistic Variables. A linguistic variable is a variable
whose values are words or sentences of a natural or artificial
language that are expressed in linguistic terms which are then
represented by the triangular fuzzy number [35]. Usually,
conversion scales are used to transform linguistic terms into
fuzzy numbers [36]. In this research work, we use 0–1 scale and
0–10 scale to rate the attributes and alternatives,
respectively.

2.3. TOPSIS Method. The TOPSIS (technique for order pre-
ference by similarity to ideal solution) is one of the most used
multiattribute methods for solving multiattribute decision-
making problems as it is easy to assimilate and apply. Indeed,
the principle is based on finding the closest alternative to
Ideal Reference Point (IRP) (i.e., the solution that maximizes
the advantages attributes and which minimizes the costs
attributes) noted IRP and the farthest alternative to the Anti-
Ideal Reference Point (ARP) (i.e., the solution that maxi-
mizes the costs attributes and which minimizes advantages
attribute). Four steps are needed as follows [37].
Step 1. Construct weighted collective preferences matrix.

The weighted fuzzy collective preferences matrix through massing the index weight vector and decision-making information matrix is constructed as

\[
p'' = \begin{bmatrix}
 p_1^{m(1)} & p_1^{m(2)} & \cdots & p_1^{m(n)} \\
p_2^{m(1)} & p_2^{m(2)} & \cdots & p_2^{m(n)} \\
\vdots & \vdots & \ddots & \vdots \\
p_m^{m(1)} & p_m^{m(2)} & \cdots & p_m^{m(n)}
\end{bmatrix},
\]

where \(p_i^{m(k)} \) can be obtained by the following formula:

\[
p_i^{m(k)} = p_i^{(k)} \cdot v_k, \quad i = 1, 2, \ldots, m; \quad k = 1, 2, \ldots, l.
\]

Step 2. Determine the ideal and anti-ideal alternatives.

The positive ideal solution (PIS) and negative ideal solution (NIS) are defined as

\[
PIS = (\delta_1^+, \delta_2^+, \ldots, \delta_i^+),
\]

\[
NIS = (\delta_1^-, \delta_2^-, \ldots, \delta_i^-),
\]

where \(\delta_k^+ = 1 \), \(\delta_k^- = -1 \), \(k = 1, 2, \ldots, l \).

Step 3. Calculate the distances of each initial alternative to the PIS and NIS.

The distances of each candidate team from the PIS and NIS are calculated as

\[
d_i^+ = \sum_{k=1}^{l} d(p_i^{m(k)}, \delta_k^+), \quad i = 1, 2, \ldots, m,
\]

\[
d_i^- = \sum_{k=1}^{l} d(p_i^{m(k)}, \delta_k^-), \quad i = 1, 2, \ldots, m,
\]

where \(d(p_i^{m(k)}, \delta_k^+) \) and \(d(p_i^{m(k)}, \delta_k^-) \) are the distances between two clear numbers, which are calculated as

\[
d(p_i^{m(k)}, \delta_k^+) = \left| p_i^{m(k)} \right|, \quad i = 1, 2, \ldots, m,
\]

\[
d(p_i^{m(k)}, \delta_k^-) = \left| p_i^{m(k)} \right|, \quad i = 1, 2, \ldots, m.
\]

Step 4. Obtain the closeness coefficient and rank the order of alternatives.

The closeness coefficients \(CC_i \) of each alternative are calculated as

\[
CC_i = \frac{d_i^-}{d_i^+ + d_i^-}, \quad i = 1, 2, \ldots, m.
\]

3. Analysis Model and Problem Description

In this section, a matrix analysis model based on competitive attributes and cooperation attributes is presented. Then, the bidimensional and balanced performance problem for joint venter contractor selection of large-scale infrastructure projects based on the matrix analysis model is formulated.
3.2. Problem Description. Based on the analyzed model and the attribute system constructed in Section 3.1, this paper aims to develop decision methods to support joint venter contractor selection of bidding in construction projects.

Suppose a set of feasible alternative joint venter contractors is $P = \{P_h | h = 1, 2, \ldots, z\}$, where h denotes ranking of the alternatives and z is total number of the alternatives. Let $E = \{E_l | l = 1, 2, \ldots, q; q \geq 2\}$ be a limited amount set of experts, where q is the total number of experts; E_l is the lth expert invited to participate in joint venter contractor selection. Suppose the weight vectors of competitive attributes and cooperation attributes provided by the expert E_l are $\vec{W}_l = \{\vec{w}_{CI1}, \vec{w}_{CI2}, \ldots, \vec{w}_{CIq}\}$ and $\vec{W}_C_l = \{\vec{w}_{CI1}, \vec{w}_{C21}, \ldots, \vec{w}_{Cq1}\}$, respectively. Here, \vec{w}_{CI} is the attribute weight of competitive attribute I_j; \vec{w}_{C} is the attribute weight of cooperation attribute C_j. $\vec{d}_{ijk} \in U$ is linguistic assessment information on competitive attribute I_j of the alternative joint venter contractor P_k given by expert E_i, where k is the kth expert. The matrix form of competitive assessment information given by experts can be expressed as

$$
D_k = \begin{bmatrix}
 d_{11k} & d_{12k} & \cdots & d_{1mk} \\
 d_{21k} & d_{22k} & \cdots & d_{2mk} \\
 \vdots & \vdots & \ddots & \vdots \\
 d_{qlk} & d_{q2k} & \cdots & d_{qmk}
\end{bmatrix}, \quad k = 1, 2, \ldots, l. \quad (10)
$$

The matrix form of cooperation assessment information given by experts can be expressed as

$$
Y_k = \begin{bmatrix}
 - & y_{11k} & \cdots & y_{1mk} \\
 y_{21k} & - & \cdots & y_{2mk} \\
 \vdots & \vdots & \ddots & \vdots \\
 y_{qlk} & y_{q2k} & \cdots & -
\end{bmatrix}, \quad k = 1, 2, \ldots, l. \quad (11)
$$

To facilitate our analysis, we integrate the above two matrices into the following matrix form:

$$
C_k = \begin{bmatrix}
 c_{11k} & c_{12k} & \cdots & c_{1pk} \\
 c_{21k} & c_{22k} & \cdots & c_{2pk} \\
 \vdots & \vdots & \ddots & \vdots \\
 c_{qlk} & c_{q2k} & \cdots & c_{qpk}
\end{bmatrix}, \quad k = 1, 2, \ldots, l. \quad (12)
$$

Suppose experts have different importance (i.e., different judgment ability levels of the experts) in this paper. Denote $\mu = \{\mu_t | t = 1, 2, \ldots, q\}$ as the judgment level of the expert E_i. Let a set of competitive attributes and cooperation attributes be $I = \{I_i | i = 1, 2, \ldots, m\}$ and $C = \{C_j | j = 1, 2, \ldots, n\}$, respectively. Here, I_i is the ith competitive attribute to evaluate performance of each joint venter contractor; C_j is the jth cooperation attribute to evaluate performance of each joint venter contractor.

Here experts are invited to participate in joint venter contractor selection, who give the matrix forms of competitive and cooperation evaluation information. Traditional evaluation approaches assume that the experts have the same weights. However, this is not consistent with engineering practice. From a practice perspective, it is generally considered that the judgment abilities of individuals tend to become more sophisticated and stable with the accrual of educational background and working experience. According to Zhang et al. [30], the judgment ability μ is divided into four levels, represented by “I–IV” as shown in Table 3. The level I with a score $\mu = 1.00$ represents the highest reliability of the expert judgment ability. The level IV with a score $\mu = 0.7$ represents the lowest reliability of the expert judgment ability.

The decision matrix of competitive attribute data and the decision matrix of cooperation attribute data provided by the expert E_i can be combined. The problem addressed in this paper is how to rank alternative joint venture contractors or to select desired alternative joint venture contractor(s) from the finite set P according to the weight vectors $\vec{W}_l = \{\vec{w}_{CI1}, \vec{w}_{CI2}, \ldots, \vec{w}_{CIq}\}$ and $\vec{W}_C_l = \{\vec{w}_{CI1}, \vec{w}_{C21}, \ldots, \vec{w}_{Cq1}\}$.

4. Joint Venture Contractor Selection Methods

Based on gathering performance of competitive attributes and cooperation attributes, comprehensive evaluation values of joint venture contractors can be obtained further. On the basis of above analysis, the selected joint venture contractor needs to have good performance both on competitive attributes and cooperation attributes. Thus, the proposed bidimension index information gathering methods need to manifest the best balance of the two kinds of attributes.

4.1. The First Proposed Method

This section develops a new method of massing di-dimensional attribute information based on TOPSIS. According to comprehensive values of competitive and cooperation attributes, a joint venture contractor can be represented as a point in Cartesian coordinate system. The candidate which is close to the positive ideal point and is far away from the negative ideal point has optimal balance performance. Thus, it needs closeness coefficients and deviation coefficients to be far away from the straight line to measure performances of joint venture contractors. The points in symmetry area above the axis have the same principle as for symmetry. The specific process of the method is as follows.

4.1.1. Gathering Information and Ranking Joint Venture Contractors Based on Ideal Points

A joint venture contractor can be written as the point Ax_i, y_i in the Cartesian coordinate system. Here, x_i is competitive attributes information; y_i is
Figure 1: The evaluating attribute system of performance for joint venture contractors.
Table 1: A basic decomposition of competitive subattribute (Source from: [8–12, 23]).

<table>
<thead>
<tr>
<th>Subattributes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{11}</td>
<td>Financial situation, management skills and ability</td>
</tr>
<tr>
<td>I_{12}</td>
<td>Praise and awards acquired from the society and the public</td>
</tr>
<tr>
<td>I_{13}</td>
<td>Response on the substantial requirements in the tender documents</td>
</tr>
<tr>
<td>I_{14}</td>
<td>Ability to provide products which meet the requirements of the owners and the applicable regulatory requirements</td>
</tr>
<tr>
<td>I_{15}</td>
<td>Honor titles awarded by external agencies</td>
</tr>
<tr>
<td>I_{16}</td>
<td>Project quality does not conform to the regulations, specifications or quality standards stipulated in the contract</td>
</tr>
<tr>
<td>I_{17}</td>
<td>Harm the personal safety and health, damage the equipment, or cause economic losses</td>
</tr>
<tr>
<td>I_{18}</td>
<td>Accounting statements reflected the financial and management status of accounting subjects</td>
</tr>
<tr>
<td>I_{19}</td>
<td>Achievements on schedule, such as the quality rating, salary, benefits, etc.</td>
</tr>
<tr>
<td>I_{20}</td>
<td>Evaluation on expected building products from the owners to the enterprises</td>
</tr>
<tr>
<td>I_{21}</td>
<td>Number of completed project entities during the same period</td>
</tr>
<tr>
<td>I_{22}</td>
<td>Organization of the project construction</td>
</tr>
<tr>
<td>I_{23}</td>
<td>Organizational structure, procedures, processes and resources required for implementation of safety management</td>
</tr>
<tr>
<td>I_{24}</td>
<td>All the planned and systematic activities for making sure that a product or a service can satisfy the given quality requirements</td>
</tr>
<tr>
<td>I_{25}</td>
<td>Civilized construction in construction areas</td>
</tr>
<tr>
<td>I_{26}</td>
<td>Construction sequence, plans of the construction and completion date for the proposed projects</td>
</tr>
<tr>
<td>I_{27}</td>
<td>Design and establish of organization system, organization operation and adjustment</td>
</tr>
<tr>
<td>I_{28}</td>
<td>Machines and equipment used in the construction process</td>
</tr>
<tr>
<td>I_{29}</td>
<td>Level of the enterprises staff</td>
</tr>
<tr>
<td>I_{30}</td>
<td>All of the costs incurred in a working class of a construction machinery under normal operation conditions</td>
</tr>
<tr>
<td>I_{31}</td>
<td>Project costs proposed by the bidders considering the profits, the corresponding calculation offer after risk cost, etc.</td>
</tr>
</tbody>
</table>

Table 2: A basic decomposition of collaboration subattribute (Source from: [10–12, 23]).

<table>
<thead>
<tr>
<th>Subattributes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{11}</td>
<td>Perceived hidden motives between with two enterprises</td>
</tr>
<tr>
<td>C_{12}</td>
<td>Consistency to improve the desired and increasing incomes</td>
</tr>
<tr>
<td>C_{13}</td>
<td>Believe or expectations of the importance for cooperation, and practice of trust</td>
</tr>
<tr>
<td>C_{14}</td>
<td>Willing to commit to duties and cooperation, and commitment</td>
</tr>
<tr>
<td>C_{15}</td>
<td>The explicit contracts about the fairness and risks</td>
</tr>
<tr>
<td>C_{16}</td>
<td>Satisfied with the content and the contract price</td>
</tr>
<tr>
<td>C_{17}</td>
<td>The incentive and constraint mechanism of the contract</td>
</tr>
<tr>
<td>C_{18}</td>
<td>Harmonious relationships among site management persons</td>
</tr>
<tr>
<td>C_{19}</td>
<td>Advanced means of communication based on IT technology platform for the communication and coordination</td>
</tr>
<tr>
<td>C_{20}</td>
<td>Reasonable and operation of joint decision-making mechanism</td>
</tr>
<tr>
<td>C_{21}</td>
<td>Reasonable conflict resolution mechanism</td>
</tr>
<tr>
<td>C_{22}</td>
<td>Complementary technology resources for seizing the opportunity</td>
</tr>
<tr>
<td>C_{23}</td>
<td>Construction activities fully comply with the construction plans</td>
</tr>
<tr>
<td>C_{24}</td>
<td>Quality, progress, safety and cost management fully implement the lean construction mode</td>
</tr>
<tr>
<td>C_{25}</td>
<td>Specification of the plan review, acceptance and check</td>
</tr>
<tr>
<td>C_{26}</td>
<td>The adoption of new technology and new craft, and using plans of advanced management program</td>
</tr>
<tr>
<td>C_{27}</td>
<td>Reasonable organization structure and clear division of responsibilities</td>
</tr>
<tr>
<td>C_{28}</td>
<td>Improved technical capabilities of using the new technologies</td>
</tr>
<tr>
<td>C_{29}</td>
<td>Strong subjective initiative of the staffs</td>
</tr>
<tr>
<td>C_{30}</td>
<td>Satisfied cooperation</td>
</tr>
<tr>
<td>C_{31}</td>
<td>Willingness to cooperate continues continuously</td>
</tr>
<tr>
<td>C_{32}</td>
<td>Degree to achieve the goal of cooperation</td>
</tr>
</tbody>
</table>
4.2. The Second Proposed Method. Except for the above proposed method balanced bidimension index performance, another method balanced bidimension index performance is proposed in this section. The specific principles and methods are as follows.

4.2.1. Gathering Information and Ranking Joint Venture Contractors Based on Balanced Ideal Advantages. Projection area D_{ij}^{+} from a point (x_i, y_i) to coordinate axis x is the area enclosed from ligature of (x_i, y_i) to the original point $(0, 0)$, the vertical line of (x_i, y_i) to the coordinate axis x, and the coordinate axis x. Similarly, projection area D_{ij}^{-} from a point (x_i, y_i) to coordinate axis y is the area enclosed from ligature of (x_i, y_i) to the original point $(0, 0)$, the vertical line of (x_i, y_i)

<table>
<thead>
<tr>
<th>Levels</th>
<th>Descriptions</th>
<th>μ</th>
</tr>
</thead>
</table>
| I | (1) Domain experts with more than 30 years of working experience
(2) Professors within the research field of tunnel infrastructure | 1.0 |
| II | (1) Domain experts with more than 10–20 years of working experience
(2) Associate professors within the research field of tunnel infrastructure | 0.9 |
| III | (1) Domain experts with more than 5–10 years of working experience
(2) Associate professors within the research field of tunnel infrastructure | 0.8 |
| IV | Domain experts with more than 1–5 years of working experience | 0.7 |

Table 3: Setting of experts’ judgment ability levels (Source from: [26]).
to the coordinate axis y, and the coordinate axis y. According to the nature of symmetrical triangles, we have $D_{k_i}^- = D_{k_i}^+$, which are unified to be denoted as $D_{k_i}^-$. Therefore, the projection area from a point to coordinate axis is the projection area from the ligature of the point to the original point.

Let $D_{k_i}^+$ be the projection areas from the point (x_i, y_i) to the line $x = y$. Let $D_{k_i}^-$ be the projection areas from the point (x_i, y_i) to the coordinate axis. The equilibrium of the point (x_i, y_i) distanced with two coordinate axes can be measured as

$$E_i = \frac{D_{k_i}^+}{D_{k_i}^- + D_{k_i}^+}.$$ \hspace{1cm} (18)

We can find that if the point (x_i, y_i) is located in the line $x = y$, then the equilibrium of the point (x_i, y_i) distanced with two coordinate axis is the best; if the point (x_i, y_i) is located in line $x = 0$ or $y = 0$, then the equilibrium of the point (x_i, y_i) distanced with two coordinate axis is the worst. Moreover, the points connected to the original point in a straight line have equivalent equilibrium.

Let $D_{k_i}^+$ be the projection areas from the point (x_i, y_i) to the line $x = y$. Let $D_{k_i}^-$ be the projection areas of the point (x_i, y_i) to the coordinate axis. The balanced ideal advantage of the point (x_i, y_i) close to the positive ideal point $(1, 1)$ and away from the negative ideal point $(0, 0)$ can be measured as

$$C_i = \frac{D_{k_i}^-}{D_{k_i}^- + D_{k_i}^+}, \hspace{1cm} 0 \leq C_i \leq 1.$$ \hspace{1cm} (19)

We can find that if the point (x_i, y_i) draws near to the negative ideal point $(0, 0)$, then $C_i = 0$, the ideal advantage is the smallest; if the point (x_i, y_i) draws near to the positive ideal point $(1, 1)$, then $C_i = 1$, the ideal advantage is the biggest. Moreover, the points, which connect to the original point in a straight line and draw near to the positive ideal point $(1, 1)$ have better ideal advantages. They can be calculated by the following formulas:

$$x_i = \sum_{k=1}^{h} \frac{D_{k_i}^+}{D_{k_i}^- + D_{k_i}^+} P_{(k)}^{(1)},$$ \hspace{1cm} (20)

$$x_i = \sum_{k=h+1}^{l} \frac{D_{k_i}^+}{D_{k_i}^- + D_{k_i}^+} P_{(k)}^{(1)},$$

The equilibrium of the point (x_i, y_i) distanced two coordinate axis, and the balanced ideal advantages of the point (x_i, y_i) draw near to the positive ideal point $(1, 1)$ and stayed away from the negative ideal point $(0, 0)$ and can be measured as the projection areas D_i^-. Balanced ideal advantage of the point (x_i, y_i) is obtained as

$$R_i = \frac{D_{i}^-}{D_{k_i}^- + D_{k_i}^+} \times (D_{k_i}^- + D_{k_i}^+) = D_{k_i}^-.$$ \hspace{1cm} (21)

If the point (x_i, y_i) drew near to the positive ideal point $(1, 1)$, then the balanced ideal advantages have the fastest growing gradients; if the point (x_i, y_i) reached to the point...
(1, 1), its balanced ideal advantage will reach maximum, that is, \(R_i = 1 \). Further, the balanced ideal advantage \(R_i \) of the joint venture contractor \(A_i \) can be calculated as

\[
R_i = \frac{1}{2} x_i y_i. \tag{22}
\]

Obviously, if the joint venture contractor \(A_i \) has better equilibrium or bigger ideal advantage, then its balanced ideal advantage \(R_i \) has greater ideal advantage; that is, the candidate is more talented. According to \(R_i \), DMs can order descendingly the joint venture contractors and choose the anticipant one.

4.2.2. Steps of the Method Based on Balanced Ideal Advantages

Main steps of the proposed method of gathering information and ranking the alternatives based on balanced ideal advantages shown in Figure 3 are summarized as follows.

Step 1. Obtain original decision matrices of competitive and cooperation attribute data, and attribute weight vector of competitive and cooperation attribute data \(\hat{W}_I \) and \(\hat{W}_C \) scored by experts. Then, calculate performance of competitive attributes and cooperation attributes, respectively.

Step 2. Construct the integrated decision matrix \(\hat{W} \) through Formulas (20).

Step 3. Determine overall values and bidimensional attributes through Formula (21).

Step 4. Calculate the balanced ideal advantage \(R_i \) through Formula (22).

Step 5. Obtain an order ranking of all alternative joint venture contractors or select the desired one(s).

5. Application of Proposed Methods: Case Study

5.1. Data Sources

According to the overall planning of HZMB, HZMB consists of three major parts: the Offshore Bridge and Tunnel, the Boundary Crossing Facilities (BCF) at Hong Kong, Zhuhai, and Macao, and the link roads in these three regions. It has been mutually agreed that the offshore bridge and tunnel within mainland Chinese territory (from the Guangdong/Hong Kong border to the BCFs of Zhuhai and Macao) will be built jointly by the three regional governments, and the remaining section in Hong Kong territory will be built by the Hong Kong Government. The BCFs of the three regions and their link roads will be built independently by each jurisdiction. Bad natural environment and difficult construction technology limit the decision of bridge route and landing sites. At the same time, decision of bridge route and landing sites also faces challenges from three aspects: complex decision problems, restriction of decision environment, and insufficient ability of decision-making subjects.

Discussed in this paper is bidding work of artificial islands and tunnels in principal part of the project (hereinafter referred to as the “island and tunnel engineering”). The three
bidding teams diagram of island and tunnel engineering is shown in Figure 4.

5.2. Model Results of the HZMB. According to joint venture contractor selection of large-scale infrastructure projects with competitive and cooperation attribute data described in Section 3, we gave the corresponding numerical example that applied the approach put forward in Section 4, and the concrete process is described below.

5.2.1. The First Proposed Method Application. Linguistic assessment information of competitive attributes values, cooperation attribute values, and attribute weights given by four experts (with the assumption of above problem description) through linguistic variables is obtained. The original assessment information is shown in Table 4.

Evaluation information of competitive attributes values and cooperation attributes values given by each expert is calculated and shown in Tables 5 and 6, respectively. Different judgment ability levels of the four experts are considered according to Table 3. Then the integrated decision matrix is constructed through Formula (3). The calculation results are shown in Table 7. The weighted integrated decision matrix is constructed through Formula (4) and Tables 3 and 7. The calculation results are shown in Table 8. The positive ideal point and the negative ideal point are defined as $PIS = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)$ and $NIS = (-1, -1, -1, -1, -1, -1, -1, -1, -1, -1)$ through Formulas (5) and (6), respectively. The distance of each alternative joint venture contractor from the positive ideal point and the negative ideal point are calculated through Formulas (7)-(8). The calculation results are shown in Table 9. On the basis of the distances from the candidate joint venture contractors to the PIS and NIS, the close coefficients of each alternative can be calculated as $CC_1 = 0.691$, $CC_2 = 0.653$, and $CC_3 = 0.602$ through Formula (9). According to the bidimensional index information and Formulas (13) and (14), ranking the indices R_i of bidimensional attributes can be calculated as $R_1 = 0.662$, $R_2 = 0.451$, and $R_3 = 0.415$. According to R_i of bidimensional attributes, the candidate joint venter contractor R_1 should be chosen.

5.2.2. The Second Proposed Method Application. Based on summarized steps in Section 4.2.2, the two proposed approaches have the same overall values of bidimensional attributes. Thus, the data of Table 7 are used directly here as shown in Table 10. The balanced ideal advantage can be calculated as $R_1 = 0.123$, $R_2 = 0.111$, and $R_3 = 0.106$.

5.2.3. Discussion. From comparative results of the two proposed methods, we can find that the method based on ideal points (Approach 1) and the method based on balanced ideal advantages (Approach 2) choose p_1 as the best joint venter contractor at the same time. However, Approach 2 has lower complexity than Approach 1, which is easier to calculate the ranking for the joint venter contractors. Here we use another two methods (Approaches 3 and 4) without regard to expert weights of Approaches 1 and 2 to solve the same problem described in Section 5.1. The ranking indices of bidimensional attributes are calculated by utilizing Approach 3 as $R_1 = 0.754$, $R_2 = 0.734$, and $R_3 = 0.708$. The balanced ideal advantages are calculated by utilizing Approach 4 as $R_1 = 0.150$, $R_2 = 0.130$, and $R_3 = 0.117$. We compare results generated utilized by Approach 3, Approach 4, and the proposed two methods as follows: (1) Decision results of the four methods are consistent with the real decision results; that is, the alternative joint venter contractor p_1 should be chosen. However, p_1 has significant advantage over p_2 and p_3 utilized by Approach 1. The decision processes of the four approaches involve gathering of the candidate joint venter contractors’ objective statistics and the experts’ subjective evaluation information. (2) Nevertheless, there was no significant difference on decision values (the ranking indices of bidimensional attributes) of p_1, p_2, and p_3 utilized by Approach 3. It implicates that expert weights affect the decision results on selecting joint venter contractors for large-scale infrastructure projects [26, 28]. (3) Compared with Approach 3, Approach 1 is more helpful for DMs to make
Table 4: Attribute weights evaluated by experts.

<table>
<thead>
<tr>
<th>Experts</th>
<th>I_1</th>
<th>I_2</th>
<th>I_3</th>
<th>I_4</th>
<th>C_1</th>
<th>C_2</th>
<th>C_3</th>
<th>C_4</th>
<th>C_5</th>
<th>C_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_1</td>
<td>VH</td>
<td>VH</td>
<td>DH</td>
<td>VH</td>
<td>DH</td>
<td>DH</td>
<td>DH</td>
<td>VH</td>
<td>DH</td>
<td></td>
</tr>
<tr>
<td>E_2</td>
<td>H</td>
<td>VH</td>
<td>DH</td>
<td>VH</td>
<td>DH</td>
<td>VH</td>
<td>DH</td>
<td>VH</td>
<td>DH</td>
<td></td>
</tr>
<tr>
<td>E_3</td>
<td>DH</td>
<td>H</td>
<td>DH</td>
<td>DH</td>
<td>VH</td>
<td>DH</td>
<td>DH</td>
<td>VH</td>
<td>VH</td>
<td></td>
</tr>
<tr>
<td>E_4</td>
<td>VH</td>
<td>DH</td>
<td>VH</td>
<td>DH</td>
<td>VH</td>
<td>DH</td>
<td>H</td>
<td>VH</td>
<td>DH</td>
<td></td>
</tr>
</tbody>
</table>

Table 5: Evaluation on competitiveness attributes of candidates given by experts.

<table>
<thead>
<tr>
<th>Candidates</th>
<th>Attributes</th>
<th>E_1</th>
<th>E_2</th>
<th>E_3</th>
<th>E_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>I_1</td>
<td>(0.42, 0.60, 0.75)</td>
<td>(0.41, 0.58, 0.73)</td>
<td>(0.41, 0.58, 0.65)</td>
<td>(0.38, 0.45, 0.68)</td>
</tr>
<tr>
<td></td>
<td>I_2</td>
<td>(0.35, 0.52, 0.66)</td>
<td>(0.35, 0.52, 0.66)</td>
<td>(0.31, 0.47, 0.61)</td>
<td>(0.35, 0.52, 0.69)</td>
</tr>
<tr>
<td></td>
<td>I_3</td>
<td>(0.17, 0.30, 0.50)</td>
<td>(0.42, 0.58, 0.75)</td>
<td>(0.58, 0.75, 0.91)</td>
<td>(0.50, 0.66, 0.83)</td>
</tr>
<tr>
<td></td>
<td>I_4</td>
<td>(0.50, 0.66, 0.83)</td>
<td>(0.25, 0.41, 0.58)</td>
<td>(0.33, 0.50, 0.66)</td>
<td>(0.42, 0.58, 0.75)</td>
</tr>
<tr>
<td>P_2</td>
<td>I_1</td>
<td>(0.23, 0.53, 0.70)</td>
<td>(0.36, 0.53, 0.70)</td>
<td>(0.46, 0.53, 0.76)</td>
<td>(0.43, 0.60, 0.74)</td>
</tr>
<tr>
<td></td>
<td>I_2</td>
<td>(0.35, 0.52, 0.69)</td>
<td>(0.52, 0.68, 0.81)</td>
<td>(0.35, 0.52, 0.66)</td>
<td>(0.40, 0.57, 0.73)</td>
</tr>
<tr>
<td></td>
<td>I_3</td>
<td>(0.35, 0.50, 0.66)</td>
<td>(0.33, 0.50, 0.66)</td>
<td>(0.42, 0.58, 0.75)</td>
<td>(0.50, 0.67, 0.83)</td>
</tr>
<tr>
<td></td>
<td>I_4</td>
<td>(0.40, 0.58, 0.75)</td>
<td>(0.17, 0.30, 0.50)</td>
<td>(0.35, 0.50, 0.66)</td>
<td>(0.42, 0.58, 0.75)</td>
</tr>
</tbody>
</table>

Table 6: Evaluation on cooperation attributes of candidates given by experts.

<table>
<thead>
<tr>
<th>Candidates</th>
<th>Attributes</th>
<th>E_1</th>
<th>E_2</th>
<th>E_3</th>
<th>E_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>C_1</td>
<td>(0.39, 0.52, 0.66)</td>
<td>(0.53, 0.67, 0.84)</td>
<td>(0.58, 0.75, 0.91)</td>
<td>(0.50, 0.66, 0.83)</td>
</tr>
<tr>
<td></td>
<td>C_2</td>
<td>(0.47, 0.64, 0.81)</td>
<td>(0.39, 0.56, 0.72)</td>
<td>(0.34, 0.50, 0.67)</td>
<td>(0.25, 0.41, 0.68)</td>
</tr>
<tr>
<td></td>
<td>C_3</td>
<td>(0.37, 0.43, 0.60)</td>
<td>(0.29, 0.45, 0.62)</td>
<td>(0.41, 0.57, 0.73)</td>
<td>(0.30, 0.46, 0.63)</td>
</tr>
<tr>
<td></td>
<td>C_4</td>
<td>(0.50, 0.67, 0.84)</td>
<td>(0.65, 0.82, 0.93)</td>
<td>(0.50, 0.67, 0.83)</td>
<td>(0.43, 0.63, 0.78)</td>
</tr>
<tr>
<td></td>
<td>C_5</td>
<td>(0.45, 0.62, 0.79)</td>
<td>(0.52, 0.68, 0.89)</td>
<td>(0.35, 0.51, 0.68)</td>
<td>(0.59, 0.77, 0.91)</td>
</tr>
<tr>
<td></td>
<td>C_6</td>
<td>(0.12, 0.23, 0.40)</td>
<td>(0.23, 0.39, 0.56)</td>
<td>(0.19, 0.33, 0.48)</td>
<td>(0.17, 0.31, 0.46)</td>
</tr>
<tr>
<td>P_2</td>
<td>C_1</td>
<td>(0.27, 0.44, 0.61)</td>
<td>(0.32, 0.47, 0.60)</td>
<td>(0.33, 0.48, 0.65)</td>
<td>(0.28, 0.45, 0.50)</td>
</tr>
<tr>
<td></td>
<td>C_2</td>
<td>(0.40, 0.56, 0.72)</td>
<td>(0.34, 0.51, 0.68)</td>
<td>(0.36, 0.53, 0.70)</td>
<td>(0.39, 0.52, 0.69)</td>
</tr>
<tr>
<td></td>
<td>C_3</td>
<td>(0.35, 0.51, 0.68)</td>
<td>(0.23, 0.40, 0.57)</td>
<td>(0.40, 0.59, 0.77)</td>
<td>(0.44, 0.60, 0.75)</td>
</tr>
<tr>
<td></td>
<td>C_4</td>
<td>(0.35, 0.51, 0.68)</td>
<td>(0.27, 0.44, 0.61)</td>
<td>(0.33, 0.52, 0.67)</td>
<td>(0.36, 0.51, 0.69)</td>
</tr>
<tr>
<td></td>
<td>C_5</td>
<td>(0.21, 0.38, 0.55)</td>
<td>(0.43, 0.60, 0.76)</td>
<td>(0.31, 0.50, 0.68)</td>
<td>(0.36, 0.53, 0.70)</td>
</tr>
<tr>
<td></td>
<td>C_6</td>
<td>(0.17, 0.32, 0.48)</td>
<td>(0.13, 0.26, 0.43)</td>
<td>(0.17, 0.32, 0.48)</td>
<td>(0.17, 0.31, 0.46)</td>
</tr>
<tr>
<td>P_3</td>
<td>C_1</td>
<td>(0.20, 0.37, 0.54)</td>
<td>(0.25, 0.39, 0.53)</td>
<td>(0.16, 0.31, 0.46)</td>
<td>(0.20, 0.34, 0.39)</td>
</tr>
<tr>
<td></td>
<td>C_2</td>
<td>(0.39, 0.56, 0.73)</td>
<td>(0.37, 0.54, 0.71)</td>
<td>(0.24, 0.39, 0.57)</td>
<td>(0.40, 0.57, 0.74)</td>
</tr>
<tr>
<td></td>
<td>C_3</td>
<td>(0.40, 0.57, 0.73)</td>
<td>(0.33, 0.49, 0.66)</td>
<td>(0.39, 0.56, 0.72)</td>
<td>(0.40, 0.56, 0.73)</td>
</tr>
<tr>
<td></td>
<td>C_4</td>
<td>(0.39, 0.56, 0.73)</td>
<td>(0.31, 0.47, 0.64)</td>
<td>(0.25, 0.41, 0.58)</td>
<td>(0.34, 0.50, 0.67)</td>
</tr>
<tr>
<td></td>
<td>C_5</td>
<td>(0.39, 0.56, 0.73)</td>
<td>(0.24, 0.40, 0.57)</td>
<td>(0.34, 0.51, 0.67)</td>
<td>(0.30, 0.45, 0.68)</td>
</tr>
<tr>
<td></td>
<td>C_6</td>
<td>(0.15, 0.29, 0.45)</td>
<td>(0.13, 0.26, 0.43)</td>
<td>(0.15, 0.29, 0.45)</td>
<td>(0.18, 0.32, 0.48)</td>
</tr>
</tbody>
</table>

a decision. This is because Approaches 3 and 4 just take into account competitive attribute weights and cooperation attribute weights, while our proposed approaches also consider the judgment abilities of individual experts except for the attribute weights.

6. Conclusions

This paper developed a matrix analysis model to support decision systems for joint venture contractor selection of bidding in construction projects based on competitive attributes.
and cooperation attributes. Then, two decision approaches based on competitive attributes and cooperation attributes are proposed. The specific measurement methods of each index in these two approaches are given. These approaches put forward the bidimensional and balanced performance problems and propose two balanced information integration and performance ranking methods. The proposed two methods both choose \(P_1 \) as the best joint venture contractor at the same time. However, Approach 2 has lower complexity than Approach 1, which is easier to calculate the ranking for the joint venture contractors. Joint venture contractor selection of bidding in island and tunnel engineering diagram of the
HZMB as a case study including three candidate units is used to illustrate our approaches. As a result of limitation of resources and different preference of DMs, we can further modify the model and increase some objectives attributes for the model. In addition, theory thoughts put forward in this paper are hoping to bring some enlightenment for bidding problems in construction projects.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Acknowledgments

This work was partly supported by the National Natural Science Foundation of Key Projects (no. 71390521), the National Natural Science Foundation of China (nos. 91646123, 71671098, 71501102, and 71701090), Discovery Project from Australia Research Council (no. DP170104612), and the program for Outstanding Ph.D. Candidate of Nanjing University (nos. 201601A001 and 201702B041).

References

Submit your manuscripts at www.hindawi.com